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Abstract

Finding the global minimum of a function is often difficult. We consider efficiently mini-
mizing functions which are computationally expensive to evaluate. A Bayesian approach
to the global function optimization problem places a prior distribution on the function and
chooses where to evaluate the function based on its posterior distribution given a set of
observations. While many recent applications use Gaussian processes as a prior for the
objective function, here we show that a Student-t process is an ideal prior for such a prob-
lem, as it is also nonparametric, but naturally models heavy tailed behaviour and has a
predictive covariance which explicitly depends on observations.

1 The Student-t Process

We begin by deriving the Student-t process1, and its marginal likelihood and predictive distribution, starting
from a hierarchical Gaussian process model. We define a prior over continous functions using the following
generative model

r−1 ∼ Γ
(ν

2
,
ρ

2

)
y|r ∼ GP

(
0, r(ν − 2)k/ρ

)
, (1)

where ν > 2, ρ > 0 and k : RD × RD → R is a kernel function. If we marginalize over r, y is a scaled
mixture of Gaussian processes. Suppose y = (y1, ..., yN ) is a finite collection of observations at input points
x1, ...,xN ∈ RD and let K be the Gram matrix such that Kij = k(xi,xj). We can compute the marginal
probability of these observations under the generative prior above as follows

p(y) =

∫
p(y|r)p(r)dr =

(π(ν − 2))−N/2
(
ρ/2
) ν+N

2

|K|1/2Γ(ν/2)

∫
r−(ν+N)/2−1 exp

(
− ρ

2r

(
1 +

y>K−1y

ν − 2

))
dr

= (π(ν − 2))−N/2
Γ((ν +N)/2)

Γ(ν/2)
|K|−1/2

(
1 +

y>K−1y

ν − 2

)−(ν+N)/2

. (2)

1The Student-t process [O’Hagan, 1991, O’Hagan et al., 1999] has been used in a number of applications [Yu et al.,
2007, Zhang and Yeung, 2010, Xu et al., 2011]. Our parameterization differs slightly from previous constructions.
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Figure 1: Five samples (blue solid) from GP(h, κ) (left) and TP(ν, h, κ) (right), with ν = 3, h(x) = cos(x)
(red dashed) and κ(xi, xj) = 0.01 exp(−20(xi − xj)

2). The shaded areas are 95% predictive intervals.
Despite having the same mean and marginal variance, the Student-t process has more extreme excursions.

Thus y is marginally multivariate Student-t distributed, with mean E[y] = E[E[y|r]] = 0 and covariance
E[yy>] = E[E[yy>|r]] = E[r(ν−2)K/ρ] = K. We write y ∼ MVTN (ν, 0,K). Notice the redundancy in
the parameter ρ; without loss of generality we set ρ = 1. It is clear from this generative process that a subset
of {y1, ..., yN} will be multivariate Student-t distributed, which motivates defining a Student-t process.

Definition 1. f is a Student-t process with scale parameter ν > 2, mean function µ and kernel k if for any
finite collection of inputs x1, ...,xN the vector (f1, ..., fN )> is multivariate Student-t distributed with scale
ν, mean (µ(x1), ..., µ(xN ))> and covariance K where Ki,j = k(xi,xj). We write f ∼ TP(ν, µ, k).

Samples from a Student-t process are shown in Figure 1. We now derive the MVT conditional distribution.

Lemma 2. The conditional distribution for a multivariate Student-t is also multivariate Student-t.

Proof. Suppose y ∼ MVTN (ν, 0,K) and let y1 and y2 represent the first N1 and remaining N2 entries of
y respectively. Let β1 = y1

>K−111 y1 and β2 = (y2 − φ̃2)>K̃−122 (y2 − φ̃2), where φ̃2 = K21K
−1
11 y1 and

K̃22 = K22 −K21K
−1
11 K12. Note that β1 + β2 = (y − φ)>K−1(y − φ). We have

p(y2|y1) =
p(y1,y2)

p(y1)
∝
(

1 +
β1 + β2
ν − 2

)− ν+N2 (
1 +

β1
ν − 2

) ν+N1
2 ∝

(
1 +

β2
β1 + ν − 2

)− ν+N2
(3)

and hence that y2|y1 ∼ MVTN2

(
ν +N1, φ̃2,

ν+β1−2
ν+N1−2 × K̃22

)
.

The predictive mean is the same as for the Gaussian process, but the predictive covariance now explicitly
depends on the observations whilst the Gaussian process predictive covariance does not. This difference
between the GP and the TP makes the TP particularly well suited to Bayesian optimization, an application
where both accurate predictive means and predictive variances are highly desirable for determining where
to evaluate a function sequentially.

2 Bayesian Optimization with Student-t Processes

Our goal is to find the minimum of a function f(x) on some compact subset of RD. A Bayesian approach
to such a problem would be to place a prior on the unknown function f and make decisions about where
to evaluate the function next while integrating over any uncertainty. An overview of Bayesian optimization
methods can be found in Brochu et al. [2010]. Our approach is to place a Student-t process prior on the
unknown function f .
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2.1 Acquisition Functions

The acquisition function, which we denote as a : RD → R+, determines where we should next evaluate the
function f by choosing the point xnext = argmax a(x) and scoring the utility of evaluating the unknown
function at a given input location. The acquisition function will depend on previous observations and the
hyperparameters of the Student-t process; we denote this dependence a(x; {xn, yn},θ), where θ represents
the Student-t process hyperparameters. We denote the current best value as xbest = argminxn f(xn), the
predictive mean function as µ(x; {xn, yn},θ) and the predictive variance function as σ(x; {xn, yn},θ). We
let the λν and Λν denote the probability density and distribution functions respectively of a MVT1(ν, 0, 1)
distribution. In this work we use the expected improvement criterion for choosing sequential points to query.

