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1 Introduction

Latent variable models have played an important part in unsupervised learning, where the goal is
to capture the structure of some complicated observed data in a set of variables that are somehow
simpler. PCA or Factor Analysis, for example, models high dimensional data using lower dimen-
sional and uncorrelated latent variables. The value of the latent variable represents some underlying
unobserved explanation of the observation. Often, the latent variables can be interpreted as having
some kind of meaning, which is useful for exploratory data analysis. Many models follow the same
principle of explaining the value of an observation by mapping from a “simple” latent space to com-
plicated observations. Much work has been done to increase the flexibility of these mappings. The
GPLVM (Lawrence and Hyvrinen, 2005), for example, uses a non-linear function with a Gaussian
process prior to map from the latent space.

Instead of the latent variables determining the value of an observation, we could instead let them
determine the correlations within the data. This would give the features found in the latent space
a different meaning, allowing different kinds of features to be captured. For example, in a study
of people’s preference for drinks, we can imagine someone’s ability to perceive the taste “bitter” to
cause correlations in their enjoyment of bitter drinks. A latent variable model that explains correla-
tions would be able to distinguish between individuals on the basis of whether or not the enjoyment
of bitter drinks are correlated, while factor analysis would not. Additionally, modelling correlations
can allow us to assign latent variables to whole datasets rather than data points. This allows us to
judge the proximity or similarity of datasets according to their covariance structure. Investigating
the difference has been termed “contrastive learning” and has been investigated in the context of
mixture models by Zou et al. (2013). Our model should be able to expand on this by investigating
correlation structure. Here we introduce the Wishart process latent variable model, a latent variable
for covariances.

2 Model

In order to model correlations, we start with the Wishart process (Wilson and Ghahramani, 2011),
which can be seen as a stochastic process over covariance matrices, indexed by some covariate such
as time or space. Wishart processes produce a sequence of correlated covariance matrices and have
been applied to the regression of fluctuating correlations between prices of goods in financial mar-
kets. We propose to do unsupervised learning by inferring the input, as is done with the GPLVM.
In this case, we assume that we (indirectly) observe the covariance matrices from a Wishart pro-
cess, but not the input that they are correlated by. We then infer the input. This gives us a latent
representation where dissimilar covariance matrices are placed in distant regions in the latent space.
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2.1 Wishart processes

The Wishart distribution (Wishart, 1928) gives a probability density over D dimensional positive
definite matrices. It has two free parameters, the number of degrees of freedom ν ≥ D and the scale
parameter V ∈ RD×D (positive definite). Samples fromW (ν, I) can be drawn by taking the sum
of ν outer products of vectors drawn from N (0, ID):

un ∼ N (0, ID) S =

ν∑
k=1

uku
T
k (1)

∴ S ∼ W (ν, ID) LSLT ∼ W
(
ν, LLT

)
(2)

The Wishart process allows correlated matrices to be drawn by replacing the elements in the un
vectors by Gaussian processes. We now have D × ν GPs, each with N points. A single covariance
matrix is obtained by the outer product of the matrix formed by all the GP values at the nth time
point. Each S(xn) from the Wishart process will be marginally Wishart distributed.

udk(xn) ∼ GP (0, k (x,x′)) S (xn) =

ν∑
k=1

uk(xn)uk(xn)
T = UnU

T
n (3)

Notation-wise, we collect all the GP values in a large RN×D×ν tensor. Points or sub-vectors are
referred to using a Matlab-like slicing notation. E.g. Undk refers to th nth time point of the dkth
GP, while U:dk referres to the vector of all values of the dkth GP.

2.2 Wishart Process Latent Variable Model

Two modifications to the Wishart process are needed to turn it into the Wishart process latent variable
model. Firstly, the inputs xn become latent and are given a prior. Secondly, we do not observe the
covariance matrices directly, but only through data. Here we shall consider observing Gaussian
distributed data with the covariance given by the Wishart process:

xn ∼ N (0, IQ) n ∈ {1 . . . N} (4)

udk(x) ∼ GP(0, k(x,x′)) d ∈ {1 . . . D}, k ∈ {1 . . . ν} (5)

