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ABSTRACT 

Methods that can lower the cost of software field 
problems (e.g. faults, errors, failures, bugs, and defects) 
need field problem predictions. Models that predict field 
problems generally fall into two classes: time based 
models and metrics based models. In this paper, we 
examine metrics based models in detail. Metrics based 
models are better suited to predict field problems when 
an operational profile is not available, when the software 
and hardware configurations in use are unknown, and 
when the deployment and usage patterns are unknown. 
We present important concepts and the current state of 
research in inputs, output, and modeling methods.   

Note to 654/754 students 
You are only required to read sections 1-4. Also, this is a 
draft paper. So please excuse any mistakes (e.g. spelling 
mistakes and grammar mistakes), and let me know if you 
spot a mistake or feel uncomfortable about anything. 
Feedback is welcome and appreciated: 
Paul.Li@cs.cmu.edu. 

1. INTRODUCTION 
The US Department of Commerce estimates that field 
problems (e.g. faults, errors, failures, bugs, and defects) 
cost the U.S. economy an estimated $59.6 billion dollars 
annually and that over half of the costs are borne by 
software consumers and the rest by software producers 
[78]. Field problem predictions may help lower the costs 
by guiding testing [45], improving maintenance resource 
allocation [69], adjusting deployment to meet the quality 
expectations of customers [74], planning improvement 
efforts [4], and enabling a software insurance system for 
software consumers [68] .  

Models that predict field problems generally belong to 
one of two classes: time based models and metrics based 
models [92]. In this survey, we briefly examine each class 

of models. Then, we analyze metrics based models in 
detail.   

Metrics based models can predict field problems using 
metrics available before release that capture various 
attributes of the software product, the development 
process, the deployment and usage pattern, and the 
software and hardware configurations in use.  

We examine each component of metrics based models in 
detail: inputs, output, and modeling methods. This 
information can help practitioners decide how to 
implement a metrics based model for their projects and 
can help researchers decide where further research may 
be needed.  

Section 2 discusses field problems. Section 3 reviews the 
different classes of models. Section 4 explains and 
discusses the current state of research for each 
component of metrics based models. Section 5 
summarizes prior work. Section 6 is the conclusion. 

2. FIELD PROBLEMS 
We start by defining the observation of interest: field 
problems. The term field problems is intended to be 
generic and to encompass all the terms used in the 
literature to describe software related problems in the 
field.  

Terms used in the literature to describe software related 
problems include faults, errors, failures, bugs, and 
defects. Different studies sometimes define these terms 
differently. Some studies use several terms 
interchangeably. To avoid confusion we use field 
problems to include all the terms. The only requirement 
is that the software related problem occurs in the field.   

3. CLASSES OF MODLES 
We use a classification scheme adapted from 
Schneidewind [92] and Tian [97] to divide models that 
predict software field problems into two classes: 
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1. Time based models: These models use the 
problem occurrence times or the number of 
problems in time intervals during testing to fit a 
software reliability model. The number of field 
problems is estimated by calculating the number 
of problems in future time intervals using the 
software reliability model.  

2. Metrics based models: These models use 
historical information on metrics available 
before release (predictors) and historical 
information on software field problems to fit a 
predictive model. The fitted model and 
predictors’ values for the current observation are 
used to predict field problems for the current 
observation. 

The main differences between the two methods are the 
information used to make the predictions and the 
modeling assumptions. Time based models use the 
problem occurrence times or the number of problems in a 
time interval (time related problem information) during 
testing of the current observation as input. Metrics based 
models use a variety of metrics that capture different 
attributes the software system and the actual number of 
field problems from historical observations. Time based 
models assume that the problem occurrence pattern 
continues from testing into the field. Metrics based 
models do not assume a predefined relationship between 
predictors and field problems; instead, historical 
information on predictors and field problems is used to 
construct the models.  

3.1 Time based models 
Time based models assume that the software system has 
some probability of failure during every quantum of 
execution; therefore, a problem occurrence is a random 
process in time according to Musa et. al in [77]. This 
process is dictated by the number of residual problems 
and the discovery process (e.g. the amount of execution 
time). Prior work examining time based models assume 
that this random process can be modeled using a software 
reliability model. The idea is that every moment of 
execution has a chance of encountering one of the 
problems remaining in the code. The more problems 
there are in the code, the higher the probability that a 
problem will be encountered during execution. Assuming 
that a problem is removed once it is discovered, the 
probability of encountering a problem during the next 
execution decreases. Naturally, more problems will be 
found if more systems are executing the software system.  

The major difference between different time based 
models is the model structures of the underlying software 
reliability models. The important form of the software 

reliability models is the failure intensity function, which 
is defined by Lyu in [72] as the rate of problem 
occurrence at time t. Parameters of the models are 
usually estimated using time related problem occurrence 
information gathered during testing, methods like 
maximum likelihood, least squares, and method of 
moments, and a statistical computing program. The 
process is described in detail by Musa in [77]. The 
number of field problems is estimated by integrating the 
failure intensity function. The commonality between time 
based models is the use of time related problem 
occurrence information gathered during testing to fit a 
software reliability model and then predicting field 
problems using the fitted model. Farr discuses 17 
different software reliability models in [72]. We present 
the exponential model as an example. 

3.1.1 Exponential model 
The exponential model is a widely used model, is one of 
the recommended models in the AIAA Recommended 
Practice for Software Reliability [1], and is discussed in 
detail by Musa et. al. in [77] and by Farr in [72].  

The exponential model predicts the number of field 
problems using an exponential model. For example, 
assume that the defect discovery rate is 10 problems per 
unit time and 65 problems have been found up to the 
current time after 10 time intervals of testing. The failure 
intensity function, λ(t), is then: 

λ(t) = 107.01*10*  e –  10 *  t 

The function is plotted in Figure 2.  

Let us assume that we release the software at the current 
time, t=10. Integrating the function from t =10 to infinity 
yields ~ 43 field problems  
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Figure 2. Failure intensity function for the exponential 

model 

3.1.1.1 Limitations 
Before talking about limitations of time based models, we 
define the operational profile, deployment and usage 
information, and hardware and software configurations 
information. Musa defines operational profile, 
deployment and usage, and hardware and software 
configurations in use in [72]. The operational profile is 
defined as the set of operations that the software can 
execute along with the probability with which they occur 
during operation. The software and hardware 
configurations in use are the hardware and software 
systems that interact with system during usage. 
Deployment and usage are the total number of deployed 
systems and the amount of execution of the systems. 

In order for the defect occurrence pattern to continue into 
future time intervals, the software has to be operated in a 
similar manner as that in which reliability predictions are 
made. The similarity of testing and deployment 
environments assumption is one of the key assumption 
for time based models cited by Farr in [72]. To extend the 
software reliability model from testing to the field, an 
accurate operational profile, similar hardware and 
software configurations, and information on deployment 
and usage are required.  

The information is available in certain situations such as 
Navy projects at McDonell Douglas studied by Jelinski 
and Moranda in [29] and NASA projects studied by 
Schneidewind in [93]. However, for other types of 
systems, such as the commercial systems, the operational 
profile, information on deployment and usage, and 
information on hardware and software configurations in 

use may be unattainable or may contain too many 
scenarios to be tested compressively.  

When the similarity of testing and deployment 
environments assumption is broken, it is usually not 
possible to extend the software reliability model fitted 
using development problems into the field. For example, 
Kenny and Li et. al. examined three commercial systems 
developed by IBM in [34] and [69]. All the systems 
examined exhibited initially increases in the rate of field 
defect occurrences. A software reliability model extended 
from development cannot describe the observed patterns 
of field defect occurrences. Li et. al. show in [70] that a 
strictly decreasing software reliability model, e.g. the 
exponential model, cannot model an increasing rate of 
defect occurrences. Kenny shows in [35] that it is not 
possible to model the increasing defect occurrence 
pattern using a Weibull model assuming that the rate of 
defect occurrences is decreasing at the time of release 
(i.e. the software has been properly tested).  

3.2 Metrics based models 
Metrics based models can use metrics that capture 
attributes of the software product, the development 
process, deployment and usage, and software and 
hardware configurations in use available before release 
(predictors) to predict field problems; therefore effects of 
various attributes on field problems can be explicitly 
accounted for in the models. The idea is that certain 
characteristics make the presences of field problems more 
or less likely. Capturing the relationship between these 
characteristics and field problems using past observations 
allows field problems to be predicted for unforeseen 
observations. 

Metrics are defined by Fenton and Pfleeger in [16] as 
outputs of measurements, where measurement is defined 
as the process by which values are assigned to attributes 
of entities in the real world in such a way as to describe 
them according to clearly defined rules. 

Unlike time based models, metrics based models use 
historical information on predictors and the actual 
number of field problems to construct the predictive 
model. Different metrics based models use different 
modeling methods to model the relationship between 
predictors and field problems. Since there is no 
assumption about the similarity between testing and field 
environments, metrics based models are more robust 
against differences between how the software is tested 
and how it is used in the field.  

