Daikon: Dynamic Analysis for Inferring Likely Invariants

Reading: Dynamically Discovering Likely Program Invariants to Support Program Evolution

17-654/17-765 Analysis of Software Artifacts Jonathan Aldrich

What is an Invariant?

- A logical formula that is always true at a particular set of program points
- Uses
 - Function contracts with pre-/post-conditions
 - Correctness of loops and recursion
 - Correctness of data structures

void sum(int *b,int n) {

```
pre: n \ge 0

i, s := 0, 0;

inv: 0 \le i \le n \land s = \sum_{0 \le j < i} b[j]

do i \ne n \rightarrow

i, s := i+1, s+b[i]

post: s = \sum_{0 \le j < n} b[j]
```

- Correctness of sort
 - Given arguments that satisfy precondition, yields result that satisfies postcondition
- Loop invariant
 - True on entry to loop
 - If loop taken, true after loop body executes
 - After loop exits, we know both the invariant and the exit condition hold
 - e.g., in sort if i=n then inv implies the postcondition: s holds the sum of the complete array

void sum(int *b,int n) {

```
pre: n \ge 0

i, s := 0, 0;

inv: 0 \le i \le n \land s = \sum_{0 \le j < i} b[j]

do i \ne n \rightarrow

i, s := i+1, s+b[i]

post: s = \sum_{0 \le j < n} b[j]
```

- Proof technique
 - Dijkstra: Strongest postcondition
 - Put assertions between every two program statements
 - Step through program, ensuring that assertion + next statement implies next assertion

```
void sum(int *b,int n) {
```

```
pre: n \ge 0

i, s := 0, 0;

inv: 0 \le i \le n \land s = \sum_{0 \le j < i} b[j]

do i \ne n \rightarrow

i, s := i+1, s+b[i]

post: s = \sum_{0 \le j < n} b[j]
```

- assume n ≥ 0
- yields n≥0, i=0, s=0

- clearly
$$0 \le i \le n$$
 and
s = $\sum_{0 \le j < i} b[j]$

void sum(int *b,int n) {

pre:
$$n \ge 0$$

i, **s** := **0**, **0**;
inv: $0 \le i \le n \land s = \sum_{0 \le j < i} b[j]$
do i \ne **n** \rightarrow
i, **s** := **i**+1, **s**+**b**[**i**]
post: $s = \sum_{0 \le j < n} b[j]$

• do i \neq n \rightarrow ...

- true branch
 - assume $0 \le i < n$ and s = $\sum_{0 \le j < i} b[j]$
 - yields $0 < i \le n$ and s = $\sum_{0 \le j < i} b[j]$
 - implies inv again
- false branch
 - assume i = n and s = $\sum_{0 \le j < i} b[j]$
 - Implies post

The Challenge

- Invariants are useful, but a pain to write down
- What if analysis could do it for us?
 - Problem: guessing invariants with static analysis is hard
 - Solution: guessing invariants by watching actual program behavior is easy!
 - But of course the guesses might be wrong...

Dynamic Analysis

A technique for inferring properties of a program based on execution traces of that program

• PREfix

- Can be viewed as dynamic analysis because it simulates execution along some paths
- Can be viewed as static analysis because the simulation is abstract
- Daikon
 - Infers invariants from program traces

Inferring *i* ≤ *n* in Loop Invariant

```
void sort(int *b,int n) {
   pre: n \ge 0
   i, s := 0, 0;
   inv: 0 \le i \le n \land s = \sum_{0 \le i \le i}
   b[j]
   do i \neq n \rightarrow
        i, s := i+1, s+b[i]
   post: s=sum(b[j],
   0≤j<n)
2/24/2005
```

- Possible relationships:
 i<*n i*≤*n i*>*n i*≥*n*
- Cull relationships with traces
 Trace: n=0

<u>n i</u>

Inferring *i* ≤ *n* in Loop Invariant

void sort(int *b,int n) { pre: $n \ge 0$ i, s := 0, 0; inv: $0 \le i \le n \land s = \sum_{0 \le i \le i}$ b[j] do i \neq n \rightarrow i, s := i+1, s+b[i] post: s=sum(b[j], *0≤j<n*)

- Possible relationships:
 i≱n *i*≤n *i*≥n
- Cull relationships with traces
 Trace: n=0

 n i
 0
 0

Inferring $i \leq n$ in Loop Invariant

void sort(int *b,int n) { pre: $n \ge 0$ i, s := 0, 0; inv: $0 \le i \le n \land s = \sum_{0 \le i \le i}$ b[j] do i \neq n \rightarrow i, s := i+1, s+b[i] post: s=sum(b[j], *0≤j<n*)

- Possible relationships: i**x**n i≤n i**x**n i**x**n i≥n
- Cull relationships with traces Trace: n=1

