17-654:
Analysis of Software Systems

Spring 2005
4/21/2005

2 Topics

= Timing attack
= Algorithms leak information

= Nice example of practice trumping theoretical
security

= Hardening algorithms: randomization

= Privilege separation

= Hardening software: principle of least
privilege

Remote Timing Attacks are
Practical

with Dan Boneh

2 Side channel analysis

= Side channel = unintentional leak of
information

= Attackers learns secrets by observing
normal program behavior
= power
= noise
= timing information

= Powerful and realistic approach to
breaking crypto

:- Overview

= Main result: RSA in OpenSSL 0.9.7 is
vulnerable to a new timing attack:

= Attacker can extract RSA private key by measuring
web server response time.

= Exploiting OpenSSL'’s timing vulnerability:
= One process can extract keys from another.
= Insecure VM can attack secure VM.
= Breaks VM isolation.
= Extract web server key remotely.
= Our attack works across campus

Why are timing attacks against
OpenSSL interesting?

= Many OpenSSL Applications

mod_SSL (Apache+mod_SSL has 28% of HTTPS market)
stunnel (Secure TCP/IP servers)

sNFS (Secure NFS)

bind (name service)

Many more.

= Timing attacks previously applied to smartcards [K'96]
= Never applied to complex systems.
= Most crypto libraries do not defend:
= libgerypt, cryptlib, ...
= Mozilla NSS only one we found to explicitly defend by default.

= OpenSSL uses well-known optimized algorithms

:- Outline

» RSA Overview and data
dependencies

= Present timing attack
= Results against OpenSSL 0.9.7

= Defenses

3 RSA Algorithm

= N is a public modulus. Let N = p*q
= p,g 512-bit prime numbers
= Let e*d = 1 mod (p-1)(g-1)
= e is public encryption exponent
= d is private decryption exponent
= Encryption: memod N =c¢
= Decryption: cd mod N =med mod N =
m mod N
= Secrets: d, p ,g.

2 RSA & CRT
= RSA decryption: g¢ mod N =m

= d &g are 512 bits

= Chinese remaindering (CRT) uses factors directly.
N=pqg, and d1 and d2 are pre-computed from d:
1. ml =g modq
2. m2 =g% mod p
3. combine m1 and m2 to yield m (mod N)

= CRT gives 4x speedup

= Goal: learn factors (p,q) of N.
= Kocher's [K'96] attack fails when CRT is used.

i RSA Decryption Time Variance

= Causes for decryption time variation:
= Which multiplication algorithm is used.
= OpenSSL uses both basic mult. and Karatsuba mult.
= Number of steps during a modular reduction
= modular reduction goal: given u, compute u mod q
= Occasional extra steps in OpenSSL'’s reduction alg.

= There are MANY:
= multiplications by input g
= modular reductions by factor g (and p)

3 Reduction Timing Dependency

= Modular reduction: given u, compute u mod g.
= OpenSSL uses Montgomery reductions [m8s] .

= Time variance in Montgomery reduction:
= One extra step at end of reduction algorithm
with probability
Pr[extra step] = (@ mod q) [S'00]
2q

Prlextra step] = (g mod

2q
Decryption
Time
//
/
/] / ,/
/ / /
/ / /
/ / / /
/ / e
/ /
q 29 P

3 Multiplication Timing Dependency

= Two algorithms in OpenSSL:

= Karatsuba (fast): Multiplying two numbers of
equal length

= Normal (slow): Multiplying two numbers of
different length

= To calc xi[d mod g OpenSSL does:

= When x is the same length as (g mod q), use
Karatsuba mult.

= Otherwise, use Normal mult.

3 Multiplication Summary

Decryption
Time
Karatsuba L
Multiplication Normal Multiplication
9
9<49 q 9>49

5 Data Dependency Summary

= Decryption value g < q
= Montgomery effect: longer decryption time
= Multiplication effect: shorter decryption time

= Decryption value g > q
= Montgomery effect: shorter decryption time

= Multiplication effect: longer decryption time

Opposite effects! But one will always dominate

3 Previous Timing Attacks

= Kocher's attack does not apply to RSA-CRT.

= Schindler’s attack does not work directly on
OpenSSL for two reasons:
= OpenSSL uses sliding windows instead of square and
multiply
= OpenSSL uses two mult. algorithms.

= Both known timing attacks do not work on
OpenSSL.