4. METRICS BASED MODELS  
We examine each component of metrics based models in 
this section. Section 4.1 examines the inputs. Section 4.2 
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examines the output. Section 4.3 examines the modeling 
methods. 

4.1 Inputs 
The inputs to metrics based models are metrics’ values. 
We categorize metrics used in literature using an 
augmented version of the categorization schemes used by 
Fenton and Neil in [18], Khoshgoftaar and Allen in [37], 
and the IEEE standard for software quality metrics 
methodology [27]: 

• Product metrics: metrics that measure the 
attributes of any intermediate or final product of 
the software development process [27]. The 
product metrics in the literature are computed 
using a snapshot of the code. There are tools 
compute product metrics automatically, such as 
the EMERALD [32], COSMOS [13], and 
Logiscope [85]. Product metrics have been 
shown to be important predictors by studies such 
as Khoshgoftaar et. al. [45], Takahashi et. al. 
[96], Jones et. al. [32], and Shelby and Porter 
[95]. 

• Development metrics: metrics that measure 
attributes of the development process. The 
development metrics in the literature are usually 
computed using information in version control 
systems and change management systems. 
Development metrics have been shown to be 
important predictors by studies such as 
Khoshgoftaar et. al. [50], Harter et. al. [25], and 
Shelby and Porter [95].   

• Deployment and usage (DU) metrics: metrics 
that measure attributes of the deployment of the 
software system and usage in the field. Few 
studies have examined deployment and usage 
metrics, and no data source is consistently used.  
DU metrics have been shown to be important 
predictors by studies such as Jones et. al. [32], 
Khoshgoftaar et. al. [51], Khoshgoftaar et. al. 
[64], Mockus et. al. [74]. 

• Software and hardware configurations (SH) 
metrics: metrics that measure attributes of the 
software and hardware systems that interact 
with the software system in the field. Few 
studies have examined SH metrics and no data 
source is consistently used.  SH metrics have 
been shown to be important predictors by 
Mockus et. al. [74]. 

Product, development, deployment and usage, and 
software and hardware configuration metrics available 
before release are predictors, which are used to predict 
field problems.  

• Field problems: metrics that measure field 
problems.  Field problem metrics in literature 
are usually computed using information in 
change managements systems and defect 
tracking systems. Each study has at least one 
field problem metric. Field problem metrics 
include the number of faults, bugs, errors, and 
defects and are discussed in section 2. 

The definitions of specific metrics (i.e. rules for 
counting) may differ slightly between studies, which 
makes comparison and evaluation of metrics difficult. 
This is a well known problem and is discussed in detail 
by Fenton and Pfleeger in [16].  

For example, consider the following example examining 
the differences between a widely-used definition of 
failures (e.g Lyu in [72] and Zhu et. al. in [108]) by 
Laprie [67], and a definition of defects by Li et. al. [69].  

Laprie describes failures in [67]. A failure is a deviation 
between the delivered service and the specified service, 
where the service specifications are an agreed description 
of the expected service.  

Li et. al defines a defect as a user-reported problem that 
requires developer intervention to correct [69].  
Examples of defects include APARs (Authorized 
Program Analysis Report), which are customer reported 
problems that require code change recorded by IBM 
development organizations and on-line bug reports, 
which are user-reported problems that require a 
developer’s action to resolve recorded by open source 
software projects [69].  

Subtle differences exist between a failure and a defect as 
defined above. A defect may not be counted as a failure if 
the software system lacks specifications or if the 
specifications are incomplete, as discussed by Chillarege 
in [72]. A failure may not be counted as a defect if the 
user does not report the failure. 

Similar problems can occur when two studies report 
collecting the same metric. Different studies can report 
collecting the same metric but are applying different 
counting rules. This is discussed by Ohlsson and 
Runeson in [85] 

In our survey, we attempt to use the most widely accepted 
definition of a metric when necessary and to avoid 
differing definitions wherever possible. The idea is to 
examine the intent of the metric and not the instantiation 
of the metric in any particular setting.  

In this section we examine each category of predictors, 
the metrics collection process, and methods of showing a 
metric is important. 
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4.1.1 Product metrics 
The obvious place to look for attributes that may be 
related to software field problems is in the software 
product itself. Product metrics are the most widely used 
metrics in the studies we survey. 

Munson and Khoshgoftaar identify dimensions (i.e. 
source of variation) within product metrics in the 
literature in [76]. Many of the product metrics used in the 
literature measure similar things and are highly 
correlated with each other (e.g. lines of code and source 
lines of code) as discussed by Fenton and Neil in [18]. 
Using principal component analysis, Munson and 
Khoshgotaar identify metrics that capture the same intent 
(i.e. the same dimension) and attempt to describe the 
dimensions. Principal component analysis is an analysis 
method that creates linear combinations of a set of 
predictors to encapsulate the maximum amount of 
variation in the dataset and is orthogonal (i.e. 
uncorrelated) to the other principal components [76]. By 
examining the loading (i.e. how much a predictor 
contributes to a principal component) it is possible to see 
which predictors capture the same source of variation. 
The dimensions of product metrics identified by Munson 
and Khoshgoftaar are: 

• Control: metrics related to the control flow 
complexity. Examples are Cyclomatic 
complexity and the number of nodes in the 
control graph (refer to [73] for a detailed 
explanation of the metrics). 

• Volume: metrics related to the number of 
distinct operations and statements. Examples are 
number of unique operands and source lines of 
code (refer to [24] for a detailed explanation of 
the metrics). 

• Action: metrics related to the number of 
operations or operators in the program. 
Examples are unique operators and source code 
statements (refer to [24] for a detailed 
explanation of the metrics). 

• Effort: metrics related to the mental effort 
required to generate an implementation from a 
specification. Examples are Halstead’s program 
effort metrics (refer to [24] for a detailed 
explanation of the metrics). 

• Modularity: metrics related to the degree of 
modularization of a program. Examples are the 
number of function calls and the number of 
statements at a nest level of 10 or greater (refer 
to [76] for a detailed explanation of the metrics). 

4.1.2 Development metrics 
Since the software product is the result of the software 
development process, the next logical place to look is in 
the development process. The intuition behind 

development metrics is that attributes of the development 
process (i.e. how the product is implemented) is related 
to field problems.  

No study has yet identified the dimensions in 
development metrics. We present a rough grouping of the 
development metrics in the literature based on the 
description of the metrics: 

• Problems discovered prior to release: metrics 
that mention measuring attributes of problems 
found prior to release in the description. 
Examples are number of field problems in the 
prior release used by Ostrand et. al. [87], 
number of development problems used by 
Fenton and Ohlsson [17], and number of 
problems found by designers used by 
Khoshgotaar et. al. [62]. 

• Changes to the product: metrics that mention 
measuring attributes of changes made to the 
software product in the description. Examples 
are reuse status used by Pighin and Marzona 
[88], changed source instructions used by 
Troster and Tian [99], number of deltas 
(changes to the code) used by Ostrand et. al. 
[87], and increase in lines of code used by 
Khoshgotaar et. al. [63]. 

• People in the process: metrics that mention 
measuring attributes of people involved in the 
development process in the description. 
Examples are the number of different designers 
making changes and the number of updates by 
designers who had 10 or less total updates in 
entire company career both used in 
Khoshgoftaar et. al. [64]. 

• Process efficiency: metrics the mention 
measuring attributes of the maturity of the 
development process or the effort expended on 
the development process in the description. 
Examples are CMM level used by Harter et. al. 
[25] and total development effort per 1000 
executable statements used by Selby and Porter 
[95]. 

4.1.3 Deployment and usage metrics  
The intuition behind deployment and usage metrics is the 
same idea behind operational profiles. The amount of 
execution and the kinds of execution during operation are 
related to field problems. Only two distinct research 
efforts consider deployment and usage metrics in the 
papers we survey: one by Khoshgoftaar et. al. and one by 
Mockus et. al..  
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Khoshgoftaar et. al. consider the following deployment 
and usage metrics for modules in e.g. [102], [49], [50], 
[40], [64], and [103]: 

• Proportion of systems with a module installed  

• Execution time of an average transaction on a 
system serving customers   

• Execution time of an average transaction on a 
systems serving businesses  

• Execution time of an average transaction on a 
tandem system  

The execution times are calculated by running the 
systems using an operational profile. The proportion of 
systems with module installed is derived using 
deployment records [102]. 

Mockus et. al. consider the following deployment and 
usage metrics for installations of a telecommunications 
software system in [74]: 

• Number of ports on the customer installation 

• Total deployment time of all installations in the 
field at the time of installation 

The number of ports is computed using information in a 
customer hardware database. The total deployment time 
of all machines in the field is computed from customer 
deployment records [74]. 

