
1

1

Formal Verification by Model
Checking

Guest Lectures at the Analysis of Software Artifacts
Class, Spring 2005

Natasha Sharygina

Carnegie Mellon University

2

Outline

Lecture 1: Overview of Model Checking

Lecture 2: Complexity Reduction Techniques

Lecture 3: Software Model Checking

Lecture 4: State/Event-based software model checking

Lecture 5: Component Substitutability

Lecture 6: Model Checking Practicum (Student Reports
on the Lab exercises)

2

3

Summary of the last lecture:
How does Spin work?

• We already saw:
– The Algorithm
– The Promela Language

• We need to see how we does the tool work.

4

High Level Organization

LTL Translator

Buchi Translator

Pan VerifierC Compiler

C Generator

Automata
Generator

Promela Parser

LTL formula Promela Model

Buchi Automaton

Abstract Syntax Tree

Automata

C Code

Verification Result

The Buchi automaton is
turned into a Promela
process and composed
with the rest of the system.

The generated verifier is
specific to the model and
property we started with.

3

5

Command Line Tools

• Spin
– Generates the Promela code for the LTL formula

~$ spin –f “[]<>p”
• The proposition in the formula must correspond to the model

declarations
– Generates the C source code

~$ spin –a source.pro
• The property must be included in the source

• Pan
– Performs the verification

• Has many compile time options to enable different features
• Optimized for performance

6

Xspin• GUI for Spin

4

7

Simulator

• Spin can also be used as a simulator
– Simulated the Promela program

• It is used as a simulator when a
counterexample is generated
– Steps through the trace
– The trace itself is not “readable”

• Can be used for random and manually guided
simulation as well

8

Comments

• DFS does not necessarily find the shortest
counterexample

• There might be a very short counterexample
but the verification might go out of memory

• If we don’t finish we might still have some sort
of a result (coverage metrics)

5

9

Today’s Lecture

Advanced Techniques for Model Checking Software

(ComFoRT project)

10

Objectives

• C program and high-level designs verification
– Sequential and concurrent

• Properties involve both data (states) and
communication (events)
– Specified as (State/Event) LTL formulas
– Safety and Liveness

• Communication via shared actions
– Synchronous communication
– Asynchronous execution

6

11

Bluetooth L2CAP Spec

“When an L2CAP_ConnectRsp event is
received in a W4_L2CAP_CONNECT_RSP
state, an L2CAP process may send out an
L2CA_ConnectInd event, disable the RTX
timer, and move to state CONFIG.”

…
Spec involves both states and events

12

Labelled Kripke Structures

• Directed graph with labels on edges and states, (S,Init,P,L,T,Σ,E)
– Every state is labeled with a set of atomic

propositions, P, true in the state

– Every LKS comes with

an alphabet of actions, Σ

• State labeling function : L: S � 2P

• Transition labeling function : E : T � (2Σ \ {})
– Assumption: LKSs are deadlock-free

[see deadlock detection algorithm, MEMOCODE’04]

a

b c

b

a

0,1

1,1 1,0

0,0

7

13

Traces and Languages

• Trace: infinite alternating sequence of
states and actions
– (s1 a s2 b s4 b s1…)

• Language: set of all traces
– L(M) = {s1 a (s2 b + s3 c) s4 b}ω

a

b c

b

a

s1

s2 s3

s4

M

14

Surge Protector : State/Event

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

State/Event model of the Surge Protector
(example is given for m: [0..2], c: [0..2])

8

15

Surge Protector : State Only

Kripke structure of the Surge Protector
(example is given for m: [0..2], c: [0..2])

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

16

State/Event LTL

Given LKS M = (S,Init,P,L,T,Σ,E), and p ∈ P, a ∈ Σ,

ϕ ::= p | a | ~ϕ | ϕ & ϕ | Xϕ | Gϕ | Fϕ | ϕ Uϕ

π = (s1 a1 s2 a2 …) is a path and πi is the suffix of π starting at state si

π╞ p iff s1 is the first state of π and p ∈ L(s1)
π╞ a iff a is the first action of π
π╞ ∼ϕ iff ∼(π╞ ϕ)
π╞ Xϕ iff π2╞ ϕ
π╞ ϕ1 U ϕ2 iff there is some i ≥ 1 such that πi╞ ϕ2

and for all 1 ≥ j ≥ i - 1, πj╞ ϕ1

M╞ ϕ iff, for every path π ∈ L(M), π╞ ϕ

9

17

Surge Spec : State/Event

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

G ((c2 → m=2) & (c1 → (m=1 V m=2)))

