
1
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

Version 1.0 page 1

Pittsburgh, PA 15213-3890

Reverse Engineering

Liam O’Brien

© 2005 by Carnegie Mellon University Version 1.0 page 2

Outline

This lecture will cover:

•Definition, Activities
•Supporting Techniques

- Static Analysis
- Program Slicing
- Program Plans

•Reverse Engineering Tools

2
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 3

Reverse Engineering

Reverse Engineering supports understanding of a system
through identification of the components or artifacts of the
system, discovering relationships between them and
generating abstractions of that information.

The goal of reverse engineering is not to alter the system
in any way.

Reference:
E.J. Chikofsky and J.H. Cross, "Reverse Engineering and Design
Recovery - A Taxonomy," IEEE Software, Jan. 1990, 13-17.

© 2005 by Carnegie Mellon University Version 1.0 page 4

Reverse Engineering Activities

The three main Reverse Engineering activities:

•Data Gathering
•Knowledge Organization
•Information Exploration

3
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 5

Data Gathering

Raw data is used to identify a system’s artifacts
and relationships

Techniques include:

•Static source code analysis (parsing)
•Dynamic Analysis (profiling)
•Informal extraction (interviewing)

© 2005 by Carnegie Mellon University Version 1.0 page 6

Knowledge Organization

Goals of Knowledge Organization are:
•Efficient storage of knowledge
•Permit automated analysis
•Reflect user’s perspective

Classical data models
•Hierarchical
•Network
•Relational

4
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 7

Abstraction Mechanisms

Abstraction: Selective emphasis on detail

Common Mechanisms:
•Classification
•Aggregation
•Generalization

Conceptual Modeling

© 2005 by Carnegie Mellon University Version 1.0 page 8

Information Exploration

Probably the most important activity:
•Data gathering: necessary to begin
•Knowledge organization: structure model
•Information Exploration: understanding

Composite Activities:
•Navigation
•Analysis
•Presentation

5
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 9

Navigation

Traverse non-linear information structures

Link relationships:
•Component hierarchies
•Inheritances
•Control and data flow

Hypotheses postulation ? exploration

© 2005 by Carnegie Mellon University Version 1.0 page 10

Analysis

Extracts and derives information not explicitly
available from data gathering

Traditional metrics

Query mechanisms for pattern matching

6
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 11

Presentation

Spatial and visual data

Descriptive and depictive information

Sense integration: look, feel, etc

Some current issues:
• Integration of various visual representations
•High flexibility
•Context based visualization
• Integration of various visualization techniques

© 2005 by Carnegie Mellon University Version 1.0 page 12

Reverse Engineering –
Supporting Techniques

Techniques
- Static Analysis

– Control Flow
– Data Flow

- Program Slicing
- Program Plans

7
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 13

Static Analysis - Introduction

Static analysis of code a program is the analysis
of the code without regard to its execution or
input.

What analysis is useful for understanding:
•Control flow analysis; what pieces of the code

would be executed and in what sequence

•Data flow analysis; how does information flow
within a program and across programs

© 2005 by Carnegie Mellon University Version 1.0 page 14

Control Flow – Introduction
Control Flow
•Used to identify the possible paths through the program
•The flow is represented as a directed graph with splits

and joins
• Identify loops

Control Flow represented as a graph of Basic Blocks
•Sequence of operations with 1-entry and 1-exit (usually

a sequence of statements)
•Unique start point where program begins
•Edge between basic blocks shows the flow

8
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 15

Control Flow – Example

Imagix 4D representation of control flow: http://www.imagix.com

© 2005 by Carnegie Mellon University Version 1.0 page 16

Control Flow – Code View

Another example of visualizing the control flow of a
program is using a Control Structure Diagram (CSD).
CSD is a algorithmic level graphical representation for
software.

The following notations are used:
•Sequential flow – straight line
• If/The/Else/Switch statements – diamonds
•For/While – elongated loop
•Loop exit – arrow
•Function – open-ended box

The GRASP project at Auburn University
http://www.eng.auburn.edu/department/cse/research/grasp/

9
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 17

Control Flow – Example - CSD

© 2005 by Carnegie Mellon University Version 1.0 page 18

Data Flow - Introduction
Data Flow is used to analyze the flow of data throughout a
program and between program

Local Data Flow Analysis
•Analyze the effects of each statement

- variable(s) defined
- set of variable(s) referenced

•Compose the effects to derive information from
beginning of each basic block to the statement

Data Flow Analysis
•Propagate basic block information over entire Control

Flow Graph

10
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 19

Program Slicing – Introduction - 1

Program Slice definition:

A slice is taken with respect to a slicing criterion <s,v>,
which specifies a location (statement s) and a variable (v).

For statement s and variable v, the slice of program P with
respect to the slicing criterion <s,v> includes only those
statements of P needed to capture the behavior of v at s.

