
A Programmer-Oriented Approach to

Software Assurance and Evolution

Bill Scherlis, as told by Dean Sutherland
CMU School of Computer Science

scherlis@cmu.edu
412-268-8741

Jan 05

The Fluid Project
www.fluid.cs.cmu.edu

© William L Scherlis 2004 Dec 04

Fluid Fluid dependability attributes (examples)

• Engineering properties for safety, dependability, security

� Safe concurrency
� Race conditions
� Lock management
� Single thread concurrency control
� Lock ordering and deadlocks

� Code safety
� Ignored exceptions
� Appropriate typing

� Policy compliance
� API policy compliance
� Framework compliance
� Object references and aliasing
� Patterns, uses, structure

� Real time
� Real-time thread/memory policies

• Hard to test
• Nondeterminism

• Hard to inspect
• Non-local

• Model-based

© William L Scherlis 2004 Dec 04

Fluid

— Sir Tony Hoare, 2004

Indirect Measures
- Process
- People
- Bug counts
- KLOC counts

Direct Measures
- Model coverage

- By attribute kind
- By code coverage

- Code/model consistency

We treat our software as if it were
a phenomenon of nature

Direct measures

© William L Scherlis 2004 Dec 04

Fluid IT supply chain barriers

Interface barriers exist between producers and consumers
at all stages of IT supply chains

Producers:
Internal development groups
Subcontractors
Outsources
Offshore
Off-the-shelf
Open Source

Five barriers

• Contractor qualification

• Requirements definition

• “Second” sourcing

• Risk allocation

• Engineering acceptance

Mitigation (today’s best)

• CMM / CMMI

• Close relationships

• API conventionalization

• Asymmetry

• Testing and inspection

© William L Scherlis 2004 Dec 04

Fluid Quality stakeholders

At each supply chain interface:

• Developers
� Immediate code guidance
� Basis for dependability claims
� Incremental progress

• Managers
� Direct evidence / measurement
� Design intent capture

• CIO organization
� Standards (e.g., framework enforcement)
� Organizational memory

• Acceptance evaluators
� Proxy elimination
� Direct artifact evaluation

© William L Scherlis 2004 Dec 04

Fluid Software and code

Code
� The ground truth of software

� We create it, but we do not understand it

Challenges
� Poor quality measures

� Weak proxies: People, process, bug counts, KLOC
� Impact: Difficulty of ROI case

� Design intent is missing
� Code embodies insufficient information about itself
� Huge information loss

� There is no escape
� Generation and abstraction: program at higher level

© William L Scherlis 2004 Dec 04

Fluid The Fluid Project

• Create and maintain safe, dependable, secure code

� Directly assure critical dependability attributes
� Attributes tend to defy testing and inspection

• {Dependability, safety, security}
� Direct static assurance

� Express dependability-related models
� Incrementally capture design intent

� Provide direct assurance and measurement
1. Inventory of fault-relevant sites
2. Modeling progress
3. Analysis progress: assurance, potential faults

� Adoptability and scalability are paramount
� Ease of use by practicing developers
� Management value – metrics and process support
� Composability and components
� Incrementality and early rewards
� Partiality and contingency

© William L Scherlis 2004 Dec 04

Fluid

Example race condition

java.util.loggingjava.util.loggingjava.util.loggingjava.util.logging

© William L Scherlis 2004 Dec 04

Fluid The Fluid Eclipse Plug-in

© William L Scherlis 2004 Dec 04

Fluid Reporting Code–Model Consistency

Tool analyzes model/code consistency
� No model ⇒⇒⇒⇒ no assurance

� Identify likely model sites

Three classes of results
� Code–model consistency

� Code–model inconsistency

� Informative — Request for annotation

© William L Scherlis 2004 Dec 04

Fluid Assured Development: Hub and spokes

• Hub – Fluid core infrastructure
� Representations, core analyses, etc.
� Interactive online, build-based offline
� Verification support

� Proof management, Assertion propagation
� Permissions
� Effects, aliasing, regions

• Spokes – attribute-specific analyses (examples):
� Assurance:

� Races (lock)
� Races (non-lock)
� Modular non-lock
� Real time

� Indicators
� Appropriate typing
� Exceptions ignored
� Concurrency finder
� Thread effects

© William L Scherlis 2004 Dec 04

Fluid Models are missing

• Programmer design intent is missing
� Not explicit in Java, C, C++, etc

� What lock protects this object?
• This lock protects that state

� What is the actual extent of shared state of this object?
• This object is “part of” that object

• Adoptability
� Programmers: “Too difficult to express this stuff.”
� Fluid: Minimal effort — concise expression

