Analysis Correctness

Reading: NNH 2.2 (optional)

17-654/17-765 Analysis of Software Artifacts Jonathan Aldrich

Announcements

- Office Hours
 - Nicholas Sherman
 - This week: Wednesday 3pm, MSE Cave
 - Future: Tuesday 4pm, MSE Cave
 - Dean Sutherland
 - Thursday 4pm, Wean Hall 8130
 - Jonathan Aldrich
 - Wednesday 1pm, Wean Hall 8212

What does Correctness Mean?

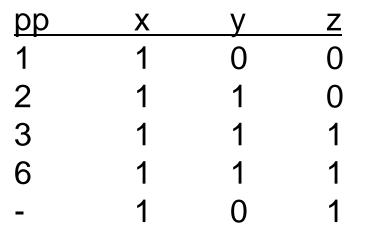
What does Correctness Mean?

- Intuition
 - At a fixed point, analysis results are a conservative abstraction of program execution
 - program execution must be formally defined
 - *abstraction* relates program execution to data flow values
 - *conservative* means truth \sqsubseteq analysis results

- Sequence of <pp,mem> pairs
 - pp is a program point
 - Just before statement pp
 - mem is the state of variables in memory

$$\begin{array}{l} [y:=x]^{1};\\ [z:=1]^{2};\\ \text{while } [y>1]^{3} \text{ do}\\ [z:=z * y]^{4};\\ [y:=y-1]^{5};\\ [y:=0]^{6}; \end{array}$$

- Sequence of <pp,mem> pairs
 - pp is a program point
 - Just before statement pp
 - mem is the state of variables in memory



$$\begin{array}{l} [y := x]^{1};\\ [z := 1]^{2};\\ \text{while } [y > 1]^{3} \text{ do}\\ [z := z * y]^{4};\\ [y := y - 1]^{5};\\ [y := 0]^{6}; \end{array}$$

- Sequence of <pp,mem> pairs
 - pp is a program point
 - Just before statement pp
 - mem is the state of variables in memory

$$\begin{array}{l} [y := x]^{1};\\ [z := 1]^{2};\\ \text{while } [y > 1]^{3} \text{ do}\\ [z := z * y]^{4};\\ [y := y - 1]^{5};\\ [y := 0]^{6}; \end{array}$$

рр	Х	<u>y</u>	Z
1	3	0	0
2	3	3	0
3	3	3	1
4	3	3	1
pp 1 2 3 4 5 3 4 5 3 4 5 3 6 -	x 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 3 3 3 2 2 2 1	z 0 1 1 3 3 3 6 6 6 6 6
3	3	2	3
4	3	2	3
5	3	2	6
3	3	1	6
6	3		6
-	3	1 0	6

- Sequence of <pp,mem> pairs
 - pp is a program point
 - Just before statement pp
 - mem is the state of variables in memory

Repeat for all possible initial values of x,y,z!

$$\begin{array}{l} [y:=x]^{1};\\ [z:=1]^{2};\\ \text{while } [y>1]^{3} \text{ do}\\ [z:=z * y]^{4};\\ [y:=y-1]^{5};\\ [y:=0]^{6}; \end{array}$$

Abstraction

- Abstraction function α
 - maps traces to data flow values at a certain time t in the trace
- $\alpha_{CP}(\langle p_1, m_1 \rangle \dots \langle p_n, m_n \rangle, t)$ = m_t
- Also define program point function *pp*
- $pp(<p_1, m_1 > ... < p_n, m_n >, t)$ = p_t

<u>t</u>	рр	Х	У	Z
0 1 2 3 4 5 6 7 8 9 10		3	0	0 0 1 3 3 6 6 6 6
1	1 2 3 4 5 3 4 5 3 6	3 3 3 3 3 3 3 3 3 3 3 3	0 3 3 3 2 2 2 1 1	0
2	3	3	3	1
3	4	3	3	1
4	5	3	3	3
5	3	3	2	3
6	4	3	2	3
7	5	3	2	6
8	3	3	1	6
9	6	3	1	6
10	-	3	0	6

What does Correctness Mean?

- Intuition
 - At a fixed point, analysis results are a conservative abstraction of program execution
- Soundness condition
 - When data flow analysis reaches a fixed point *F*, then for all traces *T* and all times *t* in each trace, $\alpha(T,t) \sqsubseteq F(pp(T,t))$
 - Constant propagation
 - For trace on last slide with *t*=10
 - $\alpha_{CP}(T,10) = \langle x=3, y=0, z=6 \rangle$
 - $F_{CP}(pp(T, 10)) = F_{CP}(exit_6) = \langle x = \top, y = 0, z = \top \rangle$
 - <x=3,y=0,z=6> ⊑_T <x=⊤,y=0,z=⊤>
 - Because 3 $\sqsubseteq \top$ and 0 \sqsubseteq 0 and 6 $\sqsubseteq \top$ in the CP lattice
 - To prove soundness, repeat for all times in all traces

Why care about Soundness?