:- Outline

= RSA Overview and data dependencies during
decryption

> Present timing attack
= Results against OpenSSL 0.9.7

= Defenses

Timing attack: High Level

= Suppose g = q for the top i-1 bits of q,
0 elsewhere
= Goal: Decide whether biti=1 or 0
= Let g, =0, but with biti = 1. 2 cases:
KNOWN bit i

gl1 01100000 0]
q101109?2[22227
gult01101/00000

3 Timing Attack: High Level

Goal: Decide g<qg<g,0rg<g,<(q
1. Sample decryption time for g and g,

t, = DecryptTime(q,; 0-1gap
2. If [Jt, - t;] | 1s large
= g and g, straddle q
= bitiis0 (@g<g<gy
else
= bitiisl (g<g,<0q)

3 Timing Attack Details

= We know what is “large” and “small” from attack on
previous bits.

= Use sampling to filter noise

= Decrypting just g does not work because of sliding
windows
= Decrypt a neighborhood of values near g

= Will increase diff. between large and small values
= larger 0-1 gap

= Only need to recover g/2 bits of g [c'97]

3 The Zero-One Gap

aaaaa

G —

eap uhen a'hir af
Eap whon @ bl uf =1 ——

2.5uw07

zzzzz

e in CPU cycles
-

;;;;;

‘ Zero-one gap

s00 s00
Neighborhood size

3 How does this work with SSL?

How do we get the server to decrypt our g?

3 Normal SSL Decryption

1. ClientHello
Regular Client SSL Server
2. ServerHello

(send public key) ? ;
3. ClientKeyExchange = - Q
(remod N) [y 8

‘\/

Result: Encrypted with computed shared master secre

3 Attack SSL Decryption

1. ClientHello

Attack Client 2. ServerHello SSL Server
(send public key)

. H 2

3. Record time,t o) =]
Send guess g of,g e 2

H =]

4. Alert

5. Record time,t
Compute f—t;

2 Attack requires accurate clock

= Attack measures 0.05% time difference
between g and g,
= << 0.001 seconds on a P4

= We use the CPU cycle counter as fine-
resolution clock
= “rdtsc” instruction on Intel
= “Obtick” register on UltraSparc

:- Outline

= RSA Overview and data dependencies during

decryption

. Present timing attack

> Results against OpenSSL 0.9.7

= Defenses

T
[

3 Attack extract RSA private key

;;;;;

Montgomery reductions
=l .~ Dominates

Thedn X e - % = o % xS0
o | Bl e L g g e o el B
|zero—one gap L

CPU cycles

N
gt 4 TR
S el Sert TR

Tine difference in

Vi or
5
e
TR

T Multiplication routine dominates

3 Attack extract RSA private key

1111111

Montgomery reductions
.~~~ Dominates

in CFU cycles

zero-one gap

Tine difference

Multiplication routine dominates

————————

:- Attack works on the network

.......

Similar timing on
WAN vs. LAN

~1.5ue07

3 Attack Summary

= Attack successful, even on a WAN

= Attack requires only 350,000 — 1,400,000
decryption queries.

= Attack requires only 2 hours.

:- Outline

= RSA Overview and data dependencies during

decryption
. Present timing attack

- Results against OpenSSL 0.9.7

» Defenses

Recommended Defense:
RSA Blinding

= Decrypt random number related to g:
1. Compute X' = g*re mod N, r is random
2. Decryptx =m’
3. Calculate m = m’'/r mod N

= Since r is random, the decryption time
should be random

= 2-10% performance penalty

3 Blinding Works!

aaaaa

zzzzz

11111

777777

777777

aaaaaa

3 Other Defenses

= Require statically all decryptions to take
the same time
= Pros? Cons?

= Dynamically make all decryptions take
the same time

= Only release decryption answers on some
interval A

= Pros? Cons?

3 Conclusion

= Attack works against real OpenSSL-
based servers on regular PC’s.

= Well-known optimized algorithms can
easily leak secrets

= Randomization of decryption time helps
solve problem

3 Questions?

Privtrans:
Automatically Partitioning
Programs for Privilege

* Separation

with Dawn Song

3 Privileged Programs

= Attackers specifically target privileged programs

= Large number of privileged programs. Ex: network
daemons, setuid(), etc.