� Capture what programmers are already thinking about
� No full specification

• Incrementality
� Programmers: “I’m too busy; maybe after the deadline.”
� Fluid: Payoffs early and often

� Direct programmer utility – negative marginal cost
� Increments of payoff for increments of effort

© William L Scherlis 2004 Dec 04

Fluid Reporting Assurance Results

Assurance results
� Model – programmer provided design

intent

� Assured – design intent is consistent
with code

� Not Assured – design intent is
inconsistent with code
� Relative to design intent

Inferred results
� Possible problems, next steps,

reasonable defaults

Metric results (recent work)
How much have I done?
� Model building
� Assurance development

Assurance locator
� Identifies where models and assurance
exist within the system’s structure

� Incrementality allows assurance of focused
“islands” within a large software system

� Cut points allow programmer selected
modularization of assurance efforts

© William L Scherlis 2004 Dec 04

Fluid Fluid Tool Capabilities (for Java)

• Lock-based concurrency
� Region model

• Non-lock concurrency
� Color model

• Real-time thread policy compliance
� Color model

• Code quality analysis
� Appropriate types
� Ignored exceptions

• Facets of API compliance

© William L Scherlis 2004 Dec 04

Fluid Apache Log4j BoundedFIFO: Model semantics

Expressing lock policy
� Object protects itself:

@lock BufLock is this protects Instance

� Caller of method must acquire lock:
@requiresLock BufLock

Aggregating state
� Only references to arrays are

protected, not the arrays themselves

� Aggregate unaliased arrays:
@unshared
@aggregate [] into Instance

Constructors
� Cannot be synchronized.

� But most are single-threaded:
@singleThreaded
@borrowed this

Verification and assurance
� Access to shared data
� Correct lock used
� Lock held by callers
� Unshared access

buf

.

.

.

size

next

[0]

[1]

[2]
.
.
.

buf

.

.

.

[0]

[1]

[2]
.
.
.

size

next

Aliases are not
allowed to the array

© William L Scherlis 2004 Dec 04

Fluid Races and security

Examples of security-related race conditions:

� 15-11-2003: monopd Race Condition Denial of Service Vulnerability
� 15-10-2003: Sun Solaris Pipe Function Unspecified Kernel Race Condition Vulnerability
� 10-10-2003: Microsoft Windows RPCSS Multi-thread Race Condition Vulnerability
� 23-08-2003: Glibc Malloc Routine Race Condition Vulnerability
� 26-06-2003: Linux 2.4 Kernel execve() System Call Race Condition Vulnerability
� 29-04-2003: Worker Filemanager Directory Creation Race Condition Vulnerability
� 23-04-2003: SAP Database SDBINST Race Condition Vulnerability
� 20-04-2003: Microsoft Windows Service Control Manager Race Condition Vulnerability
� 15-03-2003: Samba REG File Writing Race Condition Vulnerability
� 27-02-2003: Hypermail Local Temporary File Race Condition Vulnerability
� 11-02-2003: Sun Microsystems Solaris Mail Reading Local Race Condition Vulnerability
� 27-01-2003: Sun Solaris AT Command Race Condition Vulnerability
� 12-01-2003: BitMover BitKeeper Local Temporary File Race Condition Vulnerability
� 20-12-2002: Tmpwatch Race Condition Vulnerability
� 20-12-2002: STMPClean Race Condition Vulnerability
� 29-07-2002: Multiple Vendor BSD pppd Arbitrary File Permission Modification Race Condition Vulnerability
� 29-07-2002: Util-linux File Locking Race Condition Vulnerability
� 04-07-2002: BEA Systems WebLogic Server and Express Race Condition Denial of Service Vulnerability
� 16-05-2002: SuSE AAA_Base_Clean_Core Script RM Race Condition Vulnerability
� 09-05-2002: Multiple Vendor exec C Library Standard I/O File Descriptor Race Condition Vulnerability
� 11-03-2002: GNU Fileutils Directory Removal Race Condition Vulnerability
� 27-02-2002: FSLint Temporary File Race Condition Vulnerability
� 06-02-2002: FreeBSD FStatFS Syscall Race Condition Vulnerability
� 30-01-2002: Compaq Tru64 Kernel Race Condition Vulnerability
� 26-01-2002: Tarantella Enterprise 3 gunzip Race Condition Vulnerability
� 16-01-2002: BSD exec() Race Condition Vulnerability
� 05-12-2001: XTel XTel-User Temporary File Race Condition Vulnerability
� 20-11-2001: IBM AIX Bellmail Race Condition Vulnerability
� 17-08-2001: Multiple BSD FTS Directory Traversal Race Condition Vulnerability