© 2005 by Carnegie Mellon University Version 1.0 page 20

Program Slicing – Introduction - 2

Applications of program slicing:
- understanding
- debugging
- testing
- parallelization
- integration
- software quality
- software maintenance
- software metrics

11
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 21

Program Slicing – Introduction - 3

Program Slicing was first introduced by Weiser. He
introduced the concept of an executable backwards static
slice.

- executable - slice is required to be an executable
program

- backwards – because of the direction the edges are
traversed when computing the slice using a
dependence graph

- static because they are computed as the solution to
a static analysis problem (without considering the
program’s input)

Many applications of program slicing (such as debugging)
do not require executable slices.

M. Weiser, Program Slicing, Proceedings of ICSE 1981, 439-449.

© 2005 by Carnegie Mellon University Version 1.0 page 22

Program Slicing – Introduction - 4

Forward slicing (introduced by Horwitz)
- “What statements are affected by the value of v at

statement s?”.

Dynamic Slicing (introduced by Korel and Laski)
- A slice is computed for a particular fixed input.

S. Horwitz and T. Reps and D. Binkley, Interprocedural Slicing using
dependence graphs, Proceedings of the ACM SIGPLAN 88 Conference on
Programming Language Design and Implementation, 1988.

B. Korel and J. Laski, Dynamic Program Slicing,
Information Processing Letters, 29(3), Oct 1988, 155-163

12
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 23

Program Slicing – Flow Graphs - 1

Slicing of a flow graph is a two-step process:
1. Compute the data flow information
2. Use this information to extract a slice

To obtain the data flow information for statement n we first
obtain:
- REF(n) – the set of variables that are referenced in

n
- DEF(n) – the set of variables defined (given a

value) in n

The data flow information is the set of relevant variables at
each node n.

© 2005 by Carnegie Mellon University Version 1.0 page 24

Program Slicing – Flow Graphs - 2

For the slice with respect to <s,v> the relevant set for each
node contains the variables whose values transitively
affect the computation of v at s.

A statement n is in the slice if it assigns a value to a
variable relevant at n and the slice taken with respect to
any predicate node that directly controls n’s execution.

13
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 25

Program Slicing – Flow Graphs - 3

Relevant sets for the slice taken with respect to
<n,v> are computed as follows:

1. Initialize all relevant sets to the empty set.
2. Insert v into relevant(n).
3. For m, n’s immediate predecessor, assign

relevant(m) the value (relevant(n) –
DEF(m)) ? (REF(m) if relevant(n) ? DEF(m)
? {})

4. Working backwards, repeat step 3 for m’s
predecessors until ninitial is reached

© 2005 by Carnegie Mellon University Version 1.0 page 26

Program Slicing – Flow Graph - 4

n statement refs(n) defs(n) relevant(n)
1 b = 1 b
2 c = 2 c b
3 d = 3 d b,c
4 a = d d a b,c
5 d = b + d b,d d b,c
6 b = b + 1 b b b,c
7 a = b + c b,c a b,c
8 print a a a

Slice on <8,a>: {7, 6, 2, 1}

14
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 27

Program Slicing – Flow Graph - 5

Slicing with control statements such as:

• IF-THEN-ELSE
•Loop Statements

IF-THEN-ELSE -

IF …

…

THEN

…

…
Statement following IF

ELSE

relevant

© 2005 by Carnegie Mellon University Version 1.0 page 28

Program Slicing – Flow Graph - 6

n statement refs(n) defs(n) control(n) relevant(n)
1 b = 1 b
2 c = 2 c b
3 d = 3 d b,c
4 a = d d a b,c,d
5 if (a) then a a,b,c,d
6 d = b + d b,d d 5 b,d
7 c = b + d b,d c 5 b,d
8 else 5 b,c
9 b = b + 1 b b 8 b,c
10 d = b + 1 b d 8 b,c
11 endif b,c
12 a = b + c b,c a b,c
13 print a a a

Slice on <13,a>: {12, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1}
Note: a is included in the relevant set at 5. Otherwise another column.

15
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 29

Program Slicing – Flow Graph - 7

Loop Statements:

WHILE …

Statements in Loop

End Loop Statement

relevant

© 2005 by Carnegie Mellon University Version 1.0 page 30

Program Slicing – Flow Graph - 8

Loop Example:

n statement refs(n) defs(n) control(n) relevant(n) relevant(n)
Iter 1 Iter 2

1 b = 1 b
2 c = 2 c b
3 d = 5 d b,c
4 a = 3 a b,c
5 While (a < 10) a a,b,c a,b,c
6 b = b + c b,c b 5 b,c b,c
7 c = c + 1 c c 5 b b,c
8 a = b b a 5 b b,c
9 EndWhile 5 a
10 print a a a

Slice on <10,a>: {9, 8, 7, 6, 5, 4, 2, 1}

16
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 31

Program Slicing – Flow Graph - 9

n statement
0 While (a)
1 xn = xn-1

2 xn-1 = xn-2

 …
n x2 = x1

n + 1 EndWhile

If xn in slicing criteria - need n passes through loop

© 2005 by Carnegie Mellon University Version 1.0 page 32

Program Slicing - Dynamic

•Dynamic Program Slicing
- Only the dependencies that occur in a specific

execution of the program are taken into account.
- A dynamic slicing criterion specifies the input,

occurrence of a statement and a variable
- dynamic slicing assumes a fixed input for a program

whereas a static slice does not make assumptions
about the input.

