
Daikon:
Dynamic Analysis for Inferring

Likely Invariants

Reading: Dynamically Discovering Likely
Program Invariants to Support Program

Evolution

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

2/24/2005 4

What is an Invariant?

• A logical formula that is always true at a
particular set of program points

• Uses
– Function contracts with pre-/post-conditions
– Correctness of loops and recursion
– Correctness of data structures

2/24/2005 5

Invariants and Correctness

void sum(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s =∑0≤j<i b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s = ∑0≤j<n b[j]

}

• Correctness of sort
– Given arguments that

satisfy precondition, yields
result that satisfies
postcondition

• Loop invariant
– True on entry to loop
– If loop taken, true after loop

body executes
– After loop exits, we know

both the invariant and the
exit condition hold

• e.g., in sort if i=n then inv
implies the postcondition:
s holds the sum of the
complete array

2/24/2005 6

Invariants and Correctness

void sum(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s =∑0≤j<i b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s = ∑0≤j<n b[j]

}

• Proof technique
– Dijkstra: Strongest post-

condition
– Put assertions between every

two program statements
– Step through program,

ensuring that assertion + next
statement implies next
assertion

2/24/2005 8

Invariants and Correctness

void sum(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s =∑0≤j<i b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s = ∑0≤j<n b[j]

}

• i, s := 0, 0;
– assume n ≥ 0
– yields n≥0, i=0, s=0
– clearly 0 ≤ i ≤ n and

s = ∑0≤j<i b[j]

2/24/2005 10

Invariants and Correctness

void sum(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s =∑0≤j<i b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s = ∑0≤j<n b[j]

}

• do i ≠ n ���� …
– true branch

• assume 0 ≤ i < n and
s = ∑0≤j<i b[j]

• yields 0 < i ≤ n and
s = ∑0≤j<i b[j]

• implies inv again

– false branch
• assume i = n and

s = ∑0≤j<i b[j]

• Implies post

2/24/2005 11

The Challenge

• Invariants are useful, but a pain to write
down

• What if analysis could do it for us?
– Problem: guessing invariants with static

analysis is hard
– Solution: guessing invariants by watching

actual program behavior is easy!
• But of course the guesses might be wrong…

2/24/2005 12

Dynamic Analysis

A technique for inferring properties of a program
based on execution traces of that program

• PREfix
– Can be viewed as dynamic analysis because it

simulates execution along some paths
– Can be viewed as static analysis because the

simulation is abstract

• Daikon
– Infers invariants from program traces

2/24/2005 13

Inferring i ≤ n in Loop Invariant

void sort(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i
b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s=sum(b[j],
0≤j<n)

}

• Possible relationships:
i<n i≤n i=n i>n i≥n

• Cull relationships with traces
Trace: n=0
n i

2/24/2005 14

Inferring i ≤ n in Loop Invariant

void sort(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i
b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s=sum(b[j],
0≤j<n)

}

• Possible relationships:
i<n i≤n i=n i>n i≥n

• Cull relationships with traces
Trace: n=0
n i
0 0

X X

2/24/2005 16

Inferring i ≤ n in Loop Invariant

void sort(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i
b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s=sum(b[j],
0≤j<n)

}

• Possible relationships:
i<n i≤n i=n i>n i≥n

• Cull relationships with traces
Trace: n=1
n i
1 0
1 1

X XX X

2/24/2005 17

Inferring i ≤ n in Loop Invariant

void sort(int *b,int n) {
pre: n ≥ 0
i, s := 0, 0;
inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i
b[j]
do i ≠ n ����

i, s := i+1, s+b[i]
post: s=sum(b[j],
0≤j<n)

}

• Possible relationships:
i<n i≤n i=n i>n i≥n

• Cull relationships with traces
Trace: n=2
n i
2 0
2 1
2 2

X XX X

2/24/2005 18

Results

• Inferred all invariants in Gries’ The
Science of Programming

• Shocking to research community
– Many people have applied static analysis to

the problem
– Static analysis is unsuccessful by comparison

2/24/2005 20

Drawbacks

• Requires a reasonable test suite
• Invariants may not be true

– May only be true for this test suite, but falsified by another
program execution

• May detect uninteresting invariants
• May miss some invariants

– Detects all invariants in a class, but not all interesting invariants
are in that class

– Only reports invariants that are statistically unlikely to be
coincidental

• Note: easier to reject false or uninteresting
invariants than to guess true ones!

2/24/2005 23

Invariants in SW Evolution

• Guess: loop adds chars
to pat on all executions of
stclose

• Inferred invariant
– lastj ≤ *j
– Thus jp=*j-1 could be less

than lastj and the loop may
not execute!

• Queried for examples
where lastj = *j
– When *j>100
– pat holds only 100

elements—this is an array
bounds error

2/24/2005 25

Invariants in SW Evolution

• Task
– Add + operator to regular

expression language

• Goal
– Don’t violate existing

program invariants

• Check
– Inferred invariants for +

code same as for * code

– Except for invariants
reflecting different
semantics

2/24/2005 26

Benefits Observed

• Invariants describe properties of code that
should be maintained

• Invariants contradict expectations of
programmer, avoiding errors due to
incorrect expectations

• Simple inferred invariants allow
programmer to validate more complex
ones

2/24/2005 27

Costs

• Scalability
– Instrumentation slowdown ~10x

• unoptimized; later on-line work improves this

– Invariant inference
• Scales quadratically in # vars, linearly in trace size

2/24/2005 28

Invariant Uses: Test Coverage

• Problem: When generating test cases, how do
you know if your test suite is comprehensive
enough?

• Generate test cases
• Observe whether inferred invariants change
• Stop when invariants don’t change any more
• Captures semantic coverage instead of code

coverage

Harder, Mellen, and Ernst. Improving test suites via operational
abstraction. ICSE ’03.

2/24/2005 29

Invariant Uses: Test Selection

• Problem: When generating test cases, how do
you know which ones might trigger a fault?

• Construct invariants based on “normal”
execution

• Generate many random test cases
• Select tests that violate invariants from normal

execution

Pacheco and Ernst. Eclat: Automatic generation and classification of
test inputs. ECOOP ’05, to appear.

2/24/2005 30

Invariant Uses: Component
Upgrades

• You’re given a new version of a component—
should you trust it in your system?

• Generate invariants characterizing component’s
behavior in your system

• Generate invariants for new component
– If they don’t match the invariants of old component,

you may not want to use it!

McCamant and Ernst. Predicting problems caused by component
upgrades. FSE ’03.

2/24/2005 31

Invariant Uses: Proofs of Programs

• Problem: theorem-prover tools need help guessing invariants to
prove a program correct

• Solution: construct invariants with Daikon, use as lemmas in the
proof

• Results [1]
– Found 4 of 6 necessary invariants
– But they were the easy ones �

• Results [2]
– Programmers found it easier to remove incorrect invariants than to

generate correct ones
– Suggests that an unsound tool that produces many invariants may be

more useful than a sound tool that produces few

[1] Win et al. Using simulated execution in verifying distributed algorithms. Software Tools
for Technology Transfer, vol. 6, no. 1, July 2004, pp. 67-76.

[2] Nimmer and Ernst. Invariant inference for static checking: An empirical evaluation.
FSE ’02.