The intent of each metric above is to capture information 
about the amount or the kinds of execution in the field. 
However, the data sources used to capture the metrics 
may not be available for all systems. In addition, no data 
source has emerged as a reliable source of deployment 
and usage metrics.  

4.1.4 Software and hardware configurations 
metrics 
The intuition behind software and hardware 
configurations metrics is that some field problems can 
only be exposed using certain configurations; therefore, 
the software and hardware configurations in use are 
related to field problems. Only one research efforts 
consider software and hardware metrics in the papers we 
survey. The paper is by Mockus et. al..  

Mockus et. al. consider the following software and 
hardware configuration metrics for installations of a 
telecommunications software system in [74]: 

• Systems size of the installation (the hardware 
that is associated with large or small/medium 
sized installation) 

• Operating system  of the installation 
(proprietary, Linux, or Windows) 

The system size and operating system are computed 
using information derived using deployment records 
[102].  

The intent of each metric above is to capture information 
about the software and hardware configurations in use in 
the field. However, the above information may not be 
available for all systems. No data source has emerged as 
a reliable source of software and hardware configuration 
metrics.  

4.1.5 Metrics collection 
The literature shows no agreement on which specific 
metrics are “good” metrics as demonstrated by the 
continuing debate by Kitchenham et. al. in [65] and by 
Weyuker in [107]. Despite disagreement on which 
specific metrics to collect, there is general agreement on 
the need for more metrics that capture different attributes 
as stated in the IEEE standard for software quality 
metrics methodology [27]. Prior work shows that, in 
general, collecting and using more metrics will result in 
more accurate field problem predictions and that metrics 
in each category above is important. 

The general approach is to collect all reasonable metrics 
that are consistent for all observations within the study. 
Prior work generally collects metrics that measure 
attributes that can be reasoned as being related to field 
problems and are measured is the same manner for all 
observations. This avoids spurious correlations and 
ensures that the relationships discovered will be 
reasonable for the particular setting as discussed in [74] 
and [16]. Furthermore, IEEE [27] recommends that each 
organization perform a cost-benefit analysis to assess 
how many metrics to collect and which metrics are 
appropriate. 

4.1.6 Methods of showing a metric is important 
Prior work shows that product, development, deployment 
and usage, and software and software configurations 
metrics are all important. Due to differences in the exact 
definitions of specific metrics and differences in the 
metrics collected between studies, we examine categories 
of metrics.  

To show that a category of metrics is important, it is 
sufficient to show that a predictor in the category is 
important. There are generally four ways of showing that 
a predictor is important: 

1. Show high correlation between the predictor and 
field defects. This method is recommended by 
IEEE [27] and is used by Ohlsson and Alberg  
[83] and Ostrand and Wyuker [86]. 

2. Show that the predictor is selected using a 
model selection method. This method is used by 
Harter et. al. [24] and Mockus et. al. [74]. 
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3. Show that the accuracy of predictions improves 
with the predictor included in the prediction 
model. This method is used by Khoshgoftaar et. 
al. [46] and Jones et. al. [32]. 

An example of method 1 is in Ohlsson and Alberg [4]. 
The authors compute the correlations between product 
predictors and the number of field problems. The authors 
select predictors that have a correlation higher than .4 as 
important. In the paper, 11 out of 27 predicted are 
selected using this method. The three highest correlated 
metrics and the correlations are shown in table 1. 

 

 

 

 

Table 1. Correlations from Ohlsson and Alberg [4].  

Predictor 
Correlation 

(r) 

SigFF: Number of new or modified calls  .64 

McC1: Cyclomatic complexity number .54 

McC2: Modified Cyclomatic complexity 
number that does not punish for higher 
modularization 

.48 

An example of method 2 is in Harter et. al. [24]. The 
authors use a linear regression model to predict the 
number of errors. The authors use the p-value of the 
estimated parameter value to select important predictors. 
The summary of the linear regression model is in Table 
2. The development metric is process maturity measured 
by the CMM level. The p-value associated with its 
parameter estimate is 0; therefore the product metric is a 
significant predictor at the 99% confidence level. 

 

 

 

 

 

Table 2. Results from Harter et. al. [24] 

Variable 
Paramete

r 
Estimated value 

using least squares 

Intercept  

β0 5.597 

s.e .464 

T 12.059 
 

P 0.000 

ln(Process 
Maturity) 

CMM level 

 

Β1 1.589 

Se .386 

T 4.116 
 

P 0.000 

ln(Product size) 

lines of code 
 

β2 .234 

s.e .108 

T 2.160 
 

P 0.020 

ln(Product-
Design-

Complexity) 

subjective 

evaluation 

 

β3 -2.11 

s.e .712 

T -2.963 
 

P 0.003 

An example of method 3 is in Jones et. al. [32]. The 
authors construct two logistic models that classify 
modules as risky (will experience a field problem) and 
not risky (will not experience a field problem). One 
model uses only product metrics and the other uses 
product metrics and a deployment and usage metric. The 
authors show that the model with the deployment and 
usage metric has lower type II errors for the testing set. 
The authors argue that since identifying risky modules 
(i.e. not making a type II error) is more important, the 
model with the deployment and usage metric is better; 
therefore, deployment and usage metrics are important. 

FILINCUQ: number of distinct include files  
LGPATH: log base 2 of the number of 
independent paths in the flow graph 
VARSPMAX: maximum span of variables 
(statements between declaration and use of a 
variable) 
USAGE: proportion of systems with module 
installed 
 
Logit(Faults) = -5.13 + .0284 FILINCUQ + 
.0209 LGPATH + .00043 VARSPMAX 
Each predictor is significant at the 15% level 
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Type I error = 27.32% 
Type II error = 34.24% 
 
Logit(faults) = -5.13 + .0284 FILINCUQ + 
.0209 LGPATH + 1.2718 USAGE + .00043 
VARSPNMX 
Each predictor is significant at the 15% level 
Type I error = 29.06% 
Type II error = 30.77% 

 

 

 

 

 

 

 

We present findings from studies that use method 3 in 
Table 3.  A level 1 output is a prediction of whether an 
observation will be risky (e.g. have a field problem) or 
not risky (e.g. will not have a problem). The measures of 
accuracy for a level 1 output include the type I error, 
which measures the proportion of observations predicted 
as risky when it is actually not risky, the type II error, 
which measures the proportion of observations predicted 
as not risky when it is actually risky, and the overall 
error, which measures the overall proportion of 
misclassified observations. A level 2 output is a 
prediction of the number of field problems. The measures 
of accuracy for a level 2 output include the average 
relative error (ARE), the average absolute error (AAE). 
Types of output and measures of accuracy are discussed 
in detail in section 4.2.  

Table 3. Changes in accuracy with additional categories of metrics 

Research 
work 

Type of 
output 

Category of metric 
examined 

Other categories of 
metrics in model 

Accuracy of model 
without the  
category of metric 

Accuracy of model 
with the category of 
metric 

Khoshgoftaa
r et. al. [48] 

Level 1 Development Product 26.0% type I error 

18.75% type II error 

25.2% overall error 

24.8% type I error 

15.0% type II error 

23.6% overall error 

Khoshgoftaa
r et. al. [45] 

Level 1 Development Product 32.4% type I error 

21.3% type II error 

31.1% overall error 

23.8% type I error 

13.8% type II error 

22.6% overall error 

Khoshgoftaa
r et. al.[50] 

Level 1 Development Product 27.0% type I error  

27.4% type II error 

26.2% type I error 

28.9% type II error 

Ostrand et. 
al. [87] 

Level 1 Development Product 37% type II error 16% type II error 

Jones et. al. 
[32] 

Level 1  Deployment and 
usage 

Product 27.32% type I error 

34.24% type II error 

29.06% type I error  

30.77% type II error 

Khoshgoftaa
r  et. al. [51] 

Level 1 Deployment and 
usage 

Product 

Development 

23.55% type I error 

32.80% type II error 

30.30% type I error  

23.81% type II error 

Khoshgoftaa
r  et. al. [64] 

Level 1 

over 
multiple 
releases 

(release 2) 

Development  Product 

Deployment and 
usage 

26.6% type I error 

24.9% type II error 

29.3% type I error 

21.2% type II error 

Khoshgoftaa
r  et. al. [64] 

Level 1 

over 
multiple 
releases 

(release 3) 

Development  Product 

Deployment and 
usage 

28.8% type I error 

21.3% type II error 

29.9% type I error 

19.1% type II error 
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Khoshgoftaa
r  et. al. [64] 

Level 1 

over 
multiple 
releases 

(release 4) 

Development  Product 

Deployment and 
usage 

32.7% type I error 

27.2% type II error 

32.7% type I error 

19.6% type II error 

Khoshgoftaa
r  et. al. 
[62]/[63] 

Level 1 

over 
multiple 
releases 

(release 2) 

Development  Product 

Deployment and 
usage 

 24.76% type I error 

25.93% type II error 

25.32% type I error 

23.81% type II error 

Khoshgoftaa
r  et. al. 
[62]/[63] 

Level 1 

over 
multiple 
releases 

(release 3) 

Development  Product 

Deployment and 
usage 

28.25% type I error 

29.79% type II error 

 

27.36% type I error 

19.15% type II error 

Khoshgoftaa
r  et. al. 
[62]/[63] 

Level 1 

over 
multiple 
releases 

(release 4) 

Development  Product 

Deployment and 
usage 

35.59% type I error 

21.74% type II error 

 

25.71% type I error 

27.17% type II error 

 

4.2 Output 
This section examines the output of metrics models (i.e. 
what is predicted about field defects). Different results may 
allow different action to be taken to reduce the cost of field 
problems. Research work generally produced three levels 
of output (results) shown in Table 4.  Rest of this section 
discusses each level of output and the experimental set up 
to evaluate an output.  