Inferring *i* ≤ *n* in Loop Invariant

<u>n</u>

2

2

2

void sort(int *b,int n) { pre: $n \ge 0$ i, s := 0, 0; inv: $0 \le i \le n \land s = \sum_{0 \le i \le i}$ b[j] do i \neq n \rightarrow i, s := i+1, s+b[i] post: s=sum(b[j], *0≤j<n*)

- Possible relationships:
 i≱n *i*≱n *i*≱n *i*≱n
- Cull relationships with traces
 Trace: n=2

2/24/2005

Results

- Inferred all invariants in Gries' The Science of Programming
- Shocking to research community
 - Many people have applied static analysis to the problem
 - Static analysis is unsuccessful by comparison

Drawbacks

- Requires a reasonable test suite
- Invariants may not be true
 - May only be true for this test suite, but falsified by another program execution
- May detect uninteresting invariants
- May miss some invariants
 - Detects all invariants in a class, but not all interesting invariants are in that class
 - Only reports invariants that are statistically unlikely to be coincidental
- Note: easier to reject false or uninteresting invariants than to guess true ones!

Invariants in SW Evolution

```
void stclose(pat, j, lastj)
char
        *pat;
        *j;
int
        lastj;
int
ſ
    int jt;
    int jp;
   bool
                junk;
   for (jp = *j - 1; jp >= lastj ; jp--)
    £
        jt = jp + CLOSIZE;
        junk = addstr(pat[jp], pat, &jt, MAXPAT);
    }
    *i = *i + CLOSIZE;
   pat[lastj] = CLOSURE;
}
```

- Guess: loop adds chars to pat on all executions of stclose
- Inferred invariant
 - lastj ≤ *j
 - Thus jp=*j-1 could be less than lastj and the loop may not execute!
- Queried for examples where lastj = *j
 - When *j>100
 - pat holds only 100 elements—this is an array bounds error

Invariants in SW Evolution

```
void stclose(pat, j, lastj)
char
        *pat;
        *j;
int
int
        lastj;
{
    int jt;
   int jp;
   bool
                junk;
   for (jp = *j - 1; jp >= lastj ; jp--)
    £
        jt = jp + CLOSIZE;
        junk = addstr(pat[jp], pat, &jt, MAXPAT);
    }
    *i = *i + CLOSIZE;
   pat[lastj] = CLOSURE;
}
```

Task

 Add + operator to regular expression language

Goal

- Don't violate existing program invariants
- Check
 - Inferred invariants for + code same as for * code
 - Except for invariants reflecting different semantics

Benefits Observed

- Invariants describe properties of code that should be maintained
- Invariants contradict expectations of programmer, avoiding errors due to incorrect expectations
- Simple inferred invariants allow programmer to validate more complex ones

Costs

- Scalability
 - Instrumentation slowdown ~10x
 - unoptimized; later on-line work improves this
 - Invariant inference
 - Scales quadratically in # vars, linearly in trace size

Invariant Uses: Test Coverage

- Problem: When generating test cases, how do you know if your test suite is comprehensive enough?
- Generate test cases
- Observe whether inferred invariants change
- Stop when invariants don't change any more
- Captures *semantic coverage* instead of *code coverage*

Harder, Mellen, and Ernst. Improving test suites via operational abstraction. ICSE '03.

Invariant Uses: Test Selection

- Problem: When generating test cases, how do you know which ones might trigger a fault?
- Construct invariants based on "normal" execution
- Generate many random test cases
- Select tests that violate invariants from normal execution

Pacheco and Ernst. Eclat: Automatic generation and classification of test inputs. ECOOP '05, to appear.

Invariant Uses: Component Upgrades

- You're given a new version of a component should you trust it in your system?
- Generate invariants characterizing component's behavior in your system
- Generate invariants for new component
 - If they don't match the invariants of old component, you may not want to use it!

McCamant and Ernst. Predicting problems caused by component upgrades. FSE '03.

Invariant Uses: Proofs of Programs

- Problem: theorem-prover tools need help guessing invariants to prove a program correct
- Solution: construct invariants with Daikon, use as lemmas in the proof
- Results [1]
 - Found 4 of 6 necessary invariants
 - But they were the easy ones $\ensuremath{\mathfrak{S}}$
- Results [2]
 - Programmers found it easier to remove incorrect invariants than to generate correct ones
 - Suggests that an unsound tool that produces many invariants may be more useful than a sound tool that produces few

[1] Win et al. Using simulated execution in verifying distributed algorithms. Software Tools for Technology Transfer, vol. 6, no. 1, July 2004, pp. 67-76.

[2] Nimmer and Ernst. Invariant inference for static checking: An empirical evaluation. FSE '02.