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Outline       

Lecture 1: Overview of Model Checking

Lecture 2: Complexity Reduction Techniques

Lecture 3: Software Model Checking

Lecture 4: State/Event-based software model checking

Lecture 5: Deadlock Detection and Component Substitutability

Lecture 6: Model Checking Practicum (Student Reports 
on the Lab exercises)
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Actual Goal

•Deadlock for concurrent blocking message-passing
C programs

•Tackle complexity using automated abstraction and 
compositional reasoning

•Obtain precise answers using automated iterative
abstraction refinement
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For this talk

•Focus on finite state machines
– Labeled transition systems (LTSs)

•Parallel composition of state machines
– Synchronous communication
– Asynchronous execution
– Natural for modeling blocking message-passing C programs
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Finite LTS

•P = ( Q , I , Σ , T )
– Q ≡ non-empty set of states
– I ∈ Q ≡ initial state

– Σ ≡ set of actions ≡ alphabet
– T ⊆ Q × Σ × Q ≡ transition relation

a

a

b

c d

e

P

Σ(P) = {a,b,c,d,e,f}
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Concurrency

– Components communicate by handshaking (synchronizing) 
over shared actions

– Else proceed independently (asynchronously)
– Essentially CSP semantics

– Composition of A1 & A2 ≡ A1 || A2
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Operational Semantics

•State of M1 || M2 is of the form (s1,s2) where si is a 
state of Mi

s1 s’1 a ∉ Σ( M2) 
a

(s1,s2)        (s’1,s2)
a

s2 s’2 a ∉ Σ( M1) 
a

(s1,s2)        (s1,s’2)
a

s1 s’1 s2 s’2
a

(s1,s2)        (s’1,s’2)
a

a

State-space exponential in # of components
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Example

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1   Σ = {a,b,c,d} M2   Σ = {a,b’,c,d}

2,2’
a

3,2’b

2,3’b’

3,3’

b’

b

M1 ‖ M2

d d

4,4’
c

d

1,1’
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Deadlock

1 2 3 4
a b c

1’ 2’ 3’ 4’
a c b

M1   Σ = {a,b,c,d} M2   Σ = {a,b,c,d}

2,2’
a

M1 ‖ M2

Deadlock

d d

1,1’

Deadlock⇔ a reachable state cannot perform any actions at all
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Deadlock and Composition

a b

c

M1

b c

c

M2

Deadlock

c

M1 || M2

No Deadlock
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Deadlock and Composition

a

b

M1

b

a

M1

No Deadlock

M1 || M2

Deadlock
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Iterative Refinement

Verification
Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample
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A

Conservative Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe
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Conservative Abstraction

• Every trace of P is a trace of A
– Preserves safety properties: A � φ ⇒ P � φ
– A over-approximates what P can do

• Some traces of A may not be traces of P
– May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement
– Splitting some clusters in smaller ones

– Refinement can be automated
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A

Original Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe
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A

Refined Abstraction

1

2 3

4 6

a b

c f

P

[4,5] [6,7]

[1]

5 7

ed

a b

c d

[2] [3]

e f
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Deadlock : Problem

• Deadlock is not preserved by abstraction

1 2
a

3
b

M1

1’ 2’
b

3’
a

M2

[1,2,3]a,b [1’,2’,3’]a,b
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Deadlock Detection : Insight

• Deadlock ⇔ a reachable state cannot perform 
any actions at all
– Deadlock depends on the set of actions that a 

reachable state cannot perform

• In order to preserve deadlock A must over-
approximate not just what P can do but also 
what P refuses
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Refusal & Deadlock

• Ref(s) = set of actions s cannot perform

• M deadlocks iff there is a reachable state s such 
that Ref(s) = Σ
– Denote by DLock(M)

• Ref([s1 .. sn]) = Ref(s1) ∩ .. ∩ Ref(sn)

1 2
a

3
b

{b} {a} {a,b} { }

[1,2,3]a,b
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Abstract Refusal

• AR([s1 .. sn]) = Ref(s1) ∪ .. ∪ Ref(sn)

• AR([M1] .. [Mn]) = AR([M1]) ∪ .. ∪ AR([Mn])

[a,b]

1 2
a

3
b

{b} {a} {a,b}

[1,2,3]a,b
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Abstract Deadlock

• M abstractly deadlocks iff there is a reachable 
state s such that AR(s) = Σ
– Denote by ADLock(M)

¬ ADLock([M1] || .. || [Mn])
⇒

¬ DLock(M1 || .. || Mn)
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Iterative Deadlock Detection