Σn = UnU
T
n (6)

yni ∼ N (0, Σn) i ∈ {1 . . . In} (7)
Here we perform inference on a slightly modified model, which is approximately equal to the model
above, but allows for a tractable variational inference method. Instead of explicitly representing
the covariance matrix Σn, we generate the data yni by multiplying εni ∼ N (0, Iν) by Un, as is
common when sampling correlated Gaussians. We replace the last two lines with:

εni ∼ N (0, Iν) (8)

yni = N
(
Unεni, σ

2ID
)

i ∈ {1 . . . In} (9)
This model will have Cov [yni] = UnU

T
n + σ2ID, which is approximately marginally Wishart

distributed if σ2 is small and ν ≥ D. This formulation also allows us to constrain ourselves to factor
analysis style covariance matrices, instead of considering full-rank matrices.

3 Variational inference

We consider the adapted model from the previous section because any variational distribution over
U in the original model would involve taking an expectation over log |UnUT

n|. Explicitly represent-
ing the εnis removes this problem. This adapted model is a special case of a Gaussian Process
Regression Network (Wilson et al., 2012) for which Nguyen and Bonilla (2013) present a varia-
tional inference scheme. Our variational inference scheme is similar, but modified using the sparse
variational approximation as in Titsias and Lawrence (2010) to allow integration over the latent Xs.

We derive a lower bound for the log marginal likelihood, as usual. As in Titsias and Lawrence
(2010), we augment each GP with inducing points, the input being zn ∈ RQ, and the output ζdk.
The trick from the GPLVM is to choose a particular variational distribution over U so that the
terms with the problematic K−1XX terms are removed. If we choose q(udk) to be the GP conditional
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distribution given ζdk, we cancel out any terms containing the problematic K−1XX .

log p(Y) = log

∫
p(Y|U , ε)p(ε)p(U|X)p(X)dXdεdU

≥
∫
q(ε)q(X)q(ζ)p(U|ζ,X,Z) log p(Y|U , ε)p(ε)((((((p(U|ζ,X,Z)p(ζ|Z)p(X)

q(ε)q(X)q(ζ)((((((p(U|ζ,X,Z)
dXdεdUdζ

= E
[
E
[
E [log p(Y|U , ε)]q(ε)p(U|ζ,X)

]
q(X)

+ log
p(ζ)

q(ζ)

]
q(ζ)

−KL (q(ε)||p(ε))−KL (q(X)||p(X)) (10)
We choose a fully factorised Gaussian distribution for q(ε) and a Gaussian q(X) which is factored
over each latent point, with a diagonal covariance. The optimal form for q(ζ) will be derived and
will turn out to be Gaussian. This gives the overall variational distribution:

q(ε,U) =
∏
nik

q(εnik) ·
∏
dk

p(U:dk|ζ:dk, X) (11)

=

[
N∏
n=1

In∏
i=1

ν∏
k=1

N
(
εnik;

ε
µnik;

ε
σ
2

nik

)]
·

[
D∏
d=1

ν∏
k=1

N (udk;M:dk, Σ)

]
(12)

q(X) =
∏
n

N (xn;m,diag (v)) (13)

Mndk and Σ contain the GP conditional mean and covariance respectively (the covariance depends
on the inputs only, which are the same for all D × ν GPs).

M:dk = KXZK
−1
ZZζ:dk Σ = KXX −KXZK

−1
ZZKZX σ2

n = Σnn (14)

The expectations are now, in principle, all Gaussian expectations over quadratic forms, which are
analytically tractable.

E [log p(Y|U , ε)]q(ε,U) =
∫ ∏

nik

q(εnik)
∏
dk

p(U:dk|ζ:dk, X)

[
log
∏
ni

N
(
yni;Unεni, σ

2I
)]

d(U , ε)

= −DT
2

log
(
2πσ2

)
− 1

2σ2

∑
ni

[
(yni −Mn

ε
µni)

T
(yni −Mn

ε
µni)

+Dσ2
n

ε
µ

T

ni

ε
µni +Tr

(
MT
nMn

ε

Σni

)
+Dσ2

n

∑
k

ε

Σnik

]
(15)

The expectation over q(X) is done by unfolding Mn using Kronecker products (ζ = vec ζ:::). Due
to linearity, the integral reduces to taking expectations of the kernel matrices with respect to q(xn),
denoted using angled brackets1.

yT
ni 〈Mn〉

ε
µni =

(
ε
µni ⊗ (I ⊗K−1ZZ 〈kZx〉)yni

)T
ζ (16)