- Analysis Producers
 - Writing analyses is hard
 - People make mistakes all the time
 - Need to know how to *think* about correctness
 - When the analysis gets tricky, it's useful to prove it correct formally
- Analysis Consumers
 - Sound analysis provides guarantees
 - Optimizations won't break the program
 - Finds all defects of a certain sort
 - Decision making
 - Knowledge of soundness techniques lets you ask the right questions about a tool you are considering
 - Soundness affects where you invest QA resources
 - Focus testing efforts on areas where you don't have a sound analysis!

Proving Soundness

- Formally define analysis
 - We already know how
- Formalize trace semantics
- Define abstraction function
- Prove *local soundness* for flow functions
- Apply global soundness theorem

Semantics of WHILE Expressions

store σ has type **State** = map from **Var** to \mathbb{Z}

 $-\mathbb{Z}$ the set of integers; we assume no boolean-typed vars

 $\begin{array}{l} \underline{\mathcal{A}}(\textbf{AExp,State}) \text{ computes the value of } \textbf{AExp in State} \\ \overline{\mathcal{A}}(x, \ \sigma) = \sigma(x) \\ \overline{\mathcal{A}}(n, \ \sigma) = n \\ \overline{\mathcal{A}}(a_1 \ op_a \ a_2, \ \sigma) = \mathcal{A}(a_1, \ \sigma) \ \textbf{op}_a \ \mathcal{A}(a_2, \sigma) \end{array}$

Example (assume
$$\sigma = (x=5,y=7)$$
)
 $\mathcal{A}(x+3, \sigma) = \mathcal{A}(x, \sigma) + \mathcal{A}(3,\sigma)$
 $= \sigma(x) + 3$
 $= 5 + 3$
 $= 8$

Semantics of WHILE Expressions

store σ has type **State** = map from **Var** to \mathbb{Z}

 $-\mathbb{Z}$ the set of integers; we assume no boolean-typed vars

 $\frac{\mathcal{A}(\mathbf{AExp,State}) \text{ computes the value of } \mathbf{AExp in State}}{\mathcal{A}(x, \sigma) = \sigma(x)}$ $\mathcal{A}(n, \sigma) = n$ $\mathcal{A}(a_1 \text{ op}_a a_2, \sigma) = \mathcal{A}(a_1, \sigma) \text{ op}_a \mathcal{A}(a_2, \sigma)$

 $\frac{\mathcal{B}(\mathbf{BExp}, \mathbf{State}) \text{ computes whether } \mathbf{BExp} \text{ is true in } \mathbf{State}}{\mathcal{B}(\text{not } b, \sigma) = \mathbf{not } \mathcal{B}(b, \sigma)}$ $\mathcal{B}(b_1 \text{ op}_b \text{ } b_2, \sigma) = \mathcal{B}(b_1, \sigma) \mathbf{op}_b \mathcal{B}(b_2, \sigma)$ $\mathcal{B}(a_1 \text{ op}_r a_2, \sigma) = \mathcal{A}(a_1, \sigma) \mathbf{op}_r \mathcal{A}(a_2, \sigma)$

Semantics of Assignment in WHILE

 $\overline{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])} [ass]$

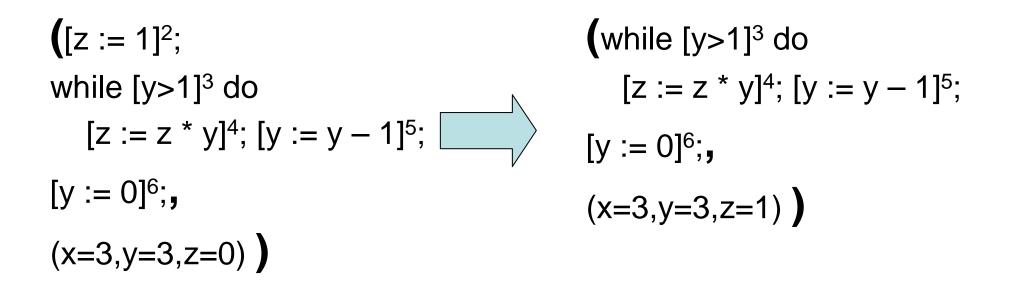
- Start with a program [x := a]^ℓ and a store σ
 Goal: rewrite to a new program and new store
- We execute $[x := a]^{\ell}$ resulting in:
 - The empty program []
 - Evaluate a with store σ to get $\mathcal{A}(a, \sigma)$
 - Update x's value to be $\mathcal{A}(a, \sigma)$
- Example: a = x+3, σ = (x=5,y=7)
 We get the pair ([], (x=8,y=7))

