A Programmer-Oriented Approach to
Software Assurance and Evolution

Bill Scherlis, as told

The Fluid Project
www.fluid.cs.cmu.edu

by Dean Sutherland

CMU School of Computer Science

scherlis@cmu.edu
412-268-8741

Jan 05

Carnegie Mellon

_ Fluid dependability attributes (examples)

e Engineering properties for safety, dependability, security

= Safe concurrency
= Race conditions
Lock management
Single thread concurrency control
Lock ordering and deadlocks

= Code safety
= Ignored exceptions

= Appropriate typing

= Policy compliance

API policy compliance
Framework compliance
Object references and aliasing
Patterns, uses, structure

= Real time
= Real-time thread/memory policies

e Hard to test
e Nondeterminism

e Hard to inspect
e Non-local
e Model-based

© William L Scherlis 2004 Dec 04

W |

Carnegie Mellon

" Fluid | Direct measures g |

We treat our software as if it were
a phenomenon of nature

— Sir Tony Hoare, 2004

Indirect Measures Direct Measures
- Process - Model coverage
- People ‘ - By attribute kind
- Bug counts - By code coverage
- KLOC counts - Code/model consistency =

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

IT supply chain barriers s

Interface barriers exist between producers and consumers
at all stages of IT supply chains

Five barriers Mitigation (today’s best)

e Contractor qualification e CMM/CMMI

e Requirements definition e Close relationships

e “Second” sourcing ‘ e API conventionalization

e Risk allocation e Asymmetry

» Engineering acceptance Testing and inspection

Producers:

Internal development groups
Subcontractors
Outsources
Offshore

Off-the-shelf
Open Source

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Quality stakeholders

At each supply chain interface:

e Developers
= Immediate code guidance
= Basis for dependability claims
= Incremental progress

e Managers
= Direct evidence / measurement
= Design intent capture

e CIO organization
= Standards (e.g., framework enforcement)
= QOrganizational memory

o Acceptance evaluators
= Proxy elimination
= Direct artifact evaluation

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Software and code

Code

= The ground truth of software
= We create it, but we do not understand it

Challenges
= Poor quality measures
= Weak proxies: People, process, bug counts, KLOC
= Impact: Difficulty of ROI case

= Design intent is missing
= Code embodies insufficient information about itself
= Huge information loss

= There is no escape
= Generation and abstraction: program at higher level

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ The Fluid Project

e Create and maintain safe, dependable, secure code

= Directly assure critical dependability attributes

= Attributes tend to defy testing and inspection
e {Dependability, safety, security}
= Direct static assurance

= Express dependability-related models B

= Incrementally capture design intent

= Provide direct assurance and measurement
1. Inventory of fault-relevant sites
2. Modeling progress
3. Analysis progress: assurance, potential faults

= Adoptability and scalability are paramount

Ease of use by practicing developers
Management value — metrics and process support
Composability and components

Incrementality and early rewards

Partiality and contingency

© William L Scherlis 2004 Dec 04

)| Logger.java &=

15+ public vold log(LogRecord record)

1f (record.getlLevel () .intValue() <
retorn;

synchronized (this)
if (filter '= null && 'filter.islLoggable (record))
retorn;

Example race condition
java.util.logging
390w poblic void setfilter(Filter newFilter) throws SecurityException
391 if ('anonympus)
392 managerjcheckliccess () ;
394 filter = negFilter;

Carnegie Mellon

. Fluid The Fluid Eclipse Plug-in s |

=
Problems | Javadoc | Declaration | Code Assurance Information ..-#f" Verification Status X — O

i | BE(Ee v

-1 37 unidentifiable lock(s); what is the name of the lock? what state is being protected?

-1 3 non-final lack expression(s); analysis cannot determine which lock is being acquired

- 1 7 synchronized blocks nat pratecting any state; what state is being protecteds

@ Concurrency (1 issue)

Elmd.'ﬁ:jl lock Logger . LogLock is this protects filker on Logger at Logger.java line 144
I ! prokected referenceds) ko a possibly shared unprotected object; possible race condition detected
EI ,{fﬂﬂ 2 prokected field accessies)
- - i java.utillogging

= (& Logger
: g2 Lock "<this; = .Logger.Loglock” held when accessing filker at Logger.java line 412
g2 Lock "<this; = .Logger.Loglock” held when accessing filker at Logger.java line 412
EI % 2 unprotected field access{es); possible race condition detected
= i java.utillogging
= Ei Logger

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Reporting Code—Model Consistency g |

Tool analyzes model/code consistency
= No model = no assurance

= Identify likely model sites

Three classes of results
{F::' = Code—-model consistency

g = Code—model inconsistency

1 = Informative — Request for annotation

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

_Assured Development: Hub and spokes .t |

e Hub - Fluid core infrastructure
= Representations, core analyses, etc.
= Interactive online, build-based offline
= Verification support
= Proof management, Assertion propagation
= Permissions
= Effects, aliasing, regions