ε
µni

T〈
MT
nMn

〉 ε
µni = ζT

(
ε
µni

ε
µ

T

ni ⊗
(
I ⊗K−1ZZ

〈
kZxk

T
Zx

〉
K−1ZZ

))
ζ (17)

Tr

(〈
MT
nMn

〉 ε

Σni

)
= ζT

(
ε

Σni ⊗
(
I ⊗K−1ZZ

〈
kZxk

T
Zx

〉
K−1ZZ

))
ζ (18)〈

σ2
n

〉
= 〈kxx〉 − Tr

(
K−1ZZ

〈
kZxk

T
Zx

〉)
(19)

Next, the optimal form of q(ζ) can be derived by taking the functional derivative of our lower bound,
which gives us:

log q(ζ) = E [p (Y|U , ε)]q(U,ε,X) + log p(ζ) + λ− 1 = −1

2
(ζ − µζ)

T
Σ−1ζ (ζ − µζ) + c (20)

1These are referred to as the Ψ statistics in Titsias and Lawrence (2010). Detailed derivations can be found
in Gal and van der Wilk (2014).
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Figure 1: Visualisation using PCA. See figure 3
for a description of the labels.

Figure 2: Visualisation using GPLVM. See fig-
ure 3 for a description of the labels.

Σ−1ζ = I ⊗K−1ZZ +
1

σ2

∑
ni

((
ε
µni

ε
µ

T

ni +
ε

Σni

)
⊗ (I ⊗K−1ZZ

〈
kZxk

T
Zx

〉
K−1ZZ

)
(21)

µζ = Σζ
1

σ2

∑
ni

(
ε
µni ⊗ (I ⊗K−1ZZ 〈kZx〉)yni

)
(22)

Finally, we take the final expectation over q(ζ), giving our lower bound:

L (Y) = −DT
2

log 2πσ2 − 1

2

((
1

σ2

∑
ni

yT
niyni

)
− µT

ζΣ
−1
ζ µζ +Tr (IνDM )

)
+H (q(ζ))

+
D

2σ2

∑
ni

〈
σ2
n

〉 [ ε
µ

T

ni

ε
µni +

∑
k

ε

Σnik

]
+KL (q(ε)||p(ε)) + KL (q(X)||p(X)) (23)

4 Preliminary results

We first show how the latent space of the WPLVM extracts different features from the data, compared
to existing methods like PCA or the GPLVM. We generated data from two 3D Gaussians2, one
isotropic and one with a strong correlation. The latent variable of interest determines which Gaussian
a data point is generated from. PCA and the GPLVM (figures 1 & 2) can not separate the points
based on their correlation, while the WPLVM (figure 3) manages to cluster points from the correlated
distribution together while forcing away those from the isotropic distribution.

Alternatively, the WPLVM can be used to visualise the difference in correlations between datasets.
For this case we generated 15 groups of points from Gaussians. The first 5 get have an increasing
correlation in one direction, the following 5 in another and the final 5 have an increasing correlation
in both directions. Figure 4 shows that the WPLVM finds a representation where datasets are ordered
by increasing correlation and by the direction of correlation.

5 Conclusions & Future work

We argue that latent variable models can be used in different ways to capture interesting properties of
data such as correlation, which current models like Factor Analysis or the GPLVM do not. We show
using toy datasets that the WPLVM can cluster data based on its internal correlations. Additionally,
we give an example of the WPLVM finding a useful latent space representing the difference in
correlations between several datasets.

The WPLVM as presented here can be extended in several ways. If we maintain a GP prior over the
ε variables, we are essentially inferring the inputs to a GPRN. This would allow us to do contrastive
learning using both the mean and covariance of datasets. There is also still work to be done on
initialising the model properly in order to improve visualisations like in figure 3.

2Giving 6 degrees of freedom in the covariance matrix.
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Figure 3: Visualisation using WPLVM. The
labels “I” and “C” indicate that points come
from an isotropic or correlated Gaussian, re-
spectively. Note how the WPLVM forces most
C clusters away from the I clusters.

Figure 4: Latent space produced by the
WPLVM. The first number in the label indi-
cates which direction the correlation grows in (0
for one direction, 1 for another and 2 for both),
while the second number indicates the strength
(0 for no correlation).
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