
1

Formal Verification by Model
Checking

Guest Lectures at the Analysis of Software Artifacts
Class, Spring 2005

Natasha Sharygina
Carnegie Mellon University

2

Outline

Lecture 1: Overview of Model Checking

Lecture 2: Complexity Reduction Techniques

Lecture 3: Software Model Checking

Lecture 4: State/Event-based software model checking

Lecture 5: Deadlock Detection and Component Substitutability

Lecture 6: Model Checking Practicum (Student Reports
on the Lab exercises)

3

Actual Goal

•Deadlock for concurrent blocking message-passing
C programs

•Tackle complexity using automated abstraction and
compositional reasoning

•Obtain precise answers using automated iterative
abstraction refinement

4

For this talk

•Focus on finite state machines
– Labeled transition systems (LTSs)

•Parallel composition of state machines
– Synchronous communication
– Asynchronous execution
– Natural for modeling blocking message-passing C programs

5

Finite LTS

•P = (Q , I , Σ , T)
– Q ≡ non-empty set of states
– I ∈ Q ≡ initial state

– Σ ≡ set of actions ≡ alphabet
– T ⊆ Q × Σ × Q ≡ transition relation

a

a

b

c d

e

P

Σ(P) = {a,b,c,d,e,f}

6

Concurrency

– Components communicate by handshaking (synchronizing)
over shared actions

– Else proceed independently (asynchronously)
– Essentially CSP semantics

– Composition of A1 & A2 ≡ A1 || A2

7

Operational Semantics

•State of M1 || M2 is of the form (s1,s2) where si is a
state of Mi

s1 s’1 a ∉ Σ(M2)
a

(s1,s2) (s’1,s2)
a

s2 s’2 a ∉ Σ(M1)
a

(s1,s2) (s1,s’2)
a

s1 s’1 s2 s’2
a

(s1,s2) (s’1,s’2)
a

a

State-space exponential in # of components

8

Example

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1 Σ = {a,b,c,d} M2 Σ = {a,b’,c,d}

2,2’
a

3,2’b

2,3’b’

3,3’

b’

b

M1 ‖ M2

d d

4,4’
c

d

1,1’

9

Deadlock

1 2 3 4
a b c

1’ 2’ 3’ 4’
a c b

M1 Σ = {a,b,c,d} M2 Σ = {a,b,c,d}

2,2’
a

M1 ‖ M2

Deadlock

d d

1,1’

Deadlock⇔ a reachable state cannot perform any actions at all

10

Deadlock and Composition

a b

c

M1

b c

c

M2

Deadlock

c

M1 || M2

No Deadlock

11

Deadlock and Composition

a

b

M1

b

a

M1

No Deadlock

M1 || M2

Deadlock

12

Iterative Refinement

Verification
Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

13

A

Conservative Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

14

Conservative Abstraction

• Every trace of P is a trace of A
– Preserves safety properties: A � φ ⇒ P � φ
– A over-approximates what P can do

• Some traces of A may not be traces of P
– May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement
– Splitting some clusters in smaller ones

– Refinement can be automated

15

A

Original Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

16

A

Refined Abstraction

1

2 3

4 6

a b

c f

P

[4,5] [6,7]

[1]

5 7

ed

a b

c d

[2] [3]

e f

17

Deadlock : Problem

• Deadlock is not preserved by abstraction

1 2
a

3
b

M1

1’ 2’
b

3’
a

M2

[1,2,3]a,b [1’,2’,3’]a,b

18

Deadlock Detection : Insight

• Deadlock ⇔ a reachable state cannot perform
any actions at all
– Deadlock depends on the set of actions that a

reachable state cannot perform

• In order to preserve deadlock A must over-
approximate not just what P can do but also
what P refuses

19

Refusal & Deadlock

• Ref(s) = set of actions s cannot perform

• M deadlocks iff there is a reachable state s such
that Ref(s) = Σ
– Denote by DLock(M)

• Ref([s1 .. sn]) = Ref(s1) ∩ .. ∩ Ref(sn)

1 2
a

3
b

{b} {a} {a,b} { }

[1,2,3]a,b

20

Abstract Refusal

• AR([s1 .. sn]) = Ref(s1) ∪ .. ∪ Ref(sn)

• AR([M1] .. [Mn]) = AR([M1]) ∪ .. ∪ AR([Mn])

[a,b]

1 2
a

3
b

{b} {a} {a,b}

[1,2,3]a,b

21

Abstract Deadlock

• M abstractly deadlocks iff there is a reachable
state s such that AR(s) = Σ
– Denote by ADLock(M)