» Spokes — attribute-specific analyses (examples):

= Assurance:
= Races (lock)
= Races (nhon-lock)
= Modular non-lock
= Real time

= Indicators
= Appropriate typing
= Exceptions ignored
= Concurrency finder
= Thread effects

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Models are missing

e Programmer design intent is missing
= Not explicit in Java, C, C++, efc
= What lock protects this object?
e This lock protects that state

= What is the actual extent of shared state of this object?
o This object is "part of” that object

e Adoptability
= Programmers: “Too difficult to express this stuff.”
= Fluid: Minimal effort — concise expression
= Capture what programmers are already thinking about
= No full specification

e Incrementality
= Programmers: “I'm too busy; maybe after the deadline.”
= Fluid: Payoffs early and often
= Direct programmer utility — negative marginal cost
= Increments of payoff for increments of effort

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Reporting Assurance Results

Assurance results

= Model — programmer provided design

intent
i

= Assured — design intent is consistent

==:. with code

= Not Assured — design intent is
inconsistent with code
' = Relative to design intent

Inferred results
= Possible problems, next steps,
reasonable defaults

Metric results (recent work)

How much have I done?
» Model building
» Assurance development

Assurance locator

= Identifies where models and assurance
exist within the system’s structure

» /ncrementality allows assurance of focused
“islands” within a large software system
= Cut points allow programmer selected
modularization of assurance efforts

4+ 7 #®1 i 29 i org.apache.logdj

HEi1 4 68

i 14 B org.apache.logdj.chainsaw

4 org.apache.log4j.config
54 org.apache.logdj.helpers

© William L Scherlis 2004

Dec 04

Carnegie Mellon

_ Fluid Tool Capabilities (for Java) |

e Lock-based concurrency
= Region model

e Non-lock concurrency
= Color model

e Real-time thread policy compliance
= Color model

e Code quality analysis
= Appropriate types
= [gnored exceptions

e Facets of API compliance

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

Apache Log4j BoundedFIFO: Model semantics g |

Expressing lock policy
= Object protects itself:
@lock BufLock is this protects Instance

= Caller of method must acquire lock:
@requiresLock BufLock

Aggregating state
= Only references to arrays are
protected, not the arrays themselves

= Aggregate unaliased arrays:
@unshared
@aggregate [] into Instance

Constructors Aliases~5re not
allowed to-the array

= Cannot be synchronized.

= But most are single-threaded:
@singleThreaded
@borrowed this

Verification and assurance
= Access to shared data
= Correct lock used
= Lock held by callers
= Unshared access

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

Races and security

Examples of security-related race conditions:

15-11-2003:
15-10-2003:
10-10-2003:
23-08-2003:
26-06-2003:
29-04-2003:
23-04-2003:
20-04-2003:
15-03-2003:
27-02-2003:
11-02-2003:
27-01-2003:
12-01-2003:
20-12-2002:
20-12-2002:
29-07-2002:
29-07-2002:
04-07-2002:
16-05-2002:
09-05-2002:
11-03-2002:
27-02-2002:
06-02-2002:
30-01-2002:
26-01-2002:
16-01-2002:
05-12-2001:
20-11-2001:
17-08-2001:

monopd Race Condition Denial of Service Vulnerability

Sun Solaris Pipe Function Unspecified Kernel Race Condition Vulnerability

Microsoft Windows RPCSS Multi-thread Race Condition Vulnerability

Glibc Malloc Routine Race Condition Vulnerability

Linux 2.4 Kernel execve() System Call Race Condition Vulnerability

Worker Filemanager Directory Creation Race Condition Vulnerability

SAP Database SDBINST Race Condition Vulnerability

Microsoft Windows Service Control Manager Race Condition Vulnerability

Samba REG File Writing Race Condition Vulnerability

Hypermail Local Temporary File Race Condition Vulnerability

Sun Microsystems Solaris Mail Reading Local Race Condition Vulnerability

Sun Solaris AT Command Race Condition Vulnerability

BitMover BitKeeper Local Temporary File Race Condition Vulnerability

Tmpwatch Race Condition Vulnerability

STMPClean Race Condition Vulnerability

Multiple Vendor BSD pppd Arbitrary File Permission Modification Race Condition Vulnerability
Util-linux File Locking Race Condition Vulnerability

BEA Systems WebLogic Server and Express Race Condition Denial of Service Vulnerability
SuSE AAA_Base_Clean_Core Script RM Race Condition Vulnerability

Multiple Vendor exec C Library Standard I/O File Descriptor Race Condition Vulnerability
GNU Fileutils Directory Removal Race Condition Vulnerability

