Analysis Correctness

Reading: NNH 2.2 (optional)

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich



Announcements

e Office Hours

— Nicholas Sherman
 This week: Wednesday 3pm, MSE Cave
e Future: Tuesday 4pm, MSE Cave

— Dean Sutherland
e Thursday 4pm, Wean Hall 8130

— Jonathan Aldrich
 Wednesday 1pm, Wean Hall 8212

2/2/2005



What does Correctness Mean?

2/2/2005



What does Correctness Mean?

e |ntuition

— At a fixed point, analysis results are a
conservative abstraction of program execution

— program execution must be formally defined

— abstraction relates program execution to data
flow values
— conservative means truth C analysis results

2/2/2005 4



Execution Traces

=]

* Sequence of <pp,mem>

pairs
— pp IS a program point
» Just before statement pp

— mem is the state of
variables in memory

' OwWOah~WwWDNPRPO

[y :==x]%;

[z :=1]%

while [y>1]3 do
[z =z " y]%
[y:=y-1J];

[y :=QJ°;

2/2/2005

NN DNDNDNDDNDDNDNIX

OFRPEFPDNNDMNDNOK

NNNNPFP P OOIN



Execution Traces

* Sequence of <pp,mem> P

P
pairs 1
— pp is a program point 2
» Just before statement pp 3

6

— mem is the state of
variables in memory

i e e

[y :==x]%;

[z :=1]%

while [y>1]3 do
[z =z " y]%
[y:=y-1J];

[y :=QJ°;

2/2/2005

OR R REROK

R R RO OolN



Execution Traces

e Seguence of <pp,mem> pp X y Z
pairs | 1 3 0 0
o thoore saementpp 2 33 0

— mem is the state of 3 3 3 1
variables in memory 4 3 3 1

5 3 3 3

[y = x]4 3 3 2 3
[z .= 1]% 4 3 2 3
while [y>1]3 do 5 3 2 6
[z .=z *y]4 3 3 1 6
y:=y-1J; 6 3 1 6

[y := 0]¢; - 3 0 6

2/2/2005



Execution Traces

* Sequence of <pp,mem> pp X y Z
pairs
— Ppis a program point Repeat for all possible initial

» Just before statement pp

— mem is the state of
variables in memory

values of x,y,z!

[y :==x]%;

[z :=1]%

while [y>1]3 do
[z =z " y]%
[y:=y-1J];

[y :=QJ°;

2/2/2005 8



Abstraction

(=]

e Abstraction function a

— maps traces to data flow
values at a certain time tin
the trace

* Ocpl(<py,m;>...<p,m;>,t)
= mt

* Also define program point
function pp
* PP(<ppm;>...<p,m,>,1)
= P

R OWO~NOUNWNERLOI™
P OWORNRWOAORNWN RO
WWwWwwwowowaowww w (X
OFRFPNNNWWWWOK

o

0cp(T,0) = (x=3,y=0,z=0)
Ocp(T,10) = (x=3,y=0,z=6)
2/2/2005

o000 WWwWEREFkOOIN



What does Correctness Mean?

e |ntuition

— At a fixed point, analysis results are a conservative
abstraction of program execution

e Soundness condition

— When data flow analysis reaches a fixed point_F, then
for all traces T and all times t in each trace, a(T,t) C

F(pp(T,1))
— Constant propagation
For trace on last slide with t=10
Ocp(T,10) = <x=3,y=0,z=6>
Fep(PP(T,10)) = Fp(exity) = <x=T,y=0,z=T>
<x=3,y=0,z=6> C; <x=T,y=0,z=T>

— Because3C TandOC Oand 6 C T in the CP lattice
To prove soundness, repeat for all times in all traces

2/2/2005 10



Why care about Soundness?

* Analysis Producers

— Writing analyses is hard
* People make mistakes all the time
* Need to know how to think about correctness
 When the analysis gets tricky, it's useful to prove it correct formally

e Analysis Consumers

— Sound analysis provides guarantees
« Optimizations won’t break the program
« Finds all defects of a certain sort

— Decision making

« Knowledge of soundness techniques lets you ask the right
guestions about a tool you are considering

« Soundness affects where you invest QA resources
— Focus testing efforts on areas where you don’t have a sound analysis!