18

Surge Spec : State Only

G (((c=0 V c=2) & X (c=1)) → (m=1 V m=2)) &
G (((c=0 V c=1) & X (c=2)) → m=2)

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

10

19

Surge Protector Verification

• Changes of current beyond threshold are disallowed

• State/Event Formula: G ((c2 → m=2) & (c1 → (m=1 V m=2)))

• State Formula: G (((c=0 V c=2) & X (c=1)) → (m=1 V m=2))
& G (((c=0 V c=1) & X (c=2)) → m=2)

• Event Formula: G (m0 → ((∼c1 W (m1 V m2))) &
G (m0 → ((∼c2 W m2)) &
G (m1 → ((∼c2 W m2))

20

Automata-based Verification
Given: M – LKS over Σ, P

ϕ – SE/LTL formula
How to check: M╞ ϕ

Possible Approach:
1. Convert M into a conventional state-only Kripke structure
2. Convert ϕ into a state-only LTL formula
3. Check whether M╞ ϕ
Inefficient!

What we do:
1. Interpret ϕ as an LTL formula over Σ U P
2. Compute B~ϕ (using Wring [Somenzi, Bloem’00])
3. Construct M ⊗ B~ϕ (result is a Buchi automaton)
4. Theorem: We have L (M ⊗ B~ϕ) = {} iff M╞ ϕ
No extra cost in time or space!

11

21

ComFoRT

SE-LTL
Verification

Yes

System OK

Predicate
Abstraction

Model

Counterexample
Valid?

C Program

Abstraction
Guidance

Yes

No

Counterexample

Counter
Example
Guided
Abstraction
Refinement

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

22

Verification Results

0.2520.184430.320.2451060.3830.25542

0.3910.243851.771.59741201.1410.4923144

0.9620.61412712.6612.0892424.8182.4357326

3.1332.622169374.17372.81637224.6017.5107588

34.533.562011XXXX214.01961739210

536.4534.92413XXXXXXXX12

XXXXXXXXXXXX13

TimeTime Aut. SizeAut. SizeTimeAut. Size

MCBCTrStMCBCTrStMCBCTrSt

State/Event FormulaEvent FormulaState FormulaCurrent
range

12

23

Parallel Composition

• Components synchronize on shared actions
– proceed independently on local actions

• Propositions of components are disjoint (no
shared variables)

24

Operational Semantics

(M1 || M2) (M1’ || M2’)

M1 M1’ M2 M2’
a→→→→ a→→→→

a→→→→
Synchronization on

Shared action

M1 M1’ a ∉∉∉∉ Σ (M2)
a→→→→

(M1 || M2) (M1’ || M2)
a→→→→

Asynchronous
Execution

13

25

☺☺☺☺☺☺☺☺

☺☺☺☺

Compositional Verification

SE-LTL
Verification

Yes

System OK

Predicate
Abstraction

Model

Counterexample
Valid?

C Program

Abstraction
Guidance

Yes

No

Counterexample

Counter
Example
Guided
Abstraction
Refinement

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

26

Case Studies

• MicroC/OS-II
– Real-time OS for embedded applications
– Widely used (cell phones, medical devices, routers, washing

machines…)
– 6000+ LOC
– Verified locking discipline

• Locks and Unlocks alternate and locks are eventually released
– Found four bugs

• Missing unlock and return (three known – one unknown)

14

27

Results

3214185414934.60.71315.9M4018SE

39.356.96.8448.80.69079514725SS

24.222.82.9218.80.49743314520SE

38.146.41.6543.60.69975744725SS

21.217.31.08915.30.40736914018SE

851XX65.60.87424.8 M4725SS

16222072.1733.10.65513.6M4520SE

347XX66.00.83632.6M4725SS

X3.880.2613.410.205873148BUG

MemT-TotT-VerT-MdlT-BASt-MdlTr-BSt-BName

28

Case Studies

• IPC Module
– Deployed by a world leader in robotics engineering systems
– 1500+ LOC
– 4 components
– Over 30 billion states after predicate abstraction

• Discovered synchronization bug in a matter of hours
– Process can incorrectly block while writing to a queue
– Undetected despite seven years of testing/industrial use

15

29

Case Studies

• Controller for a metal casting plant, used by
Alcoa
– ~30,000 LOC
– Verified proper sequencing of various stages of

casting:
• Sequencing happens in prescribed order
• The next stage eventually gets sequenced

• No bugs found… yet.