= A Privilege may be:
= OS privilege — Ex: opening /etc/passwd

= Object privilege — Ex: using crypto keys

= Privileges typically needed for small part of execution

A Security Problem with
Privileged C Programs

Run
Root Shell
Privileges

- Operations
~— that don't
require
(finds bug in privileges
non-priv part)

Install
kernel module
Privileged
operations

3 Privilege Separation

= Privilege separation partitions program into:
= Privileged Monitor (usually small)
= Unprivileged Slave (much bigger)

= Enforces principle of least privilege
= Monitor exports limited interface
= OS provides fault isolation between processes

= Previous work:
= Privilege separation on OpenSSH [Provos et al 2003]
= Privman---library assisting privilege separation [Kilpatrick 2003]

Enforcing least privileges

(in a nutshell)
un tall
No Privileges Root | || kernelm

/

Operations Privileged
\ that don’t 1 operations
require
(finds bug in privileges

non-priv part)

3 Automatic Privilege Separation

= Previous privilege separation done by hand

goal:
Automatically integrate privilege separation to
existing source code

Privtrans Overview

Source Few
Code Annotations

e Privilege Separation at Runtime

Slave Address Monitor Address
Space Space
RPC
§ Request <
Main I g Privileged
Execution (B |-~ "[[5| Server
= RPC 2
Reply

Advantages of Our
Automatic Privilege Separation

= Quick and easy to use on existing software
= Can easily re-integrate as source evolves

= Strong model of privilege separation
= Any data derived from privileged resource is privileged
= All privileged data protected by monitor
= More secure than just access control

= Allows fine-grained policies
= Monitor can allow/disallow any privileged call

= Monitor easier to secure
= Monitor small - easier to apply other static/dynamic techniques
= Monitor can be ran on secure host

Talk Outline:
Our Techniques & Results
B Techniques in Privtrans:
1. Datatype qualifiers
2. Static analysis and propagating qualifiers
3. Qualifier polymorphism and dynamic checks
4. Other components: State Store, Wrappers, Translation
5. Policies

B Experiment results

e Program type qualifiers

= Add a type qualifier to every variable and function

= Privileged — variable or function uses/accesses
privileged resource

= Unprivileged — everything else

= Programmer provides a few initial annotations
= Variables/functions that are known privileged
= Annotations are C attributes
Ex: int__attribute__((priv)) sock;
= Un-annotated variable/function initially assumed
unprivileged

Inferring qualifiers: Static Analysis

= Static analysis infers unknown privileged qualifiers
= Through assignment
= Through use in API (i.e., functions declared but not defined)
= Use as argument or return value to a privileged function

= Result of inference: API calls with privileged arguments
= Monitor execute these calls
= Monitor API -- only privileged functions in original source

= Privileged qualifiers found using meet-over-path
analysis
= Conservative
= Similar to CQual “taint” analysis [foster99,shankar01]

:- Function Argument Polymorphism

= Function may be polymorphic in argument types
= Privileged call — called with privileged arguments
= Unprivileged call — no arguments or return value
privileged

= Static analysis is conservative
= May not be able to decide statically if call privileged or not
= Must err on conservative side

3 A small polymorphic example

int (priv) a;
int (unpriv) b;

l

fexec’ed in fexec’ed in

monitor. slave
priv: a,e,c e~ e priv: a
e =f(a); e = f(b);
c=a; c=b; 1

Dataflow tells us f2 should be exec’ed
in monitor

Our solution to polymorphism:
Limiting calls to the monitor

= Combine static analysis with runtime information

= Insert code into slave to dynamically track qualifiers
= Yields check of runtime (dynamic) privileged status
= Improves accuracy of static analysis
= Slave wrappers check flags

= Reduced monitor calls = improved performance
= Monitor must defend against same types of attacks
anyway
= Limit number of calls to monitor

Dynamic Tracking of Privileged
Variables

int (priv) a;

int (unpriv) b;
int privvec_f[2]
int privvec_f2[2]

true / \false
privvec_f[1] = E_PRIV privvec_f1[1] = E_UNPRIV
e = priv_f(a, privvec_f); e = f(b);
c=a c=b;
privvec f2[1]=E PRIV privvec_f2[1] = E_UNPRIV.