 

 

 

Table 4. Output of papers 

Level Output 
Research 
question 

addressed 
Research work 

Level 
0 

A 
relationshi
p 

What 
predicts 
field 
problems? 

Basili and Perricone [3]  
Bassin and Santhanam [4]  
Fenton and Ohlsson [17]  
Harter et. al. [24]  
Ohlsson and Wohlin [84]  
Ostrand and Weyuker 
[86] 
Pighin and Marzona [88] 
Troster and Tian [99]  

Level 
1 

A 
categorical 

Is it risky 
or not? (Is 

Briand et. al.[5] 

output the 
number of 
field 
defects 
above a 
threshold?
) 

Ebert [13]/[14]/[15] 

Jones et. al. [32]  

Karuthanithi [36] 

Khoshgoftaar  and Allen 
[37]  

Khoshgoftaar and Allen 
[38]  

Khoshgoftaar et. al. [39]  

Khoshgoftaar et. al. [40]   

Khoshgoftaar et. al. [41]   

Khoshgoftaar et. al. [42]   

Khoshgoftaar et. al. 
[43]/[44] 

Khoshgoftaar et. al. [45]  

Khoshgoftaar et. al. [48]  

Khoshgoftaar et. al. [49]   

Khoshgoftaar et. al. [50]  

Khoshgoftaar et. al. [51]  

Khoshgoftaar et. al. [53] 

Khoshgoftaar et. al. 
[54]/[55]   

Khoshgoftaar and Seliya 
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[59]   

Khoshgoftaar and Seliya 
[61]   

Khoshgoftaar et. al. 
[62]/[63] 

Khoshgoftaar et. al. [64]   

Kokol et. al. [66] 

Mockus et. al. [74] 

Munson and 
Khoshgoftaar [75] 

Ohlsson and Runeson [85] 

Ostrand et. al. [87]     

Pighin and Zamolo [89]  

Pighin et. al. [90] 

Schenker and 
Khoshgoftaar [91]  

Selby and Porter [94] 

Selby and Porter [95]  

Takahashi et. al. [96]   

Level 
2 

A 
numerical 
output 

What is 
the 
number of 
field 
problems? 

Graves et. al. [22] 
Khoshgoftaar et. al. [46]  
Khoshgoftaar et. al. [52]  
Khoshgoftaar et. al. [56]  
Khoshgoftaar et. al. [57]  
Khoshgoftaar et. al. [58] 
Khoshgoftaar and Seliya 
[60]  
Xu  et. al. [102]  
Yuan et. al. [103]   

4.2.1.1 Level 0 result 
Prior work at level 0 establishes relationships (sometimes 
with models) between predictors’ values and the value of 
the field problem metric. Results are relationships between 
predictors and field problems.  

A level 0 result may allow for improvement planning, 
better allocation of maintenance resources, or 
improvement of testing efforts.  Harter et. al. [24] and 
Bassin and Santhanam [4] evaluate the effectiveness of the 
development process for improvement planning. Harter et. 
al. evaluate the development process by examining the 
CMM level of the organization. Bassin and Santhanam 
evaluate the development process by examining the 
distribution of ODC triggers of problems found during 
development.  

Determining that a predictor is important may allow for 
better allocation of maintenance resources and improved 
testing. For example, Mockus et. al. establish the 

relationship between the operating systems platform (i.e. a 
proprietary OS, Linux, and Windows) and field problems 
in [74]. In addition to allowing better testing of the fault 
prone platforms, this may also allow the right maintenance 
personnel (i.e. personnel with knowledge of the right 
operating system) to be staffed to address the field 
problems.  

Methods of evaluating which predictors are important are 
discussed in section 4.1.1.5. A study that produce level 1 
or level 2 result automatically include a level 0 result; 
since in order to have a level 1 or level 2 result, a model 
must be first fitted. Some studies that only report a level 0 
simply observe a correlation between the predictors’ values 
and the values of the field problems metric and appeal to 
reason (e.g. Ostrand and Weyuker [86] and Fenton and 
Ohlsson [17]).  

4.2.1.1 Level 1 result 
Prior work at level 1 establishes relationships between 
predictors’ values and the class of the field problem metric 
using models, then uses the models to classify observations 
into one of two classes: risky or not risky. Results are 
classifications. 

The primary purpose of a level 1 result is to focus testing 
efforts on risky modules. First we discuss how to evaluate a 
level 1 output.  

The most commonly used measures of accuracy of a level 1 
output are type I error, type II error, and overall error. We 
use the definitions by Ohlsson and Runeson in [85]. A type 
I error occurs when an observation is classified as risky 
when the observation is actually not risky (i.e. a false 
positive). A type II error occurs when an observation is 
classified as not risky when the observation is actually 
risky (i.e. a false negative). Some papers may reverse the 
definitions of type I error and type II error. Overall error is 
the overall rate of misclassification.  

Determining which observation is risky may allow testing 
effort to be focused in the appropriate places. This focus 
discussed in detail by Selby and Porter [94] and 
Khoshgoftaar et. al.  [54]. In general, type II errors are 
more important, because the main objective of classifying 
observations is to reduce the cost of field problems by 
removing problems before the software system is deployed 
as cited by Jones et. al. in [32]. However, since resources 
are limited, high type I errors and overall errors are also 
not desirable. Only a selected number of observations can 
be chosen for additional testing. The costs of 
misclassification need to be considered in each setting to 
select an optimal balance as discussed by Khoshgoftaar et. 
al. in [49]. A level 1 output allows the decision to be based 
on quantitative results.   
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For example, consider the data set in table 5 in which the 
top 40% of observations ranked according o the number of 
field defects are classified as risky.  The same kind of 
approach is taken by Munson and Khoshgoftaar in [75]. 
Risky is encoded as 1. Not risky is encoded as 0.  

Table 5. Example classification 

Obs Predicted 
field 
problems 

Predicted 
class 

Actual 
field 
problems 

Actual 
class 

1 .7 0 1 0 

2 1.32 0 4 1 

3 1.52 0 0 0 

4 2.07 0 0 0 

5 2.12 0 0 0 

6 2.34 1 4 1 

7 2.67 1 2 0 

8 2.98 1 6 1 

9 3.12 1 1 0 

10 3.67 1 3 1 

 

Two observations are predicted as risky when they are not 
risky (observations 7 and 9). The total number of not risky 
observations is 6. This result in a 33.33% type I error. One 
observation is classified as not risky when it risky 
(observation 2). The total number of risky modules is 4. 
This results in a 25% type II error. The overall 
misclassification rate is 3 observations out of 10, which 
results in a 30% overall error. The classification errors are 
summarized in Table 6. 

Table 6. Summary of classifications 

 Predicted 
not risky  

Predicted 
risky 

Total 

Actual 
not risky 

4 

66.67% 

2 

33.33% 

6 

Actual 
risky 

1 

25% 

3 

75% 

4 

Total 5 5 10 

4.2.1.2 Level 2 output evaluation 
Prior work at level 2 establishes relationships between 
predictors’ values and the value of the field problem metric 
using a model, and then uses the model to quantify the 
risk. Results are predicted values of the field problem 
metric.  

Determining the number of field problems may allow the 
appropriate amount of maintenance resources to be 

allocated; in addition, as shown by the example in section 
4.2.1.2, it is also possible to use a level 2 output to 
determine where to focus testing by selecting a percentage 
of the observations. Not having sufficient resources may 
delay field problem resolution, which results in reduced 
customer satisfaction as shown by Chulani et. al. [10]. 
Allocating too many resources hinders other efforts (e.g. 
development). Therefore, allocating the correct amount of 
resources is important. Having a level 2 result and 
knowing the errors associated with the predictions are 
steps towards quantitatively based decision making [74]. 