30

Key Contributions

• State/Event-based modeling and specification

• Efficient (direct) model checking algorithm

• CEGAR loop for software systems
– Safety and liveness properties

• Compositional software verification
– Component-wise abstractions
– Component-wise counterexample validation
– Component-wise refinements

16

31

Related Work

• Modal mu-calculus [Kozen 83]
• Doubly labeled transition systems [De Nicola and

Vaandrager 95]
• CTL-based verification of doubly labeled transition

systems [Gnesi et al. 96]
• State/event framework for three-valued logic

verification [Huth et al. 01]
• SLAM [Ball et al. 00-…]
• BLAST [Henzinger et al. 02-…]

32

Deadlock Detection

• Deadlock for concurrent blocking message-passing
programs

• Need for an automated procedure

17

33

Example

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1 Σ = {a,b,c,d} M2 Σ = {a,b’,c,d}

2,2’
a

3,2’b

2,3’b’

3,3’

b’

b

M1 ‖M2

d d

4,4’
c

d

1,1’

34

Deadlock

1 2 3 4
a b c

1’ 2’ 3’ 4’
a c b

M1 Σ = {a,b,c,d} M2 Σ = {a,b,c,d}

2,2’
a

M1 ‖M2

Deadlock

d d

1,1’

Deadlock⇔ a reachable state cannot perform any actions at all

18

35

Deadlock and Composition

aaaa bbbb

cccc

M1

b c

c

M2

Deadlock

cccc

M1 || M2

No Deadlock

36

Deadlock and Composition

aaaa

bbbb

M1

bbbb

aaaa

M1

No Deadlock

M1 || M2

Deadlock

19

37

Iterative Refinement

Verification
Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

38

A

Conservative Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

20

39

Conservative Abstraction

• Every trace of P is a trace of A
– Preserves safety properties: A � φ⇒ P � φ
– A over-approximates what P can do

• Some traces of A may not be traces of P
– May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement
– Splitting some clusters in smaller ones
– Refinement can be automated

40

A

Original Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

21

41

Formal Verification by Model
Checking

Guest Lectures at the Analysis of Software Artifacts
Class, Spring 2005

Natasha Sharygina

Carnegie Mellon University

42

Outline

Lecture 1: Overview of Model Checking

Lecture 2: Complexity Reduction Techniques

Lecture 3: Software Model Checking

Lecture 4: State/Event-based software model checking

Lecture 5: Component Substitutability

Lecture 6: Model Checking Practicum (Student Reports
on the Lab exercises)

22

43

Summary of the last lecture:
How does Spin work?

• We already saw:
– The Algorithm
– The Promela Language

• We need to see how we does the tool work.

44

High Level Organization

LTL Translator

Buchi Translator

Pan VerifierC Compiler

C Generator

Automata
Generator

Promela Parser

LTL formula Promela Model

Buchi Automaton

Abstract Syntax Tree

Automata

C Code

Verification Result

The Buchi automaton is
turned into a Promela
process and composed
with the rest of the system.

The generated verifier is
specific to the model and
property we started with.

23

45

Command Line Tools

• Spin
– Generates the Promela code for the LTL formula

~$ spin –f “[]<>p”
• The proposition in the formula must correspond to the model

declarations
– Generates the C source code

~$ spin –a source.pro
• The property must be included in the source

• Pan
– Performs the verification

• Has many compile time options to enable different features
• Optimized for performance

46

Xspin• GUI for Spin

24

47

Simulator

• Spin can also be used as a simulator
– Simulated the Promela program

• It is used as a simulator when a
counterexample is generated
– Steps through the trace
– The trace itself is not “readable”

• Can be used for random and manually guided
simulation as well

48

Comments

• DFS does not necessarily find the shortest
counterexample

• There might be a very short counterexample
but the verification might go out of memory