\ /

Other components
(More information in paper)

= State store: keeps track of monitor values between
calls
= Monitor gives slave opaque index of previous values
= Slave does not know anything about internal monitor state
= Monitor can execute on different host than slave

= Wrappers

= Use RPC as generic transport
= Slave wrappers check dynamic qualifiers

= Source-to-source translation — Use CIL [necula et al 02]

2 Fine-grained policies

Limited monitor interface is default protection

Fine-grained policies can be added
= Policies allow/disallow at function call level

= Monitor can keep full context of call sequences
-> policies can be precise

Previous techniques for automatically creating
policies

= Based on FSM/PDA of allowed call sequences

= Based on call arguments

Experimental results:
Changes to code

Program | src lines |# user # calls time to place

Name annotations | changed annotations
automatically

chfn 745 1 12 1hr

chsh 640 1 13 1hr

ping 2299 1 31 1.5 hrs

thttpd 21925 |4 13 2 hrs

OpenSSH {98590 |2 42 2 hrs

OpenSSL |211675 |2 7 20 min

Experimental Results:
API Exported by the monitor

Name # APl exported by monitor
annotations

chfn 1 pam functions

chsh 1 pam functions

ping 1 socket operations

thttpd 4 socket operations

OpenSSH |2 pam operations/crypto key

operations
OpenSSL |2 private key operations

Experiences:
Potential issues and solutions

= Changing UID of slave
= complicated but portable in Provos et al
= Our approach: implement new system call

= Distinguish privileged values in a collection
(e.g., array) on slave
= opaque monitor identifier suffices

= Other issues discussed in paper

3 Result quality and performance

= Our automatic approach results in similar API to manual
separation in OpenSSH

= Performance overhead reasonable
= Usually < 15% for programs tested, depending on application
= Overhead amortized over total execution

= Overhead dominated by cross-process call time
= SFI can reduce or eliminate this cost

= Works on small and large programs

:- Conclusion

= Type information useful for slicing programs
= Easy to perform on existing programs
= Allows for fine-grained policies
= can re-incorporate privilege separation as source evolves
= Techniques apply to C program — should also work on Windows

= Privtrans results similar to manual privilege separation
= Improve static analysis precision with dynamic checks

= Techniques work on small and large programs

3 Questions?

Contact:
David Brumley or Dawn Song
Carnegie Mellon University
{dbrumley,dawn.song}@cs.cmu.edu

10

3 Begin backup slides

= Begin backup slides

Potential Issues of
Automatic Privilege Separation

= May not work on all programs because:
= Socket numbering different
= UID/GID checks different
= Source code defies static analysis

= Collections are hard to interpret
= Ex: array of file descriptors

= Opaque index returned by monitor often enough
to distinguish priv from unpriv.

3 Performance Overhead Numbers

Overhead dominated by cross-domain call

= Similar to Kilpatrick et al.

= No attempt to optimize per-application

= Can be reduced several orders of magnitude by SFI

Call name | Performance penalty factor
socket 8.83

open 7.67
bind 9.76
listen 2.17

:- Future Work

= Add pointer tracking for better precision
= Esp. when to free priv. data

= Incorporate automatic policy generation

= Use attribute information to make better
system call interposition models

3 Privileges in a program

A privilege in a program is:
= An OS Privilege:
= Ex: Reading /etc/passwd

= The ability to access object
= Ex: Crypto keys

Many different approaches to
prevent privilege escalation

= Rewrite application in a safe language —
» Find and fix all bugs — impractical
= System-call Interposition — too coarse grained

= Runtime checks (stackguard, etc) — usually applied
to the whole program

11

3 Advantages of dynamic checks

= Improve precision of static analysis

= Do not breach security properties of program.

= Dynamic checks are safe:

= Attacker tries to make privileged call w/o privileges
- fails!

= Attacker tries to make call through monitor
-> Monitor API limits restricts types of calls.
-> Monitor policy should disallow.

:- Monitor State Store

= Line 2 — Slave asks monitor
to create socket
= Monitor creates socket.
1. int __((priv))__ sock; = Stores in state store, returns
2. sock = socket(...); opaque index
3. setsockopt(sock,..); = Line 3 — Slave asks monitor
to update socket.
= Slave provides index from line
2.

= Monitor looks up socket
= Performs setsockopt().

3 Automatic Privilege Separation

= Previous privilege separation done by hand

Our goal:
Automatically integrate privilege separation to

existing source code
Source |I\ Slave |I
Code

ponotaions g

Privtrans

12

