
1

Fugue:
Annotations for Protocol 

Checking

Reading: The Fugue Protocol 
Checker: Is Your Software Baroque?

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

2/22/2005 4

Find the Bug!

2/22/2005 6

Find the Bug!

2/22/2005 7

Specifications(1)

2/22/2005 8

Specifications(2)

2/22/2005 9

Specifications(3)



2

2/22/2005 10

Aliasing Challenges

a.Open(); b.Open();

• Legal only if a != b

2/22/2005 11

Fugue Alias Analysis

• Annotations
– NotAliased

• Field or param is unique pointer to an object
• Allows type system to track state changes
• Warning (lost track of object) if assigned to Escaping 

parameter
– MayBeAliased

• May have aliases
• May not call state-changing functions
• If not escaping, error if assigned to field or passed to 

Escaping parameter
– Escaping

• A MayBeAliased parameter that may be (transitively) 
assigned to a field

2/22/2005 12

Fugue Alias Analysis

• Analysis information
– Environment env: var � addr
– Capabilities: addr � aliasInfo
– aliasInfo: one of NotAliased, MayBeAliased, 

MayBeAliased/Escaping

2/22/2005 14

Example: Alias Analysis
void f([MayBeAliased][Escaping] x);
void g([MayBeAliased] x);

void h([NotAliased] y) {

z = y;

v = new T();

g(z);

f(v);
}

Environment Capabilities
y � a a � NA

y � a, z � a a � NA

y�a, z�a, v�b a�NA, b�NA

y�a, z�a, v�b a�NA, b�NA
a still NotAliased

y�a, z�a, v�b a�NA, b�MBA
Warning: lost track of b

2/22/2005 15

Flow Functions

• init
– initialization based on 

param. annotations
• x = y

– env [x � env[y]]
• x = new T()

– env[x � a]
• a ∉ domain(cap)

– cap[a � NotAliased]

• x = y.f
– [slightly simplified rule]
– env[x � a]

• a ∉ domain(cap)

– cap[a � annot(f)]

• x = f(y)
– if cap[env[y]] == NotAliased

&& annot(f_arg)==Escaping
warn(“lost track of y”)
cap[env[y] � MayBeAliasedMayBeAliasedMayBeAliasedMayBeAliased]?

– env[x � a]
• a ∉ domain(cap)

– cap[a � annot(f_return)]

• Analysis is underspecified 
in paper
– How to perform joins?
– How to model MayBeAliased

params?

2/22/2005 16

Type State Analysis

• Extended analysis information
• Environment

– Symbolic address for references
– Also stores constants (for constant prop.)

• Capabilities
– Aliasing state
– Symbolic object state
– Contents of fields (symbolic addresses)



3

2/22/2005 17

Example: Type State Analysis
[WithProtocol(“raw”, “bound”, “connected”, 

“down”)]
class Socket {

…
[InState(“connected”)]
public int Send(…);
[Disposes(State.Any)]
public void Close();

}

[WithProtocol(“open”, “closed”)]
class WebPageFetcher {

[InState(“connected”, 
WhenEnclosingState=“open”), 
NotAliased(WhenEnclosingState=“open”)]
private Socket socket;
…
[ChangesState(“open”, “closed”)]
public void Close() {

Socket sock = this.socket;
sock.Send(…);
sock.Close();

}
}

Analysis Information
• Entry to Close

– env: this � a0
– cap: a0 � (WebPageFetcher, NA, 

“open”, ∅)
• Socket sock = this.Socket;

– env: this � a0, sock � a1

– cap: a0 � (WebPageFetcher, NA, 
“open”, {socket � a1}),
a1 � (Socket, NA, “connected”, ∅)

• sock.Send(…);
– verify: sock in “connected” state (yes)

• sock.Close();
– verify: sock in State.Any
– verify: env[sock] is NotAliased
– env: this � a0, sock � a1
– cap: a0 � (WebPageFetcher, NA, 

“open”, {socket � a1})
– sock and this.socket become dangling

• Exit of Close
– verify: env[sock] ∉ cap

2/22/2005 18

Experience

• Web server application
– 16,000 lines of code
– Well tested, deployed
– Checked DB library usage

• Errors
– Disposing command object (17 times)
– Closing DB connections (9 times)

• Could cause end of resources

• Observations
– Added states to objects to track initialization
– Annotated 24 methods and 6 fields

• 3 more methods used library only intra-procedurally

• How would Metal have done?

2/22/2005 20

Fugue vs. Metal, PREfix

• Fugue
– Manual annotations
– Can find inter-

procedural errors
– Tracks aliases for 

soundness

• Metal
– Fully automatic (once 

protocol specified)
– Finds only intra-

procedural errors
– Unsound

• PREfix
– Fully automatic
– Finds only language 

errors
– Unsound