•Hybrid approaches that use both static and dynamic
slicing also exist.

17
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 33

Program Slicing – Dynamic e.g. -1
n statement
1 read(n)
2 i := 1
3 while (i <= n) do
4 begin
5 if (i mod 2 = 0) then
6 x := 17
7 else
8 x := 18;
9 i := i + 1
10 end;
11 write(x);

What is dynamic slice with criterion (n = 2, 11, x)?

© 2005 by Carnegie Mellon University Version 1.0 page 34

Program Slicing – Dynamic e.g. -2
n statement
1 read(n)
2 i := 1
3 while (i <= n) do
4 begin
5 if (i mod 2 = 0) then
6 x := 17
7 else
8
9 i := i + 1
10 end;
11 write(x);

Dynamic slice with criterion (n=2, 11, x) is entire program
without line 8.

Static slice (11, x) is the entire program.

18
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 35

Program Plans – Introduction

The goal is to recognize clichés using plans.

A cliché is a pattern that appears frequently in
programs (e.g., algorithms, data structures,
domain-specific patterns).

A plan is an abstract representation of a cliché.

Representation is at the semantic level rather
than at the syntactic level.

© 2005 by Carnegie Mellon University Version 1.0 page 36

Clichés - Examples

Data structure clichés: lists, trees, tables,
vectors, matrices

Algorithmic clichés: list, tree, graph traversals;
iterators, applicators, manipulators; linear,
binary, hash searches; event handler; exception
handler

ADT clichés: dictionary, priority queue, heaps

19
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 37

Plan Recognition
Approaches:
•Top-down: Start with set of goals to be achieved;

determine what plans can achieve these goals; connect
these plans to source code patterns.
- Problem: Requires detailed advance knowledge

otherwise connection to code is unrealistic
•Bottom-up: Start with source code; identify plans that

match source code; infer higher-level goals from these
plans.
- Problem: Combinatorial explosion of alternatives

•Hybrid: top-down and bottom-up

© 2005 by Carnegie Mellon University Version 1.0 page 38

Plan Recognition – Method
Typical method of plan recognition
•An effective (language-independent) program

representation
•A translator to transform source text into this program

representation
•A library of programming plans representing clichés at

various levels of abstraction
•A plan recognizer which parses the program to

recognize plans stored in the library
•The result is a tree or lattice with program components

at the leaves, programming plans, and the goals of the
program at the root

•Bottom-up program understanding

20
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 39

Plan Recognition - Issues
Syntactic variations: Recognizer works on the basis of

structure information only; syntactic variations lead to
the same paraphrase, modulo identifiers

Non-contiguousness: Recognizer works with graph
structures, can accommodate equivalent sequences of
statements

Implementation variations: Similar programs are matched
against the same plans, lead to the same paraphrases

Recognition algorithm depends polynomially on size of
the program and plan library; graph grammars and
graph recognition algorithms deployed

© 2005 by Carnegie Mellon University Version 1.0 page 40

Reverse Engineering - Tools

Types of tools:

• Support tools and utilities
• Analysis tools
• Reverse Engineering environments
• Tool environments for building tools
• Integrated forward and reverse engineering

environments

21
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 41

Support Tools and Utilities

Support tools and utilities include:

•Parsers
•Lexical analyzers
•Profilers
•ad hoc utilities such as grep and perl

© 2005 by Carnegie Mellon University Version 1.0 page 42

Parsers

Describe the syntax of a language in terms of a
grammar (set of production rules and tokens).

Specify what is to be done when certain
language constructs are identified.

Usually builds some internal representation of
the information that has been obtained.
May include the entire set of tokens from a
language statement or just selected tokens.

