
Analysis Correctness

Reading: NNH 2.2 (optional)

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich



2/2/2005 2

Announcements

• Office Hours
– Nicholas Sherman

• This week: Wednesday 3pm, MSE Cave
• Future: Tuesday 4pm, MSE Cave

– Dean Sutherland
• Thursday 4pm, Wean Hall 8130

– Jonathan Aldrich
• Wednesday 1pm, Wean Hall 8212



2/2/2005 3

What does Correctness Mean?



2/2/2005 4

What does Correctness Mean?

• Intuition
– At a fixed point, analysis results are a 

conservative abstraction of program execution
– program execution must be formally defined
– abstraction relates program execution to data 

flow values
– conservative means truth ⊑ analysis results



2/2/2005 5

Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 2 0 0
2 2 2 0
3 2 2 1
4 2 2 1
5 2 2 2
3 2 1 2
6 2 1 2
- 2 0 2



2/2/2005 6

Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 1 0 0
2 1 1 0
3 1 1 1
6 1 1 1
- 1 0 1



2/2/2005 7

Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 3 0 0
2 3 3 0
3 3 3 1
4 3 3 1
5 3 3 3
3 3 2 3
4 3 2 3
5 3 2 6
3 3 1 6
6 3 1 6
- 3 0 6



2/2/2005 8

Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z

Repeat for all possible initial 
values of x,y,z!



2/2/2005 9

Abstraction

• Abstraction function α
– maps traces to data flow 

values at a certain time t in 
the trace

• αCP(<p1,m1>…<pn,mn>,t)
= mt

• Also define program point 
function pp

• pp(<p1,m1>…<pn,mn>,t)
= pt

t pp x y z
0 1 3 0 0
1 2 3 3 0
2 3 3 3 1
3 4 3 3 1
4 5 3 3 3
5 3 3 2 3
6 4 3 2 3
7 5 3 2 6
8 3 3 1 6
9 6 3 1 6
10 - 3 0 6

αCP(T,0) = (x=3,y=0,z=0)
αCP(T,10) = (x=3,y=0,z=6)



2/2/2005 10

What does Correctness Mean?

• Intuition
– At a fixed point, analysis results are a conservative 

abstraction of program execution
• Soundness condition

– When data flow analysis reaches a fixed point F, then 
for all traces T and all times t in each trace, α(T,t) ⊑
F(pp(T,t))

– Constant propagation
• For trace on last slide with t=10
• αCP(T,10) = <x=3,y=0,z=6>
• FCP(pp(T,10)) = FCP(exit6) = <x=⊤,y=0,z=⊤>
• <x=3,y=0,z=6> ⊑T <x=⊤,y=0,z=⊤>

– Because 3 ⊑ ⊤ and 0 ⊑ 0 and 6 ⊑ ⊤ in the CP lattice

• To prove soundness, repeat for all times in all traces



2/2/2005 11

Why care about Soundness?

• Analysis Producers
– Writing analyses is hard

• People make mistakes all the time
• Need to know how to think about correctness
• When the analysis gets tricky, it’s useful to prove it correct formally

• Analysis Consumers
– Sound analysis provides guarantees

• Optimizations won’t break the program
• Finds all defects of a certain sort

– Decision making
• Knowledge of soundness techniques lets you ask the right 

questions about a tool you are considering
• Soundness affects where you invest QA resources

– Focus testing efforts on areas where you don’t have a sound analysis!



2/2/2005 12

Proving Soundness

• Formally define analysis
– We already know how

• Formalize trace semantics
• Define abstraction function
• Prove local soundness for flow functions
• Apply global soundness theorem



2/2/2005 13

Semantics of WHILE Expressions

store σ has type State = map from Var to ℤℤℤℤ
– ℤℤℤℤ the set of integers; we assume no boolean-typed vars

A (AExp,State) computes the value of AExp in State
A(x, σ) = σ(x)
A(n, σ) = n
A(a1 opa a2, σ) = A(a1, σ) opa A (a2,σ)

Example (assume σ = (x=5,y=7))
A(x+3, σ) = A(x, σ) + A (3,σ)

= σ(x) + 3
= 5 + 3
= 8



2/2/2005 14

Semantics of WHILE Expressions

store σ has type State = map from Var to ℤℤℤℤ
– ℤℤℤℤ the set of integers; we assume no boolean-typed vars

A (AExp,State) computes the value of AExp in State
A(x, σ) = σ(x)
A(n, σ) = n
A(a1 opa a2, σ) = A(a1, σ) opa A (a2,σ)

B(BExp,State) computes whether BExp is true in State
B (not b, σ) = not B (b, σ)
B (b1 opb b2, σ ) = B (b1, σ) opb B (b2, σ)
B (a1 opr a2, σ ) = A (a1, σ) opr A (a2, σ)



2/2/2005 15

Semantics of Assignment in WHILE

• Start with a program [x := a]ℓ and a store σ
– Goal: rewrite to a new program and new store

• We execute [x := a]ℓ resulting in:
– The empty program []
– Evaluate a with store σ to get A(a, σ)
– Update x’s value to be A(a, σ)

• Example: a = x+3, σ = (x=5,y=7)
– We get the pair ([], (x=8,y=7))



2/2/2005 16

Semantics of WHILE Statements



2/2/2005 17

Execution in WHILE

([y := x]1; [z := 1]2;

while [y>1]3 do
[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=0,z=0) )

([z := 1]2;

while [y>1]3 do
[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=0) )



2/2/2005 18

Execution in WHILE

([z := 1]2;

while [y>1]3 do
[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=0) )

(while [y>1]3 do

[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=1) )



2/2/2005 19

Execution in WHILE

(while [y>1]3 do

[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=1) )

([z := z * y]4; [y := y – 1]5;

while [y>1]3 do
[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=1) )



2/2/2005 20

Execution in WHILE

([z := z * y]4; [y := y – 1]5;
while [y>1]3 do

[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=1) )

([y := y – 1]5;
while [y>1]3 do

[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=3) )



2/2/2005 21

Execution in WHILE

([y := y – 1]5;
while [y>1]3 do

[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=3,z=3) )

(while [y>1]3 do
[z := z * y]4; [y := y – 1]5;

[y := 0]6;,
(x=3,y=2,z=3) )



2/2/2005 22

WHILE Traces, Formally

• A trace for program S1 and initial state σ1 is 
either:
– a finite sequence (S1, σ1), …, ([], σn),

where (Si, σi) � (Si+1, σi+1) for i ∈ 1, …, n-1

– an infinite sequence (S1, σ1), …, (Si, σi), …
where (Si, σi) � (Si+1, σi+1) for i ≥ 1

• Slight notational simplification
– We will abbreviate (S1, σ1), …, (Sn, σn)

as (first(S1), σ1), …, (first(Sn), σn)
• Uses program counter labels instead of complete programs