1 2
a

3
b 1’ 2’

b
3’

a

[1,2,3]a,b [1’,2’,3’]a,b

[a,b] [a,b]

[1,2,3],[1’,2’,3’]

[a,b]Counterexample to
Abstract
Deadlock
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Counterexample Validation

[1,2,3],[1’,2’,3’]

[a,b]

[1,2,3]

[a,b]

××××
1 2

a
3

b
{b} {a} {a,b}

[1’,2’,3’]

[a,b]

1’ 2’
b

3’
a

{a} {b} {a,b}
××××
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Refinement

1 2
a

3
b 1’ 2’

b
3’

a

1 2
a

3
b

[1]

b

[1’,2’,3’]a,b[2,3]
a

[b] [a,b] [a,b]
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Counterexample Validation

[1],[1’,2’,3’]

[a,b]

[1]

[b]

1 2
a

3
b

{b} {a} {a,b}

[1’,2’,3’]

[a,b]

1’ 2’
b

3’
a

{a} {b} {a,b}
××××

Another spurious counterexample
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Refinement

1 2
a

3
b 1’ 2’

b
3’

a

[1]

b

1 2
a

3
b

[2,3]
a

1’ 2’
b

3’
a

[b] [a,b]

[1’]

a

[2’,3’]
b

[a] [a,b]
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Counterexample Validation

[1],[1’]

[a,b]

[1’]

[a]

1’ 2’
b

3’
a

{a} {b} {a,b}

Real Deadlock Detected
1 2

a
3

b
{b} {a} {a,b}

[1]

[b]
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☺☺☺☺☺☺☺☺

☺☺☺☺

Iterative Deadlock

No Abstract
Deadlock?

Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample
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Case Studies

• MicroC/OS-II
– Real-time OS for embedded applications
– Widely used (cell phones, medical devices, routers, washing 

machines…)
– 6000+ LOC

•ABB IPC Module
–Deployed by a world leader in 
robotics
–15000+ LOC
–4 components
–Over 30 billion states after 
predicate abstraction



30

Results

26.18314862426203**DPN-6

30.88134471875219.3**µµµµCN-6

18.4755514449317.387.638268DPD-10

15221.8120493058.6**µµµµCD-3

40.831.9161643.54425731SSL

33.314468611973162**ABB

St

IterDeadlockPlain

MemTItMemTStName

* indicates out of time limit (1500s)
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Ongoing and Future Work

• Shared memory

• Assume-Guarantee reasoning

• Industrial size examples

• Symbolic implementation

• Branching-time state/event logic (completed)
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Component Substitutability: Motivation

• Model checking is a highly time consuming, labor 
intensive effort

• For example, a system of 25 components (~20K LOC) 
and 100+ properties might take up to a month of verification 
effort 

• It discourages practitioner use when system evolves

• Can model checking be used to automatically determine if 
previously established properties will hold for the evolved 
system without repeating each of the individual checks
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What’s The Problem

• Software evolution is inevitable in any real system:

– Changing requirements

– Bug fixes

– Product changes (underlying platform, third-party,etc.)

– Incremental verification during the design process
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Component Substitutability Check

• Component-based Software
– Software modules shipped by separate developers

– Undergo several updates/bug-fixes during their lifecycle

• Component assembly verification
– Necessary on upgrade of any component
– High costs of complete global verification

• Idea: 
– Instead check locally for substitutability of new components
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Potential Contribution

• Verify upgraded components locally

• Reuse previous verification results

• For example, for a system of 25 components (~20K LOC) and 
100+ properties verification might take up to a month of verification 
effort

• If 3 components change, instead of repeating a month effort of re-
verifying 100+ properties, our technique will ensure the 
substitutability of all properties in one iteration of the substitutability 
check (~ 1 day effort).
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Component Substitutability Check

Assembly A

Component CComponent C’

P ?



41

Substitutability Check Approach

Component
C

Containment Check Compatibility Check

Identical Behaviors
New

Behaviors
Lost 

Behaviors

Upgraded 
Component

C’
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Substitutability Check Approach

• Two phases:

– Containment check (Local correctness)
• Are all local old services (properties) of the verified component 

contained in the upgraded component? 