• If we don’t finish we might still have some sort
of a result (coverage metrics)

25

49

Today’s Lecture

Advanced Techniques for Model Checking Software

(ComFoRT project)

50

Objectives

• C program and high-level designs verification
– Sequential and concurrent

• Properties involve both data (states) and
communication (events)
– Specified as (State/Event) LTL formulas
– Safety and Liveness

• Communication via shared actions
– Synchronous communication
– Asynchronous execution

26

51

Bluetooth L2CAP Spec

“When an L2CAP_ConnectRsp event is
received in a W4_L2CAP_CONNECT_RSP
state, an L2CAP process may send out an
L2CA_ConnectInd event, disable the RTX
timer, and move to state CONFIG.”

…
Spec involves both states and events

52

Labelled Kripke Structures

• Directed graph with labels on edges and states, (S,Init,P,L,T,Σ,E)
– Every state is labeled with a set of atomic

propositions, P, true in the state

– Every LKS comes with

an alphabet of actions, Σ

• State labeling function : L: S � 2P

• Transition labeling function : E : T � (2Σ \ {})
– Assumption: LKSs are deadlock-free

[see deadlock detection algorithm, MEMOCODE’04]

a

b c

b

a

0,1

1,1 1,0

0,0

27

53

Traces and Languages

• Trace: infinite alternating sequence of
states and actions
– (s1 a s2 b s4 b s1…)

• Language: set of all traces
– L(M) = {s1 a (s2 b + s3 c) s4 b}ω

a

b c

b

a

s1

s2 s3

s4

M

54

Surge Protector : State/Event

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

State/Event model of the Surge Protector
(example is given for m: [0..2], c: [0..2])

28

55

Surge Protector : State Only

Kripke structure of the Surge Protector
(example is given for m: [0..2], c: [0..2])

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

56

State/Event LTL

Given LKS M = (S,Init,P,L,T,Σ,E), and p ∈ P, a ∈ Σ,

ϕ ::= p | a | ~ϕ | ϕ & ϕ | Xϕ | Gϕ | Fϕ | ϕ Uϕ

π = (s1 a1 s2 a2 …) is a path and πi is the suffix of π starting at state si

π╞ p iff s1 is the first state of π and p ∈ L(s1)
π╞ a iff a is the first action of π
π╞ ∼ϕ iff ∼(π╞ ϕ)
π╞ Xϕ iff π2╞ ϕ
π╞ ϕ1 U ϕ2 iff there is some i ≥ 1 such that πi╞ ϕ2

and for all 1 ≥ j ≥ i - 1, πj╞ ϕ1

M╞ ϕ iff, for every path π ∈ L(M), π╞ ϕ

29

57

Surge Spec : State/Event

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

G ((c2 → m=2) & (c1 → (m=1 V m=2)))

58

Surge Spec : State Only

G (((c=0 V c=2) & X (c=1)) → (m=1 V m=2)) &
G (((c=0 V c=1) & X (c=2)) → m=2)

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

30

59

Surge Protector Verification

• Changes of current beyond threshold are disallowed

• State/Event Formula: G ((c2 → m=2) & (c1 → (m=1 V m=2)))

• State Formula: G (((c=0 V c=2) & X (c=1)) → (m=1 V m=2))
& G (((c=0 V c=1) & X (c=2)) → m=2)

• Event Formula: G (m0 → ((∼c1 W (m1 V m2))) &
G (m0 → ((∼c2 W m2)) &
G (m1 → ((∼c2 W m2))

60

Automata-based Verification
Given: M – LKS over Σ, P

ϕ – SE/LTL formula
How to check: M╞ ϕ

Possible Approach:
1. Convert M into a conventional state-only Kripke structure
2. Convert ϕ into a state-only LTL formula
3. Check whether M╞ ϕ
Inefficient!

What we do:
1. Interpret ϕ as an LTL formula over Σ U P
2. Compute B~ϕ (using Wring [Somenzi, Bloem’00])
3. Construct M ⊗ B~ϕ (result is a Buchi automaton)
4. Theorem: We have L (M ⊗ B~ϕ) = {} iff M╞ ϕ
No extra cost in time or space!

31

61

ComFoRT

SE-LTL
Verification

Yes

System OK

Predicate
Abstraction

Model

Counterexample
Valid?