The most commonly used measures of accuracy of level 2 
output are the average relative error (ARE), the average 
absolute error (AAE), the standard deviation of the relative 
errors, and the standard deviation of the absolute errors. 
The AAE measures the average error in predictions (i.e.  
how much a typical prediction will be off by). The AAE 
can be misleading when the predicted number of field 
problems differs significantly between observations; 
therefore, ARE is often reported as well. The ARE 
measures the average percentage of error in the predictions 
(i.e. relative to the actual number of field problems, how 
much a typical prediction will be off by). 

The average absolute error is defined by Khosghgoftaar et. 
al. in [56] as the sum over all observations, the absolute 
value of the difference between the predicted value and the 
actual value.  

ỹi = predicted number of field problems 

yi = actual number of field problems 

AAE = 1/n Σi=1
n  | (ỹi-yi) | 

Absolute relative error is defined by Khosghgoftaar et. al. 
in [56] as the sum over all observations, the absolute value 
of the difference between the predicted value and the 
actual value divided by the actual value plus one. The 
denominator of the ARE has one added to avoid dividing 
by zero.  

ARE = 1/n Σi=1
n  | (ỹi-yi) / (yi +1)|  

The standard deviation of the relative error and standard 
deviation of the absolute error are the standard deviation of 
the relative error of the observations and the standard 
deviation of the absolute error of the observations 
respectively. 

For example, consider the set of predictions in Table 4. On 
average, each prediction is off by 86.10%. On average, 
each prediction is off by 1.683 ~ 2 field problems. 

AAE = 1/10 (0.30 + 2.68 + 1.52 + 2.07 + 2.12 + 
1.66 + 0.67 + 3.02 + 2.12 + 0.67) = 1.683 
The standard error AE is: 0.901 
ARE = 1/10 (.15 + .536 + 1.52 + 2.07 + 2.12 + 
.332 + .223 + .431 + 1.06 + .1675) = 0.86095.  
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The standard error of RE is:  .7806 
Table 4. Example predictions 

Obs Predicted number of  

field problems 

Actual  number of  

field problems 

1 .7 1 

2 1.32 4 

3 1.52 0 

4 2.07 0 

5 2.12 0 

6 2.34 4 

7 2.67 2 

8 2.98 6 

9 3.12 1 

10 3.67 3 

4.2.2 Experimental setup for evaluation 
Evaluating predictions (i.e. level 1 and level 2 outputs) 
involves fitting a prediction model then evaluating 
predictions for unseen observations. There are two 
common ways of setting up this evaluation in the 
literature. One is the holdout method (i.e. having separated 
training and testing data sets) described by Ebert in [14]. 
The other is cross-validation (i.e. repeatedly withholding 
part of the data, fitting the model, predicting for the 
withheld observations, and evaluating the predictions) 
described in Selby and Porter [94]. 

Each method has its drawbacks. It may not be possible to 
use the holdout method if there is only a limited amount of 
data. Also, there is the possibility that the training set is 
biased (i.e. an “unfortunate” sample in which anomalous 
observations are selected to be the training set), which will 
result in an inaccurate model. With the cross-validation 
technique, the estimated error rate will be higher or the 
variance of the estimated error will be larger. In addition, 
the cross-validation technique is more computationally 
expensive. The tradeoffs between the holdout method and 
the cross-validation are discussed in detail in Venables and 
Ripley [100]. 

4.3 Modeling methods 
Modeling methods are ways to produce models using 
historical information on predictors’ values and field 
problem metric values such that the resulting model can 
produce a prediction given the predictors’ values for a new 
observation (we will not examine level 0 outputs). We will 
examine modeling methods by the kind of output they 
produce:  

• Level 1 output (section 4.3.2): 
o Linear modeling (logistic regression) 

o Trees 
o Discriminant analysis 
o Rules 
o Neural networks 
o Clustering 
o Sets 
o Linear programming 
o Heuristics or any level 2 method with 

heuristics 
• Level 2 output (section 4.3.3): 

o Linear modeling (linear regression and 
negative binomial regression) 

o Non-linear regression 
o Trees 
o Neural networks 

The exceptions are principal component analysis, bagging, 
boosting, and logitboost, and fuzzy logic. Principal 
component analysis takes the predictors as input and 
outputs a set of new predictors. This technique is described 
in section 4.3.4. Bagging, boosting, and logitboost take 
results from multiple runs of a modeling technique to 
decide upon an output. These techniques are described in 
section 4.3.5. Fuzzy logic accounts for uncertainty in 
values by assigning probability to values. This technique is 
discussed in detail in section 4.3.6. We discuss 
combination of techniques in section 4.3.7. We provide a 
partial ordering of modeling methods in section 4.3.8. We 
examine other methods of evaluating modeling methods in 
section 4.3.9.  First we present an example.  

4.3.1 Example: the trees technique 
We illustrate the model construction process and the 
prediction process using the trees technique. The trees 
technique is the most popular modeling technique in the 
literature  

According to Selby and Porter in [94], the trees technique 
involves creating partitions in the observations based on 
predictors’ values that minimizes the error in 
classifications within the partitions. The process is 
repeated until the error within each partition is below some 
limit or until the number of observations within each 
partition is below some limit. The most important 
predictors are automatically selected, and the trees 
technique is distribution independent (i.e. does not require 
errors to be normally distributed).   

We illustrate the construction and use of a trees model to 
classify modules as risky and not risky.  

While minimum error or minimum observation is not 
reached for all partitions, first generate candidate 
partitions using predictor values, then partition the data 
using the predictor value that minimizes error.  

Consider the following simple example:  
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Predictor A has three values: 1, 2, 3 

Predictor B has two values: 1, 2 

The field problem metric has two classes (values): 
1 (at least 1 field problem), 0 (no field problems) 

The measure of error is: Σ partitions Σ all observations in 

partition |yi - ỹ|   

ỹ = mean of classifications in the partition 

The minimum error in partition: 0 

The minimum number of observation: 2 

We use the training set in Table 7. 

Table 7. Training set 

Obs 
Value of 

Predictor A 
Value of 

Predictor B 
Class of the field 
problems metric 

1 1 1 0 

2 1 2 0 

3 1 1 0 

4 1 2 0 

5 2 1 1 

6 2 1 1 

7 3 1 0 

8 3 2 0 

9 3 1 0 

10 3 2 1 

Iteration 1 

Minimum error or minimum observation not reached for 
all partitions. 

Generate candidate partitions using predictors’ values: 

• A <=1 
o error in partition 1 (A<=1)  

�  (0 + 0 + 0 + 0) = 0 
o error in partition 2 (A>1)  

�  (1/2 + 1/2 + 1/2 +1/2 + 1/2 + 
1/2) = 3 

o total error = 3 
• A <=2 

o error in partition 1 (A<=2)  
�  (1/3 + 1/3 +1/3 +1/3 + 2/3 + 

2/3) = 2.667 
o error in partition 2 (A>2)  

�  (1/4 + 1/4 +1/4 +3/4)  = 1.5 
o total error = 4.167 

• B <= 1 
o error in partition 1 (B<=1)  

� (1/3 + 1/3 +1/3 +1/3 + 2/3 + 
2/3) = 2.667 

o error in partition 2 (B>1)  
� (1/4 + 1/4 +1/4 +3/4)  = 1.5 

o total error = 4.167 
Based on total error, partition using A<=1.  The resulting 
tree is in Figure 4. Since the error in partition A<=1 is 0, 
only observations in the partition A>1 (observations 5-10) 
are examined in the next iteration.  

 
Figure 4. Tree after one iteration 

Iteration 2 

Minimum error or minimum observation not reached for 
all partitions. 

Generate candidate partitions using predictors’ values: 

• A <=1: not possible 
• A <=2  

o error in partition 1 (A<=2)  
�  (0 + 0) = 0 

o error in partition 2 (A>2)  
�  (1/4 + 1/4 +1/4 +3/4) = 1.5 

o total error = 1.5 
• B <= 1 

o error in partition 1 (B<=1)  
� (1/2 + 1/2 +1/2 + 1/2) = 2 

o error in partition 2 (B>1)  
�  (1/2 + 1/2)  = 1 

o total error = 3 
Based on total error, partition using A<=2. The resulting 
tree is in Figure 5. Since the error in partition A<=1 and 
partition A<=2 is 0, only observations in the partition A>2 
(observations 7-10) are examined in the next iteration. 

 
Figure 5. Tree after two iterations 

Iteration 3 

Minimum error or minimum observation not reached for 
all partitions. 

Generate candidate partitions using predictors’ values: 

• A <=1: not possible 
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• A <=2: not possible 
• B <= 1 

o error in partition 1 (B<=1)  
� (0+0) = 0 

o error in partition 2 (B>1)  
� (1/2 + 1/2) = 1 

o total error = 1 
Based on total error, partition using B<=1. The resulting 
tree is in Figure 6. Since the error in partition A<=1, 
partition A<=2, and partition B<=1 is 0, only observations 
in the partition B>2 (observations 8 and 10) are examined 
in the next iteration. 

