
PREfix
(continued)

Reading: A Static Analyzer for Finding
Dynamic Programming Errors

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

2/15/2005 2

PREfix Scaleability

• Analysis cost = 2x-5x build cost
– Scales linearly

• Probably due to fixed cutoff on number of paths

2/15/2005 3

Value of Interprocedural Analysis

• 90% of errors require models (summaries)

2/15/2005 4

You don’t need every path

• Get most of the warnings with 100 paths

2/15/2005 5

Empirical Observations

• PREfix finds errors off the main code paths
– Main-path errors caught by careful coding and testing

• UI is essential
– Text output is hard to read
– Need tool to visualize paths, sort defect reports

• Noise warnings
– Real errors that users don’t care about

• E.g., memory leaks during catastrophic shutdown

2/15/2005 6

PREfix Summary

• Great tool to find errors
– Can’t guarantee that it finds them all

• Role for other tools (e.g., Fluid)

– Complements testing by analyzing uncommon paths
– Focuses on low-level errors, not logic/functionality

errors
• Role for functional testing

• Huge impact
– Used widely within Microsoft
– Lightweight version will be part of next Visual Studio

Concurrency Assurance
in Fluid

Reading: Assuring and Evolving
Concurrent Programs:
Annotations and Policy

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

2/15/2005 8

Find the Concurrency Bugs!
public class AppenderAttachableImpl {

protected Vector appenderList;

public void addAppender(Appender newAppender) {
if (newAppender == null) return;
if (appenderList == null) appenderList = new Vector(1);
if (!appenderList.contains(newAppender)) {

appenderList.addElement(newAppender);
}

}
public int appendLoopOnAppenders(LoggingEvent event) {

int size = 0;
Appender appender;

if (appenderList != null) {
size = appenderList.size();
for (int i = 0; i < size; i++) {

appender = (Appender) appenderList.elementAt(i);
appender.doAppend(event);

}
}
return size;

}
public void removeAppender(Appender appender) {

if (appender == null | | appenderList == null) return ;
appenderList.removeElement(appender);

}
}
• Note: Vector’s methods are synchronized

2/15/2005 9

PREfix: Language-Level Errors

• Error defined by language
– Precise characterization of error
– Any program that manifests that error is incorrect
– Easy to define fully automated analysis

• Example: null pointer dereference
– Occurs when *p is executed and p == null
– Can be found by may-be-null analysis

2/15/2005 10

Concurrency Errors

• Example: data race condition
• (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for Multithreaded

Programs)

– Two threads access the same variable v
– At least one access is a write
– No explicit mechanism prevents the accesses from being

simultaneous
• Challenges

– Difficult to check statically
• How to tell if accesses can be simultaneous?
• How to tell what synchronization mechanism is used?

– Not always an error
• Race may not affect correctness

• PREfix approach will not work
– Too many possibilities to explore, too many false positives

2/15/2005 11

Concurrency Errors

• Example: data race condition
• (Definition from Savage et al., Eraser: A Dynamic Data Race Detector for Multithreaded

Programs)

– Two threads access the same variable v
– At least one access is a write
– No explicit mechanism prevents the accesses from being

simultaneous
• Challenges

– Difficult to check statically
• How to tell if accesses can be simultaneous?
• How to tell what synchronization mechanism is used?

– Not always an error
• Race may not affect correctness

• PREfix approach will not work
– Too many possibilities to explore, too many false positives

2/15/2005 12

Would Testing/Inspections Work?

2/15/2005 13

Would Testing/Inspections Work?

• Testing
– Difficult because concurrency errors are non-

deterministic

• Inspections
– Concurrency errors are often non-local

• Like errors that PREfix finds

– Require knowledge of programmer intent

2/15/2005 14

Concurrency Models

• Describe programmer’s intent
– Data Y is protected by lock X
– Data Z is only accessed by one thread
– Data Y and Z must be updated together

• To maintain some invariant

– The race on variable V is harmless

• Can be checked against code
– Using local static analysis

2/15/2005 15

Challenge:
Cost of Documenting Models

• Fluid’s approach?

2/15/2005 16

Challenge:
Cost of Documenting Models

• Fluid’s approach
– Check consistency

• No model � No reported errors

– Incrementality
• Incremental benefit for each unit of cost

– Usability
• Investment in tools and usage scenarios

2/15/2005 17

How Incrementality Works

• How can one provide
incremental benefit with
mutual dependencies?

• Cut points
– Method annotations

partition call graph

– Can assure property of a
subgraph

– Assurance is contingent on
accuracy of trusted method
annotations

Call Graph of Program

2/15/2005 18

assured region

How Incrementality Works

• How can one provide
incremental benefit with
mutual dependencies?