C Program

Abstraction
Guidance

Yes

No

Counterexample

Counter
Example
Guided
Abstraction
Refinement

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

62

Verification Results

0.2520.184430.320.2451060.3830.25542

0.3910.243851.771.59741201.1410.4923144

0.9620.61412712.6612.0892424.8182.4357326

3.1332.622169374.17372.81637224.6017.5107588

34.533.562011XXXX214.01961739210

536.4534.92413XXXXXXXX12

XXXXXXXXXXXX13

TimeTime Aut. SizeAut. SizeTimeAut. Size

MCBCTrStMCBCTrStMCBCTrSt

State/Event FormulaEvent FormulaState FormulaCurrent
range

32

63

Parallel Composition

• Components synchronize on shared actions
– proceed independently on local actions

• Propositions of components are disjoint (no
shared variables)

64

Operational Semantics

(M1 || M2) (M1’ || M2’)

M1 M1’ M2 M2’
a→→→→ a→→→→

a→→→→
Synchronization on

Shared action

M1 M1’ a ∉∉∉∉ Σ (M2)
a→→→→

(M1 || M2) (M1’ || M2)
a→→→→

Asynchronous
Execution

33

65

☺☺☺☺☺☺☺☺

☺☺☺☺

Compositional Verification

SE-LTL
Verification

Yes

System OK

Predicate
Abstraction

Model

Counterexample
Valid?

C Program

Abstraction
Guidance

Yes

No

Counterexample

Counter
Example
Guided
Abstraction
Refinement

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

66

Case Studies

• MicroC/OS-II
– Real-time OS for embedded applications
– Widely used (cell phones, medical devices, routers, washing

machines…)
– 6000+ LOC
– Verified locking discipline

• Locks and Unlocks alternate and locks are eventually released
– Found four bugs

• Missing unlock and return (three known – one unknown)

34

67

Results

3214185414934.60.71315.9M4018SE

39.356.96.8448.80.69079514725SS

24.222.82.9218.80.49743314520SE

38.146.41.6543.60.69975744725SS

21.217.31.08915.30.40736914018SE

851XX65.60.87424.8 M4725SS

16222072.1733.10.65513.6M4520SE

347XX66.00.83632.6M4725SS

X3.880.2613.410.205873148BUG

MemT-TotT-VerT-MdlT-BASt-MdlTr-BSt-BName

68

Case Studies

• IPC Module
– Deployed by a world leader in robotics engineering systems
– 1500+ LOC
– 4 components
– Over 30 billion states after predicate abstraction

• Discovered synchronization bug in a matter of hours
– Process can incorrectly block while writing to a queue
– Undetected despite seven years of testing/industrial use

35

69

Case Studies

• Controller for a metal casting plant, used by
Alcoa
– ~30,000 LOC
– Verified proper sequencing of various stages of

casting:
• Sequencing happens in prescribed order
• The next stage eventually gets sequenced

• No bugs found… yet.

70

Key Contributions

• State/Event-based modeling and specification

• Efficient (direct) model checking algorithm

• CEGAR loop for software systems
– Safety and liveness properties

• Compositional software verification
– Component-wise abstractions
– Component-wise counterexample validation
– Component-wise refinements

36

71

Related Work

• Modal mu-calculus [Kozen 83]
• Doubly labeled transition systems [De Nicola and

Vaandrager 95]
• CTL-based verification of doubly labeled transition

systems [Gnesi et al. 96]
• State/event framework for three-valued logic

verification [Huth et al. 01]
• SLAM [Ball et al. 00-…]
• BLAST [Henzinger et al. 02-…]

72

Deadlock Detection

• Deadlock for concurrent blocking message-passing
programs

• Need for an automated procedure

37

73

Example

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1 Σ = {a,b,c,d} M2 Σ = {a,b’,c,d}

2,2’
a

3,2’b

2,3’b’

3,3’

b’

b

M1 ‖M2

d d

4,4’
c

d

1,1’

74

Deadlock

1 2 3 4
a b c

1’ 2’ 3’ 4’
a c b

M1 Σ = {a,b,c,d} M2 Σ = {a,b,c,d}

2,2’
a

M1 ‖M2

Deadlock

d d

1,1’