 

 
Figure 6. Tree after three iterations 

Iteration 4 

Minimum error or minimum observation reached for all 
partitions 

To classify a new observation, the observation traverses the 
tree according to its predictors’ values. Consider the 
following predictions: 

Predictor values: A = 3, B = 1 

Classification =0 (not risky) 

The path down the tree is shown in Figure 7.  

 

Figure 7. Path down classification tree 

 

Predictor values: A= 2, B =2 

Classification =1 (risky) 

The path down the tree is shown in Figure 8.  

 
Figure 8. Path down classification tree 

Predictor values: A=3, B=2  

Classification = ? (unclear) 

 
The prediction is unclear. In practice a cutoff is usually 
used to classify observations for partitions that are not 
homogenous such as in Khoshgotaar et. al. [40]. For 
example, if we use >.75 as the cut off, then the 
classification is 0 (not risky). 

4.3.2 Techniques that produce level 1 output 
Techniques that produce a level 1 output are concerned 
with putting observations into classes; therefore techniques 
that produce a level 1 output use the training set to 
determine how the predictors’ values influence which class 
an observation belongs to.  Different techniques determine 
the influence of prior observations differently or determine 
the class of a new observation differently. 
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Linear modeling (with model selection) 

The logistic regression technique is the variant of the 
linear modeling technique that produces a level 1 output 
and is explained in detail by Weisburg in [104]. The idea 
behind linear modeling is that each increase in a 
predictor’s value increases the probability that the 
observation belongs to one of the classes by the same 
amount.  

The logistic regression technique involves fitting a 
parameterized linear model between the predictors’ values 
and the logit transformed field problem metric value (e.g. 
0 for risky and 1 for not risky). The parameter values are 
determined by minimizing a measure of the fit (such as 
residual sum of squares, absolute difference, least relative 
difference, etc.).  

In most situations, linear modeling involves model section. 
Model selection fits models with sub-sets of predictors and 
selects a model that balances the bias-variance tradeoff.  
Model selection balances the trade-off by including only 
predictors that have the most amount of benefit or by 
dropping predictors that have the least amount of benefit 
as judged by a model selection criterion (e.g. AIC, BIC, 
Cross-validation).  

Given a new observation, the predictors’ values are 
inserted into the fitted linear model used to produce a real 
value between 0 and 1 representing the probability of the 
observation belonging to a class (e.g. risky). A pre-
determined cutoff is used to classify the observation.  

Research work that uses this technique includes: Briand et. 
al. [5] Jones et. al. [32], Khoshgoftaar et. al. [49], Mockus 
et. al. [74] 

Trees (classification trees) 

The trees technique involves creating partitions in the 
observations based on predictors’ values that minimize the 
error in classifications within each partition and is 
explained in detail by Selby and Porter in [94]. The idea 
behind trees is that predictors have critical values that 
distinguish between classes; therefore by identifying the 
critical values, an observation can be classified using its 
predictors’ values. 

The partitioning process is repeated until the error within 
each partition is below some limit or until the number of 
observations within each partition is below some limit. 
The binary splitting process produces a tree. A 
predetermined cut off is usually used to assign a leaf to a 
class based on the proportion of observations in each class. 

A new observation traverses the tree according to its 
predictors’ values until the observation reaches a leaf node. 
The class of the leaf node is the predicted class of the new 
observation.  

An example is given in section 4.3.1.  

Research work that uses this technique includes: Briand et. 
al. [5], Ebert [13]/[14]/[15], Khoshgoftaar and Allen [37], 
Khoshgoftaar et. al. [40], Khoshgoftaar et. al. [41], 
Khoshgoftaar et. al. [43]/[44], Khoshgoftaar et. al. [50],  
Khoshgoftaar et. al. [51], Khoshgoftaar et. al. [53], 
Khoshgoftaar and Seliya [59], Khoshgoftaar et. al. 
[62]/[63], Khoshgoftaar et. al. [64], Kokol et. al. [66], 
Selby and Porter [94], Selby and Porter [95], Takahashi  
et. al. [96], Troster and Tian [99] 

Discriminant analysis (with model selection) 

The discriminant analysis technique involves dividing 
observations in the training set into classes (risky or not 
risky) and then when a new observation needs to be 
classified, the technique computes a closeness function to 
determine which class the new observation belongs to. The 
discriminant analysis technique is explained in detail by 
Khoshgoftaar et. al. in [45]. The idea behind discriminant 
analysis is that observations that belong to the same class 
share similarities in their predictors’ values; therefore, a 
new observation’s proximity to each class based on its 
predictors’ values is used to determine the class of the new 
observation.  

When a new observation, x, needs to be classified, a multi-
variate probability density function, fk(x), is used to give 
the probability of the new observation being in each class, 
k. The probability density function is based on how close 
the predictors’ values are to the predictors’ values in the 
training set for each class. The probability of class 
membership and a pre-determined cut off (usually the 
prior proportion of observations in each class) are used to 
determine class membership. In most case, this technique 
also uses model section.  

Research work that uses this technique includes: 
Karuthanithi [36], Khoshgoftaar and Allen [38], 
Khoshgoftaar et. al. [42], Khoshgoftaar et. al. [45]/[46], 
Khoshgoftaar et. al.[48], Khoshgoftaar et. al.[54]/[55], 
Kokol et. al. [66], Munson and Khoshgoftaar [75], 
Ohlsoon and Runeson [85], Pighin and Zamolo [89] 

Rules 

The rules technique captures rules of thumb and formally 
known relations among the facts. The rules are presented 
as if-then rules that associate a conclusion (i.e. a 
classification) with a set of antecedents. The rules 
technique is explained in detail by Yuan et. al. in [103]. 
The idea behind rules is that a set of if-then rules can 
decide which class an observation belongs to. 

A new observation is classified by determining which rules 
apply to the new observation.  
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Research work that uses this technique includes: Ebert 
[13]/[14]/[15], Yuan et. al. [103] 

Clustering 

The clustering technique groups observations into clusters 
according to predictors’ values and a distance function. 
The clustering technique is explained in detail by 
Khoshgoftaar et. al. in [56]. The idea behind clustering is 
that the predictors’ values can be used to find similar 
observations (i.e. clusters) and that all members of the 
same cluster should belong to the same class.  

A distance function specifies how close predictors’ values 
need to be to the other members of a cluster to be included 
in a cluster. A majority function determines the class of a 
cluster based on the classes of the observations within the 
cluster.  

A new observation is placed into one of the clusters based 
on a predictors’ values. The class of the cluster is the 
predicted class of the new observation.  

Research work that uses this technique includes: 
Khoshgoftaar et. al. [39], Khoshgoftaar et. al.[56], Yuan 
et. al. [103] 

Neural networks 

The neural networks technique simulates how a set of 
neurons or processing elements are interconnected through 
different connection strengths. The neural networks 
technique is explained in detail by Khoshgoftaar et. al. in 
[55]. The idea behind neural networks is that predictors’ 
values are like neural inputs, which is used by the neural 
network to arrive at a conclusion about a new observation. 

A neural networks model is a multi-layer perceptron model 
that produces a real value between 0 and 1, which 
indicates class membership. The predictors are in one 
layer, with each predictor as one neuron, and the output is 
in one layer. There is at least one intermediate hidden 
layer in between with different number of neurons.  Each 
neuron in one layer is connected to each neuron in the next 
layer. The connection strength between the neurons can 
vary. A non-linear function is used to combine values 
coming into the neuron to produce the output from the 
neuron.  

For a new observation, the predictors’ values are placed on 
the outer layer and the predicted value between 0 and 1 is 
produced at the output neuron. A predetermined cut off is 
used to classify the observation.  

Research work that uses this technique includes: 
Karuthanithi [36], Khoshgoftaar et. al. [42], Khoshgoftaar 
et. al. [54]/[55], Kokol et. al.  [66], Xu et. al. [102] 

Case based  

The case based technique classifies a new observation by 
identifying similar cases and examining the classes of the 
similar cases. The case based technique is explained in 
detail by Khoshgoftaar et. al. in [39]. The idea behind case 
based is that similar cases can be used to determine the 
class of a new observation.  

There is no training involved for case based models. 

For a new observation, the case based technique 
determines training observations that are similar to the 
observation using predictors’ values and a closeness 
function. Then, the class of the new observation is 
determined using the similar cases and a solution 
algorithm that determines class of the new observation 
based on the classes of the similar cases.  

Research work that uses this technique includes: 
Khoshgoftaar et. al. [39], Schenker and Khoshgoftaar [91] 

Sets 

The sets technique ranks the predictors according to their 
ability to discriminate between classes, then it uses a 
subset to classify observations. The sets technique is 
explained in detail by Briand et. al. in [5]. The idea behind 
sets is that predictors’ have critical values that distinguish 
between classes. This method is similar to the trees 
technique; however, the model construction process is not 
iterative.  