FSLint Temporary File Race Condition Vulnerability

FreeBSD FStatFS Syscall Race Condition Vulnerability

Compaq Tru64 Kernel Race Condition Vulnerability

Tarantella Enterprise 3 gunzip Race Condition Vulnerability

BSD exec() Race Condition Vulnerability

XTel XTel-User Temporary File Race Condition Vulnerability

IBM AIX Bellmail Race Condition Vulnerability

Multiple BSD FTS Directory Traversal Race Condition Vulnerability

(Source: Bugtraq vulnerabilities list)

© William L Scherlis 2004

Dec 04

Carnegie Mellon

_ Fluid: published results

Annotation, analysis, and tool publications

e POPL 05

e CSIP 04

e OOPSLA 03 Eclipse Tech eXchange

e Greenhouse thesis '03

e PASTE 02

e ICSE '02

o Software—Practice and Experience '01
e ECOOP 99

e ICSE 98

http://www.fluid.cs.cmu.edu/

© William L Scherlis 2004 Dec 04

[** Model intent that all
* @lock L is this protects Instance constructors are

* @promise “@singleThreaded” for new(**) single threaded.

* @promise “@borrowed this” Model intent that no

*/ method retains
public class DateFormatManager { reference to the

[** @singleThreaded */ receiver.

public DateFormatManager(TimeZone timeZone) {
super();
_timeZone =timeZone;
configure();

}

private synchronized void configure() {...}

}

Now the locking model can be assured (deeply)...as the tool displays

= 1@ lock DateFormatManager.DateFormatManager is this protects Instance
| I g 29 protected field access(es)
- offl region public Instance on Object

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ The “red dot” — exploit partial results B¥ |

Consistency of model and code is contingent on a “trusted” result

EI{;@ promise “starts nothing” for all
+ @ starts nothing on DateFy

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

Fluid summary: towards safer code

Realities

= Code is the as-built reality
= Nonetheless, we don’t understand code
= Non-local properties are (often) known but not expressed
= Loss of intellectual control

= Models are necessary
= Code and design evolve separately
= We assure consistency

= Adoption barriers exist for present semantic assurance techniques

Our approach
= Incrementality

= Capture and express critical properties
¢ New ways to model and express diverse mechanical properties

= Create assurance: chains of evidence
e Couple models/annotations, analysis
e Are we in the framework? Are we compliant with the API?

= Build semantic links between code and design
e Accept coding constraint to facilitate this

= Integrate directly into programmer practice

= Build on existing practice (e.g., open source, Eclipse, etc.)
e Seek invisible or incremental interventions
e Instant gratification principle

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Case Study - Scope e |

e The assurance evaluation we are presently offering for case study
purposes focuses on race conditions, including both lock-based
and non-lock concurrency.

e Questions

= What are the sizes and complexity of the candidate systems and the
major subsystems and components of interest?

= What are your most challenging concurrency-related assurance
issues? Where is the greatest complexity of threading and locks? Is
there_)significant exploitation of thread-locality or time-sharing of
state:

= Are there known races and other anomalies?

* Focus of effort
= We prefer to work on the most challenging concurrency issues in
your code, where you are having the most vexing and costly
problems
= We expect to provide some immediate improvement in the overall
quality of your software system. All design intent annotation will
remain after we leave. N
= CMU values the experience gained from exercising the FTT i
technology in a live, production environment.

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Case Study - Agenda e |

e Day1
= We work together in a room with a digital projector, though

we will likely break into 1-3 person teams after the initial
session.

= Morning -- Meet and greet
= Fluid team: Tool intro
= Host team: Software system overview and issues

= Afternoon: Load tool with the code base and do a local build.
= Start analysis

= Obtain preliminary results

e Day?2
= Tool use by both teams and collaboration
= Mid-way assessment

e Day3
= Tool use by both teams and collaboration >
= Assessment
= Qutbrief of overall results and discussion

© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Case Study - Staffing LS |

FTT Team Host Team

e The team includes technical o Ideally, we collaborate with
principals who have developers in identifying (reverse
considerable experience in engineering, in some cases)
applying the tool in production concurrency-related design intent.
settings.

o Itis therefore important to us to

e They are experts in program have access to individuals with
analysis, Java concurrency, and whom we can address technical
model/code management for questions as modeling and analysis
larger systems. proceed.

e Qur team are all CMU
researchers and US citizens.

* We expect to either execute a
suitable bilateral NDA or work
under informal NDA.

T
© William L Scherlis 2004 Dec 04

Carnegie Mellon

_ Case Study - Preparation |

e Advance preparation
= Informal presentation/discussion regarding concurrency
patterns and potential issues in the code base of interest.

= Additionally, architectural overview information would be
helpful.

= We prefer to bring our own laptops which already have the
tools installed. (We have done this at highly secure sites.)
= We will load/unload code under host supervision.
= If this is not possible, we will need to have access to high-
performance Windows computers with 2GB RAM
= Qur tool is presently based in Eclipse

T
© William L Scherlis 2004 Dec 04

End