Deadlock⇔ a reachable state cannot perform any actions at all

38

75

Deadlock and Composition

aaaa bbbb

cccc

M1

b c

c

M2

Deadlock

cccc

M1 || M2

No Deadlock

76

Deadlock and Composition

aaaa

bbbb

M1

bbbb

aaaa

M1

No Deadlock

M1 || M2

Deadlock

39

77

Iterative Refinement

Verification
Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

78

A

Conservative Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

40

79

Conservative Abstraction

• Every trace of P is a trace of A
– Preserves safety properties: A � φ⇒ P � φ
– A over-approximates what P can do

• Some traces of A may not be traces of P
– May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement
– Splitting some clusters in smaller ones
– Refinement can be automated

80

A

Original Abstraction

1

2 3

4 6

a b

c f

P

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

41

81

A

Refined Abstraction

1

2 3

4 6

a b

c f

P

[4,5] [6,7]

[1]

5 7

ed

a b

c d

[2] [3]

e f

82

Deadlock : Problem

• Deadlock is not preserved by abstraction

1111 2222
aaaa

3333
bbbb

M1

1111’’’’ 2222’’’’
bbbb

3333’’’’
aaaa

M2

[1,2,3]a,ba,ba,ba,b [1’,2’,3’]a,ba,ba,ba,b

42

83

Deadlock Detection : Insight

• Deadlock ⇔ a reachable state cannot perform
any actions at all
– Deadlock depends on the set of actions that a

reachable state cannot perform

• In order to preserve deadlock A must over-
approximate not just what P can do but also
what P refuses

84

Refusal & Deadlock

• Ref(s) = set of actions s cannot perform

• M deadlocks iff there is a reachable state s such
that Ref(s) = Σ
– Denote by DLock(M)

• Ref([s1 .. sn]) = Ref(s1) ∩ .. ∩ Ref(sn)

1111 2222
aaaa

3333
bbbb

{b}{b}{b}{b} {a}{a}{a}{a} {{{{a,ba,ba,ba,b}}}} { }{ }{ }{ }

[1,2,3]a,ba,ba,ba,b

43

85

Abstract Refusal

• AR([s1 .. sn]) = Ref(s1) ∪ .. ∪ Ref(sn)

• AR([M1] .. [Mn]) = AR([M1]) ∪ .. ∪
AR([Mn])

[[[[a,ba,ba,ba,b]]]]

1111 2222
aaaa

3333
bbbb

{b}{b}{b}{b} {a}{a}{a}{a} {{{{a,ba,ba,ba,b}}}}

[1,2,3]a,ba,ba,ba,b

86

Abstract Deadlock

• M abstractly deadlocks iff there is a
reachable state s such that AR(s) = Σ
– Denote by ADLock(M)

¬ ADLock([M1] || .. || [Mn])
⇒

¬ DLock(M1 || .. || Mn)

44

87

Iterative Deadlock Detection

1111 2222
aaaa

3333
bbbb 1111’’’’ 2222’’’’

bbbb
3333’’’’

aaaa

[1,2,3]a,ba,ba,ba,b [1’,2’,3’]a,ba,ba,ba,b

[[[[a,ba,ba,ba,b]]]] [[[[a,ba,ba,ba,b]]]]

[1,2,3],[1’,2’,3’]

[[[[a,ba,ba,ba,b]]]]
Counterexample to

Abstract
Deadlock

88

Counterexample Validation

[1,2,3],[1’,2’,3’]

[[[[a,ba,ba,ba,b]]]]

[1,2,3]

[[[[a,ba,ba,ba,b]]]]

××××
1111 2222
aaaa

3333
bbbb

{b}{b}{b}{b} {a}{a}{a}{a} {{{{a,ba,ba,ba,b}}}}

[1’,2’,3’]

[[[[a,ba,ba,ba,b]]]]

1111’’’’ 2222’’’’
bbbb

3333’’’’
aaaa

{a}{a}{a}{a} {b}{b}{b}{b} {{{{a,ba,ba,ba,b}}}}
××××

45

89

Refinement

1111 2222
aaaa

3333
bbbb 1111’’’’ 2222’’’’

bbbb
3333’’’’

aaaa

1111 2222
aaaa

3333
bbbb

[1]

bbbb

[1’,2’,3’]a,ba,ba,ba,b[2,3]
aaaa

[b][b][b][b] [[[[a,ba,ba,ba,b]]]] [[[[a,ba,ba,ba,b]]]]