The sets technique ranks the predictors according to their 
ability to discriminate between classes. The critical value 
that maximizes the difference between partitions is 
determined for each predictor. A Boolean function is then 
constructed using a subset of the predictors and their 
critical values to classify observations.  

For a new observation, the Boolean function is applied to 
the predictors to derive the class of the new observation.  

Research work that uses this technique includes: Briand et. 
al. [5], Khoshgoftaar and Seliya [61]  

Linear programming 

The linear programming technique involves cutting the n-
dimensional space (representing the n predictors) using 
multi-dimensional planes. The linear programming 
technique is described in detail by Pighin et. al. in [90]. 
The idea is that predictors’ values determine an 
observation’s location in an n dimensional space and 
regions of the space (as defined by the planes) belong to 
the same class.  

The cutting process is repeated until the homogeneity of 
each region is below a threshold or the number of 
observations in each region is below a threshold. A 
predetermined cut off is used to assign a class to each 
region based on the classes of the observations in the 
region.  
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A new observation is placed into one of the regions based 
on the predictor’s value. The class of the region is the 
predicted class of the new observation. 

Research work that uses this technique includes: Kokol et. 
al.[66], Pighin et. al.[90]  

Heuristics or any level 2 output with heuristic 

The heuristics technique involves applying a heuristic rule 
(e.g. the Pareto distribution). The heuristics technique is 
explained in detail by Ebert in [13]/[14]/[15]. The idea 
behind heuristics is that a small percentage of observations 
account for most of the problems.   

New observations are ranked according to a predictor’s 
value or modeling output from a level 2 model, then a 
percentage of the observations are assigned to one class 
according to a heuristic.  

Research work that uses this technique includes: Ebert 
[13]/[14]/[15], Kokol et. al.[66], Ohlsson and Wohlin [84], 
Ostrand et. al. [87]  

4.3.3 Techniques that produce level 2 output 
Techniques that produce a level 2 output are concerned 
with predicting a specific number; therefore techniques 
that produce a level 2 output use the training set to 
determine what the number of field problems will be given 
the predictors’ values. Different techniques determine how 
the predictors’ values influence the number of field 
problems differently. 

Linear modeling (with model selection)  

The linear regression technique and the negative binomial 
regression technique are the variants of the linear 
modeling technique that produces a level 2 output and is 
explained in detail by Weisburg in [104]. The idea behind 
linear modeling is that changes in a predictor’s value 
changes the predicted number of field problems (or 
transformed form of field problems in the case of binomial 
modeling) by a fixed amount.  

The transformation function for the negative binomial 
regression model is the log function. The fitting process is 
same as the linear modeling process to produce a level 1 
output. Model selection technique is also usually used.  

For a new observation, the predictors are inserted into the 
linear model to produce a prediction of the number of field 
problems.  

Research work that uses this technique includes: Graves et. 
al. [22], Harter et. al. [24], Khoshgoftaar and Allen [38], 
Khoshgoftaar et. al. [39], Khoshgoftaar et. al. [47], 
Khoshgoftaar et. al. [52], Khoshgoftaar et. al.[54]/[55], 
Khoshgoftaar et. al.[56], Khoshgoftaar et. al. [57], 
Khoshgoftaar et. al. [58], Kokol et. al. [66], Mockus et. al. 
[74], Ostrand et. al. [87], Yuan et. al. [103] 

Non-linear regression  

The non-linear regression technique is similar to the linear 
modeling technique. It involves fitting a parameterized 
non linear model (e.g. a power function) between the 
predictors’ values and the value of the field problem 
metric. The model fitting procedure is the same as the 
procedure for the linear modeling technique. The non-
linear regression technique is explained in detail by 
Weisburg in [104]. The idea behind non-linear modeling is 
that a change in the predictor’s value change the predicted 
number of field problems by a parameterized amount.  

For a new observation, the predictors’ values are inserted 
into the non-linear model to produce a prediction of the 
number of field problems.  

Research work that uses this technique includes: Graves et. 
al. [22], Khoshgoftaar et. al.[52]  

Trees (Regression trees) 

This is the same technique used to produce a level 1 output 
except that the value of the field problem metric is 
predicted. Using the trees technique to produce a level 2 
output is explained in detail by Khoshgoftaar and Seliya in 
[60]. The idea is that critical values identify similar 
observations and that all similar observations have similar 
numbers of field defects.  

A new observation traverses the tree, then the mean or 
median of the values of the field problem metric in the leaf 
is taken as the predicted number of field problems for the 
new observation. 

Research work that uses this technique includes: 
Khoshgoftaar and Seliya [60] 

Neural networks 

This is the same technique used to produce a level 1 output 
except that the output (a continuous value between 0 and 
1) is scaled according to the range of the values of the field 
problem metric in the training set. Using the neural 
networks technique to produce a level 2 output is 
explained in detail by Khoshgoftaar et. al. in [57]. The 
idea behind neural networks is that predictors’ values are 
like neural inputs and can be used by a neural network to 
arrive at a conclusion. 

For a new observation, the predictors’ values are used to 
produce a value between 0 and 1. Then the value is scaled 
up according to the range of the number of field problems 
in the training set. 

Research work that uses this technique includes: 
Khoshgoftaar et. al. [57], Khoshgoftaar et. al. [58]  

4.3.4 Principal component analysis (PCA) 
The principal component analysis (also called singular 
value decomposition) technique produces a new set of 



 18 

predictors using linear combinations of the original 
predictors and is explained in detail by Khoshgoftaar et. al. 
in [45]/[46].   

The idea behind PCA is that there are only a few sources 
of true variation within a set of predictors and that many 
predictors are highly correlated with each other because 
they capture similar attributes. PCA solves this problem by 
constructing new predictors that capture the different 
sources of variation using linear combinations of the 
original predictors. The new predictors will be 
independent of each other and will contain all the 
information in the original predictors.  

PCA tries to include all the variance captured in the 
original predictors while reducing the number of 
predictors. The new predictors (principal components) are 
in ranked order so that the first new predictor captures the 
most variation, the second predictor captures the second 
most, and so on. Usually, a subset of the principal 
components that capture a large proportion of the total 
variance (e.g. 90% as in Khoshgoftaar et. al. [45]) is then 
used. 

 

Research work that uses this technique includes: Briand et. 
al. [5],  Khoshgoftaar and Allen [38], Khoshgoftaar et. al. 
[42], Khoshgoftaar et. al. [45]/[46], Khoshgoftaar et. al. 
[47], Khoshgoftaar et. al. [48], Khoshgoftaar et. al. [56], 
Khoshgoftaar et. al. [64], Khoshgoftaar et. al. [62]/[63], 
Kokol et. al. [66], Munson and Khoshgoftaar [75], 
Ohlsson and Runeson [85], Pighin and Zamolo [89], Xu 
et. al. [102] 

4.3.5 Bagging, boosting, and logitboost 
Bagging, boosting, and logitboost are used by Khoshgotaar 
et. al. in [53] to improve the predictions of individual 
models produced by the trees technique. The authors show 
that the accuracy of classifications can be improved by 
combining classifications from multiple models. The idea 
is that the training set used to build a model could be 
biased. By combining predictions from models built using 
different samples, a more accurate prediction can be made.  

Bagging 

The bagging technique randomly re-samples from the 
training set, fits a model for each re-sampled data set, and 
takes the consensus of the classifications as the output. 

Boosting 

The boosting technique is similar to the bagging 
techniques. However, it builds models that complement 
each other by building models that focus on data that 
previous models performed poorly on. In the boosting 
technique the re-sampling process is an iterative and 
weighted process, in contrast to the random process in the 

bagging technique. Each time, the weight of correctly 
classified observations is decreased while the weight of 
misclassified instances is increased. Therefore, the model 
in the next iteration is more likely to focus on misclassified 
instances. In addition, the voting process is modified. The 
models that have better overall performance are given 
more weight in the voting process.  

LogitBoost 

The logitboost technique is a re-derivation of the AdaBoost 
as a method for fitting an additive model in a forward 
stepwise process. The idea is to fit an additive model by 
minimizing the squared loss in a forward stepwise manner.  

4.3.6 Fuzzy logic 
Fuzzy logic is used in systems where values can have 
degrees of truthfulness or falsehood represented by a range 
of values between 1 (true) and 0 (false) and is explained in 
detail by Schenker and Khoshgoftaar in [91]. The idea 
behind fuzzy logic is that information cannot always be 
described accurately (e.g. middle-aged: 40-50? 45-65?); 
therefore, the imprecision in information needs to be 
captured. Fuzzy logic describes the imprecision using 
intervals and probabilities. With fuzzy logic, the outcome 
of an operation can be expressed imprecisely and a 
probability distribution is assigned to values.  