– Compatibility check (Global safety check)
• Are new services of the upgraded component safe with respect to 

other components in assembly: all global specifications still hold?
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Substitutability Check
• Approach:

– Obtain finite state models of all components by 
abstraction

– Containment Check: 
• Use under- and over- approximations (new)

– Compatibility Check: 
• Use dynamic assume-guarantee reasoning (new)
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Component Assembly

• A set of communicating concurrent C programs 
(components)

• Each component abstracted into a Component FSM

C1 C2 C3

M1 M2 M3

Component Assembly C

Abstraction M

Abstraction
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Containment Check
• Goal: Check C ⊆ C’ (Every behavior of C is an allowable behavior of 

C’)
– All behaviors retained after upgrade

• Solution: 
– Create abstraction (over-approximation) M:  C ⊆ M

– Create abstraction (under-approximation) M’: M’ ⊆ C’

– Check for M ⊆ M’

C

Containment Check

Identical New Lost

C’C
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Containment Check (cont.)

C C’

M M’

over-approx under-approx

⊆ ?
True

C ⊆ C’

False, CE

CE ∈ C ?
False,
Refine M

CE ∈ C’ ?

True,
Refine M’

C ⊄ C’,

CE provided False

True

M

C

C’

M’
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Containment Check (cont.)

• Computing over-approximation
– Conventional predicate abstraction

• Computing under-approximation
– Modified predicate abstraction
– Compute Must transitions instead of May
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Compatibility Check

C

Compatibility Check

Identical New Lost

C’

• Assume-guarantee to verify assembly properties
– Related: Cobleigh et. al. at NASA Ames

• Reuse previous verification results

• Use learning algorithm for regular languages, L*

• Automatically generate assumption A

M1 || A |=  P
M2 |= A
M1 || M2 |= P

AG-NonCircular
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Learning Regular languages: L*
• Proposed by D. Angluin, improved by Rivest et al. 

– Learning regular sets from queries and counterexamples, Information 
and Computation, 75(2), 1987.

• Polynomial in the number of states and length of 
counterexample

L*   learner
Minimally adequate 

Teacher

IsMember(trace ρρρρ)

IsCandidate(DFA D)

a
b

a
b

Unknown
Regular Language

±Counterexample/ Yes

Modelchecker

Yes/No

Minimum
DFA
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Learning for Verification

• Model checker as a Teacher
– Possesses information about concrete components
– Model checks and returns true/counterexample

• Learner builds a model sufficient to verify properties

• Wide applications:
– Adaptive Model Checking: Groce et al.
– Automated Assume-Guarantee Reasoning: Cobleigh et al.

– Synthesize Interface Specifications for Java Programs: Alur et al.
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Compatibility Check

R1:      M1 || A |= P

R2:      M2 |= A

true
L* Assumption
Generation

A

CE 

CE Analysis
Actual CE
M1 || M2 k�

P

-CE for A

+CE for A

Teacher

M1 || M2 |= P

true
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Handling Multiple Components

• AG-NC is recursive
– (Cobleigh et al.)

R1:      M1 || A |= P
R2:        M2 |= A

M1 || M2 |= P

M1|| A1 |= P

M2 || A2 |= A1 M3 |= A2

M2 || M3 |= A1

M1 || M2 || M3 |= P

• Each Ai computed by a 
separate L* instantiation
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Implementation

• ComFoRT Framework

• Validated on an Industrial benchmark
– Inter-process Communication (IPC) ABB software
– 4 main components – CriticalSection, IPCQueue, ReadMQ, WriteMQ

• Evaluated on single and simultaneous upgrades 
– WriteMQ and IPCQueue components

• Properties
– P1: Write after obtaining CS lock
– P2: Correct protocol to write to IPCQueue
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ComFoRT Schema

Verification Yes

System OK

Abstraction Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

Containment Check,
Compatibility Check/

Assume-Guarantee Reasoning
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Lab Assignment

• Spit into groups of 4-5 people

• Design, implementation and verification of the current 
surge protector
– In PROMELA/SPIN
– In ComFoRT

• Comparative validation

• Presentations on March 31, 2005



56

Lab Assignment (2)

• Questions about ComFoRT

– Natasha Sharygina: nys@sei.cmu.edu - theory
– Sagar Chaki: chaki@sei.cmu.edu – tool support
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Collaboration Opportunities

• Research and development projects on verification of 
software (ComFoRT project)

• As part of the PACC (Predictable Assembly from 
Certifiable Components) project at the SEI

• Joint work with Prof. Ed Clarke
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Collaboration Opportunities

• Independent studies

• M.S. and Ph.D. Research (jointly with your current 
advisors)

• Internships

If interested contact me and we can discuss 
options