90

Counterexample Validation

[1],[1’,2’,3’]

[[[[a,ba,ba,ba,b]]]]

[1]

[b][b][b][b]

1111 2222
aaaa

3333
bbbb

{b}{b}{b}{b} {a}{a}{a}{a} {{{{a,ba,ba,ba,b}}}}

[1’,2’,3’]

[[[[a,ba,ba,ba,b]]]]

1111’’’’ 2222’’’’
bbbb

3333’’’’
aaaa

{a}{a}{a}{a} {b}{b}{b}{b} {{{{a,ba,ba,ba,b}}}}
××××

Another spurious counterexample

46

91

Refinement

1111 2222
aaaa

3333
bbbb 1111’’’’ 2222’’’’

bbbb
3333’’’’

aaaa

[1]

bbbb

1111 2222
aaaa

3333
bbbb

[2,3]
aaaa

1111’’’’ 2222’’’’
bbbb

3333’’’’
aaaa

[b][b][b][b] [[[[a,ba,ba,ba,b]]]]

[1’]

aaaa

[2’,3’]
bbbb

[a][a][a][a] [[[[a,ba,ba,ba,b]]]]

92

Counterexample Validation

[1],[1’]

[[[[a,ba,ba,ba,b]]]]

[1’]

[a][a][a][a]

1111’’’’ 2222’’’’
bbbb

3333’’’’
aaaa

{a}{a}{a}{a} {b}{b}{b}{b} {{{{a,ba,ba,ba,b}}}}

Real Deadlock Detected

1111 2222
aaaa

3333
bbbb

{b}{b}{b}{b} {a}{a}{a}{a} {{{{a,ba,ba,ba,b}}}}

[1]

[b][b][b][b]

47

93

☺☺☺☺☺☺☺☺

☺☺☺☺

Iterative Deadlock

No Abstract
Deadlock?

Yes

System OK

Abstraction
Model

Counterexample
Valid?

System

Abstraction
Guidance

Yes

No

Counterexample

Abstraction
Refinement

Improved
Abstraction
Guidance

No

Spurious
Counterexample

94

Case Studies

• MicroC/OS-II
– Real-time OS for embedded applications
– Widely used (cell phones, medical devices, routers, washing

machines…)
– 6000+ LOC
– Verified locking discipline

• Locks and Unlocks alternate and locks are eventually released
– Found four bugs

• Missing unlock and return (one bug - deadlock)

48

95

Case Studies

• ABB IPC Module
– Deployed by a world leader in robotics
– 15000+ LOC
– 4 components
– Over 30 billion states after predicate abstraction

• Discovered synchronization bug in a matter of hours
– Process can incorrectly block while writing to a queue
– Undetected despite seven years of testing/industrial use

96

Results

26.18314862426203**DPN-6

30.88134471875219.3**µµµµCN-6

18.4755514449317.387.638268DPD-10

15221.8120493058.6**µµµµCD-3

40.831.9161643.54425731SSL

33.314468611973162**ABB

St

IterDeadlockPlain

MemTItMemTStName

* indicates out of time limit (1500s)

49

101

Ongoing and Future Work

• Shared memory

• Assume-Guarantee reasoning

• Industrial size examples

• Symbolic implementation

• Branching-time state/event logic (completed)

102

Lab Assignment

• Spit into groups of 4-5 people

• Design, implementation and verification of the current
surge protector
– In PROMELA/SPIN
– In ComFoRT

• Comparative validation

• Presentations on March 31, 2005

50

103

Lab Assignment (2)

• Questions about ComFoRT

– Natasha Sharygina: nys@sei.cmu.edu - theory
– Sagar Chaki: chaki@sei.cmu.edu – tool support

104

Collaboration Opportunities

• Research and development projects on verification of
software (ComFoRT project)

• As part of the PACC (Predictable Assembly from
Certifiable Components) project at the SEI

• Joint work with Prof. Ed Clarke

51

105

Collaboration Opportunities

• Independent studies

• M.S. and Ph.D. Research (jointly with your current
advisors)

• Internships

If interested contact me and we can discuss
options