Expected Improvement A sensible strategy is to maximize the expected improvement over the current
minimum. This also has a closed form solution under a Student-t process prior

aEI(x; {xn, yn},θ) = E[max
(
f(xbest)− f(x), 0

)
|{xn, yn},θ]

=

∫ f(xbest)

−∞
dy

(f(xbest)− y)

σ
λν+N

(y − µ
σ

)
= γσΛν+N (γ(x)) + σ

(
1 +

γ(x)2 − 1

ν +N − 1

)
λν+N (γ(x)), (4)

where γ(x) = σ(x; {xn, yn},θ)−1[f(xbest) − µ(x; {xn, yn},θ)]. This acquisition function is similar to
that of a GP prior [Snoek et al., 2012]; however, the added scale parameter in the Student-t process can have
a significant impact on where the acquisition function is maximized, as illustrated in Figure 2. The argmax
of the acquisition function changes drastically as ν varies.
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Figure 2: Posterior distribution of a function to maximize under a GP prior (left) and acquisition functions
(right). The solid line is the acquisition function for a GP, the dotted and dashed lines are for TP priors with
ν = 15 and ν = 5 respectively. All other hyperparameters are kept the same.

2.2 Kernel choice and integrating out uncertainty
We choose to work with a kernel function which is the sum of a ARD Matérn 5/2 kernel and a delta function
kernel. As discussed in Snoek et al. [2012], this kernel is a better choice than a squared exponential which
can be unrealistically smooth. The ARD Matérn 5/2 is twice differentiable and is defined as

KM52(x,x′) = θ0

(
1 +

√
5r2(x,x′)

)
exp

(
−
√

5r2(x,x′)
)
, (5)

where r2(x,x′) =
∑D
d=1(xd− x′d)2/θ2d. Ideally we would like to analytically integrate out the uncertainty

in the hyperparameters by placing a prior on them and working directly with

â(x; {xn, yn}) =

∫
a(x; {xn, yn},θ)p(θ)dθ. (6)

Since this integral is intractable, our approach, analogous to Snoek et al. [2012], is to sam-
ple hyperparameters {θh}Hh=1 from their posterior distributions and maximize ã(x; {xn, yn}) =
1
H

∑H
h=1 a(x; {xn, yn},θh) to find the next point to query the function being optimized.
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3 Experiments

We compare a Student-t process prior with a Matérn plus a delta function kernel to a Gaussian process
prior with the same kernel, for Bayesian optimization. To integrate away uncertainty we slice sample the
hyperparameters [Neal, 2003]. We consider 3 functions: a 1-dim synthetic sinusoidal, 2-dim Branin-Hoo
and a 6-dim Hartmann function. We place uniform priors on the length scales, lognormal priors on the
amplitude, noise and ν − 2 and a Gaussian prior on the constant mean. All results are shown in Figure 3.
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Figure 3: Function evaluations for the synthetic function (left), Branin-Hoo function (centre) and the Hart-
mann function (right). Evaluations under a Student-t process prior (solid line) and a Gaussian process prior
(dashed line) are shown. Error bars represent the standard deviation of 50 runs. In each panel we are
minimizing an objective function. The vertical axis represents the running minimum function value.

Sinusoidal synthetic function In this experiment we aimed to find the minimum of f(x) = −(x −
1)2 sin(3x+ 5x−1 + 1) in the interval [5, 10]. The function has 2 local minima in this interval. TP optimiza-
tion clearly outperforms GP optimization in this problem; the TP was able to come to within 0.1% of the
minimum in 8.1± 0.4 iterations whilst the GP took 10.7± 0.6 iterations.

Branin-Hoo function This function is a popular benchmark for optimization methods [Jones, 2001] and
is defined on the set {(x1, x2) : 0 ≤ x1 ≤ 15,−5 ≤ x2 ≤ 15}. We initialized the runs with 4 initial
observations, one for each corner of the square on which the function is defined.

Hartmann function This is a function with 6 local minima in [0, 1]6 [Picheny et al., 2013]. The runs are
initialised with 6 observations at corners of the unit cube in R6. Notice that the TP tends to behave more like
a step function whereas the Gaussian process’ rate of improvement is somewhat more constant. The reason
for this behaviour is that the TP tends to more thoroughly explore any modes which it has found, before
moving away from these modes. This phenomenon seems more prevelant in higher dimensions.

4 Conclusions

We proposed to use Student-t process priors over functions we wish to optimize, and demonstrate that the
TP can outperform the GP for Bayesian optimization in many cases. The added scale parameter in the TP
gives it the ability to learn heavy tailed function behaviour. The fact that the predictive covariance for the TP
explicitly depends on the data is a useful property which the Gaussian process lacks. The TP therefore seems
to have all the benefits of the GP for Bayesian optimization, e.g. it has consistent marginals, an analytically
representable conditional distribution and closed form representations of popular acquisition functions, but
the TP also appears to add significant flexibility.
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