• Cut points
– Method annotations

partition call graph

– Can assure property of a
subgraph

– Assurance is contingent on
accuracy of trusted cut
point method annotations

Call Graph of Program

cut point

2/15/2005 19

BoundedFIFO
public class BoundedFIF0 {
LoggingEvent[] bur;
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

/*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIF0(int size) {
if(size < 1) throw new IllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public void put(LoggingEvent o) {

if(numElts != size) {
bur[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
//@ writes nothing; reads this.Instance
//@ safe with InfoMethods
public int getMaxSize() { return size; }

/* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */
...
}

2/15/2005 20

BoundedFIFO
public class BoundedFIF0 {
/*@unique*/ LoggingEvent[] bur; //@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

/*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIF0(int size) {
if(size < 1) throw new IllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public void put(LoggingEvent o) {

if(numElts != size) {
bur[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
//@ writes nothing; reads this.Instance
//@ safe with InfoMethods
public int getMaxSize() { return size; }

/* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */
...
}

2/15/2005 21

BoundedFIFO
public class BoundedFIF0 {
/*@unique*/ LoggingEvent[] bur; //@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

/*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIF0(int size) {
if(size < 1) throw new IllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public void put(LoggingEvent o) {

if(numElts != size) {
bur[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
//@ writes nothing; reads this.Instance
//@ safe with InfoMethods
public int getMaxSize() { return size; }

/* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */
...
}

2/15/2005 22

BoundedFIFO
public class BoundedFIF0 {
/*@unique*/ LoggingEvent[] bur; //@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

/*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIF0(int size) {
if(size < 1) throw new IllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public void put(LoggingEvent o) {

if(numElts != size) {
bur[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
//@ writes nothing; reads this.Instance
//@ safe with InfoMethods
public int getMaxSize() { return size; }

/* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */
...
}

2/15/2005 23

BoundedFIFO
public class BoundedFIF0 {
/*@unique*/ LoggingEvent[] bur; //@ {[] in Instance}
int numElts = 0, first = 0, next = 0, size;

//@ lock BufLock is this protects Instance

/*@ letset InfoMethods = getMaxSize, length, *
* wasEmpty, wasFull, isFull */

public BoundedFIF0(int size) {
if(size < 1) throw new IllegalArgumentException();
this.size = size;
bur = new LoggingEvent[size];

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public LoggingEvent get() {

if(numElts == 0) return null;
LoggingEvent r = buf[first];
if(++first == size) first = 0;
numElts--;
return r;

}

//@ requires BufLock
//@ writes this. Instance; reads nothing
//@ safe with InfoMethods
public void put(LoggingEvent o) {

if(numElts != size) {
bur[next] = o;
if(++next = = size) next = 0;

numElts++;
}

}

//@ requires BufLock
//@ writes nothing; reads this.Instance
//@ safe with InfoMethods
public int getMaxSize() { return size; }

/* length, wasEmpty, wasFull, and isFull *
* are annotated like getMaxSize */
...
}

2/15/2005 24

BoundedFIFO Client
public class FIF0Client {

private final BoundedFIFO fifo = …;
…
public void putter(LoggingEvent e) {

synchronized(fifo) {
while(fifo.isFullO) {

try { fifo.wait(); }
catch(InterruptedExn ie) {}

}
fifo.put(e);
if(fifo.wasEmptyO) fifo.notify();

}
}

public LoggingEvent getter() {
synchronized(fifo) {

LoggingEvent e;
while(fifo.length() == O) {

try { fifo.wait(); }
catch(InterruptedExn ie) { }

}
e = fifo.get();
if(fifo.wasFullO) fifo.notify();
return e ;

}
}

public int length() {
synchronized(fifo) { return
fifo.length(); }

}

2/15/2005 25

Lock Analysis, Fluid Style

• Lattice is a tuple of custom lattices
– One for each variable in the program

• Forward analysis
• Injected tuple ι = { ⊥ for x if /* @requires x */ annotation, ⊤ otherwise}
• Simple transfer functions (σ is input data flow value)

– ƒLA([synchronized(x) { S }],σ)= σ [x ↦ ⊥] // only for analysis of S
= σ // for subsequent statements

– ƒLA([x := f(e)],σ) = σ // nothing special at method calls
– ƒLA(S,σ) = σ // for all other statements

• Report errors
– At [y := f(e)]ℓ, if /* @requires x */ in annotations(f) and LA(ℓ,x) = ⊤
– If y is used in ℓ, /* @lock x protects y */ is in scope and LA (ℓ,x) = ⊤

Lattice

⊤ = unknown

⊥ = locked

2/15/2005 26

Uniqueness Analysis

• Lattice is a tuple of custom lattices
– One for each variable in the program

• Forward analysis
• Injected tuple ι = { ⊥ for x if /* @unique x */ annotation, ⊤ otherwise}
• Example transfer functions (σ is input data flow value)

– ƒUA([x := y]ℓ,σ) = σ [x ↦⊤, y ↦⊤] // if y ∈ LV(ℓ)
= σ [x ↦σ[x]] // if y ∉ LV(ℓ)

– ƒUA([x := f(y)]ℓ,σ) = σ [x ↦annot(f), y ↦⊤] // if y ∈ LV(ℓ)
// and annot(arg(f))≠borrowed

= σ [x ↦annot(f)] // otherwise

• Report errors
– At [x := f(y)]ℓ, if /* @unique arg */ in annotations(f) and UA(ℓ,y) = ⊤
– If y is annotated /* @unique */ but UA(ℓ,x) = ⊤ for some statement ℓ

Lattice

⊤ = unknown

⊥ = unique

2/15/2005 27

Summary: PREfix vs. Fluid

• PREfix
– Finds language-level

errors
– Fully automatic
– Interprocedural
– Goal: find bugs

• Fluid
– Finds concurrency

errors
– Requires annotations
– Intra-procedural with

cut points
– Goal: ensure absence

of certain kinds of
bugs