Research work that uses this technique includes: Ebert 
[13]/[14]/[15], Schenker and Khoshgoftaar [91], Xu et. al. 
[102] 

4.3.7 Combining techniques 
Each modeling method can comprises of several 
techniques. It is not clear what the complete set of valid 
combinations is. We discuss the combinations that have 
been explored in prior work. Research work that combines 
techniques and their findings are listed in Table 8. 
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Table 8.  Research work with combination of 
techniques  

Research work Method 
Type of 
output 

Edbert [13]/[14]/[15] Fuzzy logic 
and rules 

Level 1 

Khoshgoftaar  and Allen [38] 

Khoshgoftaar et. al. [42] 

Khoshgoftaar et. al. [45]/[46] 

Khoshgoftaar et. al.  [48] 

Khoshgoftaar et. al. [54]/[55]  

Kokol et. al. [66]  

Munson and Khoshgoftaar 
[75] 

Pighin and Zamolo [89] 

 

Principal 
component 
analysis and 
discriminant 
analysis 

Level 1 

Briand et. al. [5] Principal 
component 
analysis and 
logistic 
regression 

Level 1 

Schenker and Khoshgoftaar 
[91] 

Fuzzy logic 
and case based  

Level 1 

Khoshgoftaar et. al. [53] Bagging, 
boosting, and 
LogitBoost  
with trees 

Level 1 

Khoshgoftaar et. al. [62]/[63] 

Khoshgoftaar et. al. [64] 

Principal 
component 
analysis and 
trees 

Level 1 

Khoshgoftaar et. al. [56] Principal 
component 

Level 2 

analysis, 
clustering, and 
linear 
modeling 

Xu et. al. [102] Principal 
component 
analysis, fuzzy 
logic, and 
neural 
networks 

Level 2 

Yuan et. al.[103] Fuzzy logic, 
clustering, and 
linear 
modeling 

Level 2 

Khoshgoftaar et. al. [47] principal 
component 
analysis and 
linear 
regression 

Level 2 

4.3.7.1 Accuracy 
The most widely used criterion for comparing modeling 
methods is accuracy; however, it is difficult to compare 
accuracy across research work due to differences such as 
different metrics, different modeling parameters, and 
environmental differences (e.g. organizational related 
differences). A few studies have compared predictions of 
different modeling methods in the same setting. Table 9 
summarizes the findings. Based on the research work a 
partial ordering of methods using accuracy is in Figure 9.  

 

 

Table 9. Findings of research work comparing accuracy of different modeling methods 

Research work Accuracy of preferred method Accuracy of other methods  

Briand et. al. [5] Sets 

7.81% type I error 

4.11% type II error 

6.04% overall error  

Linear modeling (logistic regression) with model 
selection 

23.44% type I error  

32.88% type II error  

28.47% overall error 

Linear modeling (logistic regression) with 
principal component analysis and model 
selection 

20% type I error 

28.77% type II error 
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24.64% overall error 

Classification trees 

16.67% type I error 

17.81% type II error 

7.24% overall error 

Ebert [13]/ [14] /[15] Fuzzy rules 

18.4% type I error 

21.6% type II error 

19% overall error 

 

Heuristics 

10.43% type I error 

45.95% type II error 

18.5% overall error 

Trees 

8.59% type I error 

43.24% type II error 

15% overall error 

Discriminant analysis 

15.95% type I error 

32.43% type II error 

19% overall error 

Karuthanithi [36] Neural networks 

(trained using 25% of the data) 

20.19% type I error  
12.11% type II error  

(trained using 50% of the data) 

17.41% type I error  

15.04% type II error  

(trained using 90% of the data) 

9.77% type I error  

15.47% type II error  

Discriminant analysis 

(trained using 25% of the data) 

13.16% type I error  

15.61% type II error 

(trained using 50% of the data) 

12.45% type I error  

16.01% type II error  

(trained using 90% of the data) 

14.17% type I error  

21.11% type II error  

 

Khoshgoftaar and Allen [38] Discriminant analysis with principal 
component analysis 

23.8% type I error 

13.7% type II error 

22.6% overall error 

Discriminant analysis 

33.8% type I error 

16.3 % type II error 

31.7% overall error 

Khoshgoftaar et. al. [39] Case based 

16.0% type I error 

15.8% type II error 

Linear modeling (linear regression)  

16.0% type I error 

15.8% type II error 

Clustering 

14.7% type I error 

21.1% type II error 

Khoshgoftaar et. al .[42] Neural networks Discriminant analysis with principal component 
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26.0% type I error 

26.9% type II error 

26.2% over all error  

analysis and model selection 

27.9% type I error 

39.4% type II error 

29.5% overall error 

Khoshgoftaar et. al. [54]/[55] Neural networks 

12.5% type I error 

6.7% type II error 

11% overall error  

Discriminant analysis with principal component 
analysis 

6.25% type I error 

26.7% type II error 

11% overall error 

Khoshgoftaar et. al. [57] Neural networks 

(System 1) 

.3980 ARE 

.28 standard deviation 

(System 2) 

.5467 ARE  

.08 standard deviation  

 

Linear modeling (linear regression) with model 
selection 

(System 1) 

.5877 ARE  

.62 standard deviation 

(System 2) 

.9998 ARE  

1.37 standard deviation 

Khoshgoftaar et. al. [64]. Trees with principal component 
analysis 

(release 2) 

29.3% type I 

21.2% type II 

(release 3) 

29.9% type I  

19.1% type II 

(release 4) 

32.7% type I  

19.6% type II 

Trees 

(release 2) 

31.7% type I 

23.3% type II 

(release 3) 

30.3% type I  

14.9% type II 

(release 4) 

35.6% type I  

22.8% type II  

 

Kokol et. al. [66] Discriminant analysis with principal 
component analysis 

6.3% type I error 

14.3% type II error 

8.3% overall error 

Linear programming 

25.3% type I error 

4.9% type II error 

10.9% overall error 

Trees 

15.1% type I error 

22.2% type II error 

17.0% overall error 

Heuristics 

17.1% type I error 

29.2% type II error 

21.1% overall error 
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Table 9. Ordering of modeling methods using accuracy 

4.3.8 Other methods of evaluation 
The idea here is that in some situations the accuracy of 
predictions is not the most important criterion. Other 
methods of evaluating modeling methods have been 
proposed but are not frequently used. For example, a 
widely discussed criterion for comparing modeling 
methods is the explicability of the resulting model (i.e. 
how easy is it to interpret the effects of each predictor). 
This may be important if the objective of field problem 
prediction is to identify important predictors to plan for 
improvements.  

To demonstrate explicability, consider the following two 
models produced by Khoshgoftaar et. al., one is a tree 
model from [60] and the other is a linear model using 
principal component analysis from [47]. Both models 
predict the number of field problems within a module. 

RLSTOT: the number of vertices plus the number 
of arcs within loop control structure spans with a 
flow graph 
NL: the number of loops with a flow graph 
VG: Cyclomatic complexity 
PCSTOT: the total number of arcs located within 
the span of conditional arcs in a flow graph 
NELTOT: the total nesting level of all arcs 
TCT: the number of calls to entry points  
UCT: the number of unique entry points called by 
this module 
IFTH: the number of arcs that contain a predicate 
of a control structure, but are not loops  
NDI: the number of include files that this 
modules uses, including itself 

ISNEW: if the module is new (1 for yes, 0 for no) 
ISCHG: if the module has been changed since last 
release (1 for yes, 0 for no) 
Tree model is in Figure 10: 

 
Figure 10. Classification tree from [60] 

 

 

 

The principal components are in Table 10. 
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Table 10. principal components from [47]  

Metric Component 1 Component 2 Component 3 

RLSTOT .901 .359 .137 

NL .880 .370 .134 

PCSTOT .719 .545 .316 

NELTOT .683 .593 .334 

TCT .359 .864 .216 

UCT .426 .830 .245 

VG .597 .724 .309 

IFTH .599 .681 .357 

NDI .177 .265 .939 

 

The linear model is: 

Field problems = .520 + 1.233 (ISCHG) + .541 
(ISNEW) + .577 (Component 3) + .368 
(Component 1) + .338 (Component 2) 

The tree model is easily understood. The important 
predictors are clearly identified by internal nodes. Leaf 
nodes present the predicted number of field problems. The 
important values are clearly indicated. 

The linear model with principal components analysis is 
not easy to understand due to the principal components.  
Components are constructed out of linear combinations of 
predictors. It is not clear what the contributions of each 
metric are. In addition, it is not clear which metrics are 
important.   

Explicability is often discussed in literature, such as Ebert 
in [13]/[14]/[15], Khoshgoftaar et. al. in [42], and 
Khoshgoftaar et. al. in [45], but no established measure of 
explicability is used to compare modeling methods. There 
is no established measure of explicability since “easily 
understood” is a subjective measure and may differ from 
person to person.  

5. CONCLUSION 
We present the current state of research in metrics based 
models. Hopefully, this survey will help researchers who 
are interested in researching metrics based models and 
practitioners who wish to use metrics based models to 
predict field problems.  
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