¬ ADLock([M1] || .. || [Mn])
⇒

¬ DLock(M1 || .. || Mn)

22

Iterative Deadlock Detection

1 2
a

3
b 1’ 2’

b
3’

a

[1,2,3]a,b [1’,2’,3’]a,b

[a,b] [a,b]

[1,2,3],[1’,2’,3’]

[a,b]Counterexample to
Abstract
Deadlock

23

Counterexample Validation

[1,2,3],[1’,2’,3’]

[a,b]

[1,2,3]

[a,b]

××××
1 2

a
3

b
{b} {a} {a,b}

[1’,2’,3’]

[a,b]

1’ 2’
b

3’
a

{a} {b} {a,b}
××××

24

Refinement

1 2
a

3
b 1’ 2’

b
3’

a

1 2
a

3
b

[1]

b

[1’,2’,3’]a,b[2,3]
a

[b] [a,b] [a,b]

25

Counterexample Validation

[1],[1’,2’,3’]

[a,b]

[1]

[b]

1 2
a

3
b

{b} {a} {a,b}

[1’,2’,3’]

[a,b]

1’ 2’
b

3’
a

{a} {b} {a,b}
××××

Another spurious counterexample

26

Refinement

1 2
a

3
b 1’ 2’

b
3’

a

[1]

b

1 2
a

3
b

[2,3]
a

1’ 2’
b

3’
a

[b] [a,b]

[1’]

a

[2’,3’]
b

[a] [a,b]

27

Counterexample Validation

[1],[1’]

[a,b]

[1’]

[a]

1’ 2’
b

3’
a

{a} {b} {a,b}

Real Deadlock Detected
1 2

a
3

b
{b} {a} {a,b}

[1]

[b]

28

☺☺☺☺☺☺☺☺

☺☺☺☺

Iterative Deadlock

No Abstract
Deadlock?

Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

29

Case Studies

• MicroC/OS-II
– Real-time OS for embedded applications
– Widely used (cell phones, medical devices, routers, washing

machines…)
– 6000+ LOC

•ABB IPC Module
–Deployed by a world leader in
robotics
–15000+ LOC
–4 components
–Over 30 billion states after
predicate abstraction

30

Results

26.18314862426203**DPN-6

30.88134471875219.3**µµµµCN-6

18.4755514449317.387.638268DPD-10

15221.8120493058.6**µµµµCD-3

40.831.9161643.54425731SSL

33.314468611973162**ABB

St

IterDeadlockPlain

MemTItMemTStName

* indicates out of time limit (1500s)

35

Ongoing and Future Work

• Shared memory

• Assume-Guarantee reasoning

• Industrial size examples

• Symbolic implementation

• Branching-time state/event logic (completed)

36

Component Substitutability: Motivation

• Model checking is a highly time consuming, labor
intensive effort

• For example, a system of 25 components (~20K LOC)
and 100+ properties might take up to a month of verification
effort

• It discourages practitioner use when system evolves

• Can model checking be used to automatically determine if
previously established properties will hold for the evolved
system without repeating each of the individual checks

37

What’s The Problem

• Software evolution is inevitable in any real system:

– Changing requirements

– Bug fixes

– Product changes (underlying platform, third-party,etc.)

– Incremental verification during the design process

38

Component Substitutability Check

• Component-based Software
– Software modules shipped by separate developers

– Undergo several updates/bug-fixes during their lifecycle

• Component assembly verification
– Necessary on upgrade of any component
– High costs of complete global verification

• Idea:
– Instead check locally for substitutability of new components

39

Potential Contribution

• Verify upgraded components locally

• Reuse previous verification results

• For example, for a system of 25 components (~20K LOC) and
100+ properties verification might take up to a month of verification
effort

• If 3 components change, instead of repeating a month effort of re-
verifying 100+ properties, our technique will ensure the
substitutability of all properties in one iteration of the substitutability
check (~ 1 day effort).

40

Component Substitutability Check

Assembly A

Component CComponent C’

P ?

41

Substitutability Check Approach

Component
C

Containment Check Compatibility Check

Identical Behaviors
New

Behaviors
Lost

Behaviors

Upgraded
Component

C’

42

Substitutability Check Approach

• Two phases:

– Containment check (Local correctness)
• Are all local old services (properties) of the verified component

contained in the upgraded component?

– Compatibility check (Global safety check)
• Are new services of the upgraded component safe with respect to

other components in assembly: all global specifications still hold?