Semantics of WHILE Statements

$$\begin{split} \overline{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])} & [ass] \\ \overline{([skip]^{\ell}, \sigma) \to ([], \sigma)} & [skip] \\ \frac{(S_1, \sigma) \to (S'_1, \sigma') - S'_1 \neq []}{(S_1; S_2, \sigma) \to (S'_1; S_2, \sigma')} & [seq_1] \\ \frac{(S_1, \sigma) \to ([], \sigma')}{(S_1; S_2, \sigma) \to (S_2, \sigma')} & [seq_2] \\ \frac{\mathcal{B}(b, \sigma) = \text{true}}{(\text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2, \sigma) \to (S_1, \sigma)} & [if_1] \\ \frac{\mathcal{B}(b, \sigma) = \text{false}}{(\text{if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2, \sigma) \to (S_2, \sigma)} & [if_2] \\ \frac{\mathcal{B}(b, \sigma) = \text{true}}{(\text{while } [b]^{\ell} \text{ do } S, \sigma) \to (S; \text{while } [b]^{\ell} \text{ do } S, \sigma)} & [while_1] \\ \frac{\mathcal{B}(b, \sigma) = \text{false}}{(\text{while } [b]^{\ell} \text{ do } S, \sigma) \to (S; \text{while } [b]^{\ell} \text{ do } S, \sigma)} & [while_2] \end{split}$$

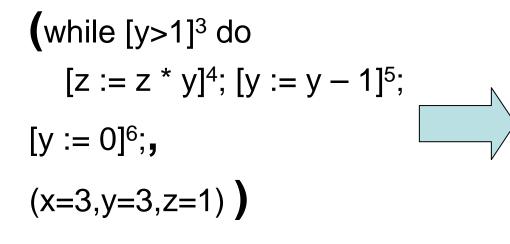
$$\overline{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])} \begin{bmatrix} ass] \\ \\ \frac{(S_1, \sigma) \to ([], \sigma')}{(S_1; S_2, \sigma) \to (S_2, \sigma')} [seq_2] \end{bmatrix}$$

$$\frac{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])}{(S_1; S_2, \sigma) \to (S_2, \sigma')} [seq_2]$$



 $\frac{\mathcal{B}(b,\sigma) = \texttt{true}}{(\texttt{while } [b]^\ell \texttt{ do } S, \sigma) \to (S;\texttt{while } [b]^\ell \texttt{ do } S, \sigma)} [while_1]$

$$\frac{(S_1,\sigma) \to (S'_1,\sigma') \quad S'_1 \neq []}{(S_1;S_2,\sigma) \to (S'_1;S_2,\sigma')} [seq_1]$$



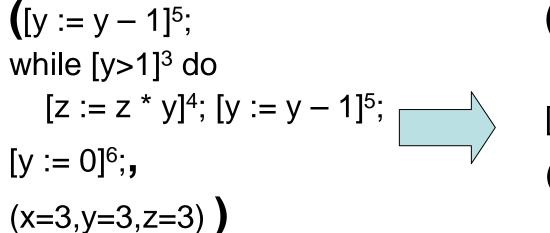
([z := z * y]⁴; [y := y − 1]⁵; while [y>1]³ do [z := z * y]⁴; [y := y − 1]⁵; [y := 0]⁶;, (x=3,y=3,z=1))

$$\overline{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])} \begin{bmatrix} ass \\ \\ \frac{(S_1, \sigma) \to ([], \sigma')}{(S_1; S_2, \sigma) \to (S_2, \sigma')} [seq_2] \end{bmatrix}$$

-

-

$$\overline{([x := a]^{\ell}, \sigma) \to ([], \sigma[x \mapsto \mathcal{A}(a, \sigma)])} \begin{bmatrix} ass \\ \frac{(S_1, \sigma) \to ([], \sigma')}{(S_1; S_2, \sigma) \to (S_2, \sigma')} \begin{bmatrix} seq_2 \end{bmatrix}$$



WHILE Traces, Formally

- A trace for program S_1 and initial state σ_1 is either:
 - a finite sequence (S₁, σ₁), ..., ([], σ_n), where (S_i, σ_i) → (S_{i+1}, σ_{i+1}) for i ∈ 1, ..., n-1
 - an infinite sequence $(S_1, \sigma_1), ..., (S_i, \sigma_i), ...$ where $(S_i, \sigma_i) \rightarrow (S_{i+1}, \sigma_{i+1})$ for i ≥ 1
- Slight notational simplification
 - We will abbreviate $(S_1, \sigma_1), ..., (S_n, \sigma_n)$ as $(first(S_1), \sigma_1), ..., (first(S_n), \sigma_n)$
 - Uses program counter labels instead of complete programs