2/2/2005 11



Proving Soundness

 Formally define analysis
— We already know how

 Formalize trace semantics

e Define abstraction function

 Prove local soundness for flow functions
* Apply global soundness theorem

2/2/2005 12



Semantics of WHILE Expressions

store o has type State = map from Var to Z
— Z the set of integers; we assume no boolean-typed vars

A(AExp,State) computes the value of AExp in State
A(X, 0) = a(X)

A(n, g)=n

A(a, op, a,, 9) = A(ay, 0) op, A(a,,0)

Example (assume g = (x=5,y=7))
AXx+3, 0 = A(x, o) + A(3,0)
= o(X) +3
=5+3
=8

2/2/2005 13




Semantics of WHILE Expressions

store o has type State = map from Var to Z
— Z the set of integers; we assume no boolean-typed vars

A(AExp,State) computes the value of AExp in State
A(X, 0) = a(X)

A(n, g)=n

A(a, op, a,, 9) = A(ay, 0) op, A(a,,0)

B(BEXp,State) computes whether BEXp is true in State
B(not b, 0) = not B(b, o)

B(b, op, b,, o) = B(by, 0) op,, B(b,, )

B(a, op; a,, 0) = A(a,, 0) op, A(a,, 0)

2/2/2005 14



Semantics of Assignment in WHILE

[ass]

([z := al*,0) — ([], o[z — A(a,o)])

e Start with a program [x := a]f and a store o
— Goal: rewrite to a new program and new store
* We execute [x := a]f resulting in:

— The empty program |[]
— Evaluate a with store oto get A(a, 0)

— Update x’s value to be A(a, 0)
» Example: a = x+3, 0= (x=5,y=7)
— We get the pair ([], (x=8,y=7))

2/2/2005 15



Semantics of WHILE Statements

[ass]

([z := a]*, 0) — (I, oz — A(a, 0)])

([skipl’, o) — (1, o) L*HP!

[seqa]

(S1,0) — (I, 0")
(S1; gQ, o) — (S2,0") [seqo]

B(b,0) = true
(if [b]¢ then S1 else S»,0) — (S1,0)

[i f1]

B(b,o) = false
(if [b]¢ then S; else So,0) — (S>,0)

[i f2]

B(b,o) = true [whiles]
(while [b]f do S,o0) — (S;while [b]¢ do S, o)
21212005 80, @) S Belllse [whiles] 16

(while [b]¢ do S,o) — ([],0)



Execution in WHILE

[ass]

([z :=al’,0) — ([l, o[z — Ala, 0)])

(S1,0) = ([, o)
(S1; quz,a) — (S5, 0") [seqo]

(Iy := X% [z := 1)3; ([z = 11%
while [y>1]3 do while [y>1]3 do

[z:=z*y]% [y =y - 1] j> [z:=z*y]% [y =y - 1]
[y :=0]°;, [y :=0]°;,
(x=3,y=0,z=0) ) (x=3,y=3,z=0) )

2/2/2005 17



Execution in WHILE

[ass]

([z :=al’,0) — ([l, o[z — Ala, 0)])

(S1,0) = ([, o)
(S1; quz,a) — (S5, 0") [seqo]

([z := 1)?; (while [y>1]3 do

while [y>1]3 do [z =z*y]* [y =y-1]°;
[z:=z*y]5 [y =y -1 : ) [y := 0]¢:,

y =00, (x=3.y=3,z=1) )

(x=3,y=3,z=0) )

2/2/2005 18



Execution iIn WHILE

B(ba U) = true

(while o] do S,0) — (5;wnile [B]f do 5,0) /el

(51,0) = (S},0) S{#D -
(S1; S2,0) — (S; 52,07) 7

(while [y>1]2 do (z:=z*y4 ly:=y-1J5
while [y>1]3 do

[z:=z*yI% [y =y - 1P
Ly == 0P, j> 2=z y5 Iy =y -1

(x:3,y:3’2:1) ) [y = 0]6;,
(x=3,y=3,z=1) )

2/2/2005 i



Execution in WHILE

[ass]

([z :=al’,0) — ([l, o[z — Ala, 0)])

(S1,0) = ([, o)
(S1; quz,a) — (S5, 0") [seqo]

(z:=z*yl% [y =y- 115 (ly :=y- 155
while [y>1] do while [y>1]3 do
[z:=z*yl% [y:=y-1]; [z:=z*yl% [y:=y-1J;
[y == 0%, j>‘ [y = 0],
(x=3,y=3,z=1) ) (x=3,y=3,z=3) )

2/2/2005 20



Execution in WHILE

[ass]

([z :=al’,0) — ([l, o[z — Ala, 0)])

(S1,0) = ([, o)
(S1; quz,a) — (S5, 0") [seqo]

(y :==y - 1]5; (while [y>1]2 do

while [y>1]3 do [z:=z*y]4 [y:=y—-1]5
z:=z*yl% [y =y -1 j> [y := 0]6;,

[y = 0]6;1 (X:3,y:2,Z:3) )

(x=3,y=3,z=3) )

2/2/2005 21



WHILE Traces, Formally

» A trace for program S; and initial state g; Is
either:

— a finite sequence (S,, oy), ..., (I, ),
where (S;, g) 2 (S, g, forie 1, ..., n-1

— an infinite sequence (S,, 0y), ..., (S;, 9), ...
where (S;, g) 2 (S, G, fori =1

 Slight notational simplification

— We will abbreviate (S, oy), ..., (S, g,)
as (first(S,), oy), ..., (first(S,), o)

« Uses program counter labels instead of complete programs

2/2/2005 22