22
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 43

Parsers: Grammar example
!!in-grammar(‘syntax)
grammar CALC
productions

identifier ::= [identifier-name] builds identifier,
int-const ::= [integer-value] builds integer-const,
add-expr ::= [a-arg1 “+”a-arg2] builds add-expression,
mult-expr ::= [m-arg1 “*”m-arg2] builds mult-expression,

precedence
for calc-expression brackets “(“matching “)”

(same-level “+”associativity left),
(same-level “*”associativity left)

end

From Refine Programming Language – Reasoning.com

© 2005 by Carnegie Mellon University Version 1.0 page 44

Parsers: Abstract Syntax Tree
An Abstract Syntax Tree (AST) is a representation of the
grammar that’s populated by the parser.
We parse the expression (3 + (5 * a)) and get the following
AST.

add-expression

integer-const

integer-const integer-const
3

mult-expression

5 a

a-arg1 a-arg2

m-arg1 m-arg2
integer-value

integer-value identifier-name

23
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 45

Lexical Analyzers

Identify some set of tokens from a statement
within a program.

Examples would be identify “#include”token and
the name of the file included.

Useful for extracting call graphs, file
dependencies, etc.

© 2005 by Carnegie Mellon University Version 1.0 page 46

Lexical Analyzers vs Parsers
Why do lexical analysis rather than parsing?

Parsing is expensive in terms of time and space

Each programming language requires a new parser to be
written (even different versions of the same language
require new parsers)

Parsers usually require complete code that can be
compiled whereas lexical analyzers do not.

24
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 47

Profilers
Obtain dynamic (run-time) information about a system.

Some information may not available statically, due to late
binding:
•polymorphism
• function pointers
• run-time parameterization

Other ways of obtaining dynamic information?

•Code instrumentation
•Use of debugging tool (less efficient)

© 2005 by Carnegie Mellon University Version 1.0 page 48

Analysis Tools

Analysis Tools:
•Extract software artifacts including

- control flow graphs
- call graphs (structure)
- cross-references,
- global variables,
- types and constants,
- pointer analyses (aliasing),
- metrics

25
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 49

Tool Demo

Understand for C/C++ from Scientific Toolworks, Inc

www.scitools.com

© 2005 by Carnegie Mellon University Version 1.0 page 50

Understanding Environments

Understanding Environments:
•Parsing engine, repository, user interface
•Store extracted software artifacts in a

repository
•Interactive tool to navigate, browse, explore

search, query repository
•Syntactic, functional, behavioral pattern

matching and filters
•Forming abstract representations

26
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 51

Tool Environments

These are environment that contain components
that can be combined to build an integrated set
of tools.

They may provide certain capabilities and the
ability to combine these to generate new tool
capability:
•parsing and printing of code
•control flow analysis
•data flow analysis
•cross reference

© 2005 by Carnegie Mellon University Version 1.0 page 52

Integrated Environments

Integrated forward and reverse engineering
environments
•Incorporates analysis and understanding tools
•All source information is stored in the

repository to facilitate code generation
•Incremental parsing and code generation
•Control and data integration

27
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 53

Design Space for Tools

Scale

Extensibility

Applicability

10K LOC

10M LOC

M
on

ol
ith

ic

E
nd

-U
se

r
Pr

og
ra

m
m

ab
le

Analysis Task

Specific
General

Purpose

© 2005 by Carnegie Mellon University Version 1.0 page 54

Tool Integration Dimensions

Data

Control

Presentation

File Formats

Common
Repository

E
xp

lic
it

M
es

sa
ge

M
es

sa
ge

Se

rv
er

/B
us

Potpourri of User

Interfaces
Common “look

and feel ”

28
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 55

Tool Integration - GXL
GXL (Graph eXchange Language) is designed to be a
standard exchange format for graphs. It is an XML
sublanguage.

This exchange format offers an adaptable and flexible
means to support interoperability between graph-based
tools such as parsers, control-flow analyzers, program
slicers, etc.

Represent the data to be shared as a graph and a schema
that describes the graph format.

More information: http://www.gupro.de/GXL/

© 2005 by Carnegie Mellon University Version 1.0 page 56

Information sources
Information can be extracted from various
sources:

Static
- Source code
- Makefiles
- Documentation
- Interviewing

Dynamic
- Profiling
- Code instrumentation

29
Reverse Engineering
Liam O’Brien
April 2005

© 2005 by Carnegie Mellon University

© 2005 by Carnegie Mellon University Version 1.0 page 57

Some Available Tools
There are lots of tools out there. Examples:

• Imagix 4D (www.imagix.com) - analysis
•Rigi (www.rigi.csc.uvic.ca) - analysis
•SNiFF+ (www.takefive.com) - analysis tool
•Hindsight (www.testersedge.com) - analysis tool
•McCabe IQ (www.mccabe.com) - analysis tool
•Surgeon’s Assistant (Unravel) - program slicing

(http://www.cs.loyola.edu/~kbg/Surgeon/)
•…

Dedicated conference:
Working Conference on Reverse Engineering (WCRE)

© 2005 by Carnegie Mellon University Version 1.0 page 58

Summary

In this lecture we talked about Reverse Engineering

Outlined some techniques that support Reverse
Engineering

•Static Analysis
•Program Slicing
•Program Plans

Outlined examples of tools and some of the issues with
them.