43

Substitutability Check
• Approach:

– Obtain finite state models of all components by
abstraction

– Containment Check:
• Use under- and over- approximations (new)

– Compatibility Check:
• Use dynamic assume-guarantee reasoning (new)

44

Component Assembly

• A set of communicating concurrent C programs
(components)

• Each component abstracted into a Component FSM

C1 C2 C3

M1 M2 M3

Component Assembly C

Abstraction M

Abstraction

45

Containment Check
• Goal: Check C ⊆ C’ (Every behavior of C is an allowable behavior of

C’)
– All behaviors retained after upgrade

• Solution:
– Create abstraction (over-approximation) M: C ⊆ M

– Create abstraction (under-approximation) M’: M’ ⊆ C’

– Check for M ⊆ M’

C

Containment Check

Identical New Lost

C’C

46

Containment Check (cont.)

C C’

M M’

over-approx under-approx

⊆ ?
True

C ⊆ C’

False, CE

CE ∈ C ?
False,
Refine M

CE ∈ C’ ?

True,
Refine M’

C ⊄ C’,

CE provided False

True

M

C

C’

M’

47

Containment Check (cont.)

• Computing over-approximation
– Conventional predicate abstraction

• Computing under-approximation
– Modified predicate abstraction
– Compute Must transitions instead of May

48

Compatibility Check

C

Compatibility Check

Identical New Lost

C’

• Assume-guarantee to verify assembly properties
– Related: Cobleigh et. al. at NASA Ames

• Reuse previous verification results

• Use learning algorithm for regular languages, L*

• Automatically generate assumption A

M1 || A |= P
M2 |= A
M1 || M2 |= P

AG-NonCircular

49

Learning Regular languages: L*
• Proposed by D. Angluin, improved by Rivest et al.

– Learning regular sets from queries and counterexamples, Information
and Computation, 75(2), 1987.

• Polynomial in the number of states and length of
counterexample

L* learner
Minimally adequate

Teacher

IsMember(trace ρρρρ)

IsCandidate(DFA D)

a
b

a
b

Unknown
Regular Language

±Counterexample/ Yes

Modelchecker

Yes/No

Minimum
DFA

50

Learning for Verification

• Model checker as a Teacher
– Possesses information about concrete components
– Model checks and returns true/counterexample

• Learner builds a model sufficient to verify properties

• Wide applications:
– Adaptive Model Checking: Groce et al.
– Automated Assume-Guarantee Reasoning: Cobleigh et al.

– Synthesize Interface Specifications for Java Programs: Alur et al.

51

Compatibility Check

R1: M1 || A |= P

R2: M2 |= A

true
L* Assumption
Generation

A

CE

CE Analysis
Actual CE
M1 || M2 k�

P

-CE for A

+CE for A

Teacher

M1 || M2 |= P

true

52

Handling Multiple Components

• AG-NC is recursive
– (Cobleigh et al.)

R1: M1 || A |= P
R2: M2 |= A

M1 || M2 |= P

M1|| A1 |= P

M2 || A2 |= A1 M3 |= A2

M2 || M3 |= A1

M1 || M2 || M3 |= P

• Each Ai computed by a
separate L* instantiation

53

Implementation

• ComFoRT Framework

• Validated on an Industrial benchmark
– Inter-process Communication (IPC) ABB software
– 4 main components – CriticalSection, IPCQueue, ReadMQ, WriteMQ

• Evaluated on single and simultaneous upgrades
– WriteMQ and IPCQueue components

• Properties
– P1: Write after obtaining CS lock
– P2: Correct protocol to write to IPCQueue

54

ComFoRT Schema

Verification Yes

System OK

Abstraction Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

Containment Check,
Compatibility Check/

Assume-Guarantee Reasoning

55

Lab Assignment

• Spit into groups of 4-5 people

• Design, implementation and verification of the current
surge protector
– In PROMELA/SPIN
– In ComFoRT

• Comparative validation

• Presentations on March 31, 2005

56

Lab Assignment (2)

• Questions about ComFoRT

– Natasha Sharygina: nys@sei.cmu.edu - theory
– Sagar Chaki: chaki@sei.cmu.edu – tool support

57

Collaboration Opportunities

• Research and development projects on verification of
software (ComFoRT project)

• As part of the PACC (Predictable Assembly from
Certifiable Components) project at the SEI

• Joint work with Prof. Ed Clarke

58

Collaboration Opportunities

• Independent studies

• M.S. and Ph.D. Research (jointly with your current
advisors)

• Internships

If interested contact me and we can discuss
options