(Source: Bugtraq vulnerabilities list)

© William L Scherlis 2004 Dec 04

Fluid Fluid: published results

Annotation, analysis, and tool publications

• POPL ’05

• CSJP ’04

• OOPSLA ’03 Eclipse Tech eXchange

• Greenhouse thesis ’03

• PASTE ’02

• ICSE ’02

• Software—Practice and Experience ’01

• ECOOP ’99

• ICSE ’98

http://www.fluid.cs.cmu.edu/

© William L Scherlis 2004 Dec 04

Fluid
/**

* @lock L is this protects Instance
* @promise “@singleThreaded” for new(**)
* @promise “@borrowed this”
*/

public class DateFormatManager {
/** @singleThreaded */
public DateFormatManager(TimeZone timeZone) {

super();
_timeZone = timeZone;
configure();

}
...
private synchronized void configure() {…}

}

Now the locking model can be assured (deeply)…as the tool displays

Model intent that all
constructors are
single threaded.
Model intent that no
method retains
reference to the

receiver.

© William L Scherlis 2004 Dec 04

Fluid The “red dot” – exploit partial results

Consistency of model and code is contingent on a “trusted” result

© William L Scherlis 2004 Dec 04

Fluid Fluid summary: towards safer code

Realities
� Code is the as-built reality

� Nonetheless, we don’t understand code
� Non-local properties are (often) known but not expressed
� Loss of intellectual control

� Models are necessary
� Code and design evolve separately
� We assure consistency

� Adoption barriers exist for present semantic assurance techniques

Our approach
� Incrementality

� Capture and express critical properties
• New ways to model and express diverse mechanical properties

� Create assurance: chains of evidence
• Couple models/annotations, analysis
• Are we in the framework? Are we compliant with the API?

� Build semantic links between code and design
• Accept coding constraint to facilitate this

� Integrate directly into programmer practice
� Build on existing practice (e.g., open source, Eclipse, etc.)

• Seek invisible or incremental interventions
• Instant gratification principle

© William L Scherlis 2004 Dec 04

Fluid Case Study - Scope

• The assurance evaluation we are presently offering for case study
purposes focuses on race conditions, including both lock-based
and non-lock concurrency.

• Questions

� What are the sizes and complexity of the candidate systems and the
major subsystems and components of interest?

� What are your most challenging concurrency-related assurance
issues? Where is the greatest complexity of threading and locks? Is
there significant exploitation of thread-locality or time-sharing of
state?

� Are there known races and other anomalies?

• Focus of effort
� We prefer to work on the most challenging concurrency issues in

your code, where you are having the most vexing and costly
problems

� We expect to provide some immediate improvement in the overall
quality of your software system. All design intent annotation will
remain after we leave.

� CMU values the experience gained from exercising the FTT
technology in a live, production environment.

© William L Scherlis 2004 Dec 04

Fluid Case Study - Agenda

• Day 1
� We work together in a room with a digital projector, though

we will likely break into 1-3 person teams after the initial
session.

� Morning -- Meet and greet
� Fluid team: Tool intro
� Host team: Software system overview and issues

� Afternoon: Load tool with the code base and do a local build.
� Start analysis
� Obtain preliminary results

• Day 2
� Tool use by both teams and collaboration
� Mid-way assessment

• Day 3
� Tool use by both teams and collaboration
� Assessment
� Outbrief of overall results and discussion

© William L Scherlis 2004 Dec 04

Fluid Case Study - Staffing

FTT Team

• The team includes technical
principals who have
considerable experience in
applying the tool in production
settings.

• They are experts in program
analysis, Java concurrency, and
model/code management for
larger systems.

• Our team are all CMU
researchers and US citizens.

• We expect to either execute a
suitable bilateral NDA or work
under informal NDA.

Host Team

• Ideally, we collaborate with
developers in identifying (reverse
engineering, in some cases)
concurrency-related design intent.

• It is therefore important to us to
have access to individuals with
whom we can address technical
questions as modeling and analysis
proceed.

© William L Scherlis 2004 Dec 04

Fluid Case Study - Preparation

• Advance preparation
� Informal presentation/discussion regarding concurrency

patterns and potential issues in the code base of interest.

� Additionally, architectural overview information would be
helpful.

� We prefer to bring our own laptops which already have the
tools installed. (We have done this at highly secure sites.)
� We will load/unload code under host supervision.
� If this is not possible, we will need to have access to high-
performance Windows computers with 2GB RAM

� Our tool is presently based in Eclipse

End

