
 1

Predicting field problems
using metrics based models:
 a survey of current research

Paul Luo Li
Institute for Software Research International,

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh PA, 15232
412-268-3043

paul.li@cs.cmu.edu
ABSTRACT

Methods that can lower the cost of software field
problems (e.g. faults, errors, failures, bugs, and defects)
need field problem predictions. Models that predict field
problems generally fall into two classes: time based
models and metrics based models. In this paper, we
examine metrics based models in detail. Metrics based
models are better suited to predict field problems when
an operational profile is not available, when the software
and hardware configurations in use are unknown, and
when the deployment and usage patterns are unknown.
We present important concepts and the current state of
research in inputs, output, and modeling methods.

Note to 654/754 students
You are only required to read sections 1-4. Also, this is a
draft paper. So please excuse any mistakes (e.g. spelling
mistakes and grammar mistakes), and let me know if you
spot a mistake or feel uncomfortable about anything.
Feedback is welcome and appreciated:
Paul.Li@cs.cmu.edu.

1. INTRODUCTION
The US Department of Commerce estimates that field
problems (e.g. faults, errors, failures, bugs, and defects)
cost the U.S. economy an estimated $59.6 billion dollars
annually and that over half of the costs are borne by
software consumers and the rest by software producers
[78]. Field problem predictions may help lower the costs
by guiding testing [45], improving maintenance resource
allocation [69], adjusting deployment to meet the quality
expectations of customers [74], planning improvement
efforts [4], and enabling a software insurance system for
software consumers [68] .

Models that predict field problems generally belong to
one of two classes: time based models and metrics based
models [92]. In this survey, we briefly examine each class

of models. Then, we analyze metrics based models in
detail.

Metrics based models can predict field problems using
metrics available before release that capture various
attributes of the software product, the development
process, the deployment and usage pattern, and the
software and hardware configurations in use.

We examine each component of metrics based models in
detail: inputs, output, and modeling methods. This
information can help practitioners decide how to
implement a metrics based model for their projects and
can help researchers decide where further research may
be needed.

Section 2 discusses field problems. Section 3 reviews the
different classes of models. Section 4 explains and
discusses the current state of research for each
component of metrics based models. Section 5
summarizes prior work. Section 6 is the conclusion.

2. FIELD PROBLEMS
We start by defining the observation of interest: field
problems. The term field problems is intended to be
generic and to encompass all the terms used in the
literature to describe software related problems in the
field.

Terms used in the literature to describe software related
problems include faults, errors, failures, bugs, and
defects. Different studies sometimes define these terms
differently. Some studies use several terms
interchangeably. To avoid confusion we use field
problems to include all the terms. The only requirement
is that the software related problem occurs in the field.

3. CLASSES OF MODLES
We use a classification scheme adapted from
Schneidewind [92] and Tian [97] to divide models that
predict software field problems into two classes:

Survey paper draft DONOT DISTRIBUTE

Paul Luo Li March 21, 2005

 2

1. Time based models: These models use the
problem occurrence times or the number of
problems in time intervals during testing to fit a
software reliability model. The number of field
problems is estimated by calculating the number
of problems in future time intervals using the
software reliability model.

2. Metrics based models: These models use
historical information on metrics available
before release (predictors) and historical
information on software field problems to fit a
predictive model. The fitted model and
predictors’ values for the current observation are
used to predict field problems for the current
observation.

The main differences between the two methods are the
information used to make the predictions and the
modeling assumptions. Time based models use the
problem occurrence times or the number of problems in a
time interval (time related problem information) during
testing of the current observation as input. Metrics based
models use a variety of metrics that capture different
attributes the software system and the actual number of
field problems from historical observations. Time based
models assume that the problem occurrence pattern
continues from testing into the field. Metrics based
models do not assume a predefined relationship between
predictors and field problems; instead, historical
information on predictors and field problems is used to
construct the models.

3.1 Time based models
Time based models assume that the software system has
some probability of failure during every quantum of
execution; therefore, a problem occurrence is a random
process in time according to Musa et. al in [77]. This
process is dictated by the number of residual problems
and the discovery process (e.g. the amount of execution
time). Prior work examining time based models assume
that this random process can be modeled using a software
reliability model. The idea is that every moment of
execution has a chance of encountering one of the
problems remaining in the code. The more problems
there are in the code, the higher the probability that a
problem will be encountered during execution. Assuming
that a problem is removed once it is discovered, the
probability of encountering a problem during the next
execution decreases. Naturally, more problems will be
found if more systems are executing the software system.

The major difference between different time based
models is the model structures of the underlying software
reliability models. The important form of the software

reliability models is the failure intensity function, which
is defined by Lyu in [72] as the rate of problem
occurrence at time t. Parameters of the models are
usually estimated using time related problem occurrence
information gathered during testing, methods like
maximum likelihood, least squares, and method of
moments, and a statistical computing program. The
process is described in detail by Musa in [77]. The
number of field problems is estimated by integrating the
failure intensity function. The commonality between time
based models is the use of time related problem
occurrence information gathered during testing to fit a
software reliability model and then predicting field
problems using the fitted model. Farr discuses 17
different software reliability models in [72]. We present
the exponential model as an example.

3.1.1 Exponential model
The exponential model is a widely used model, is one of
the recommended models in the AIAA Recommended
Practice for Software Reliability [1], and is discussed in
detail by Musa et. al. in [77] and by Farr in [72].

The exponential model predicts the number of field
problems using an exponential model. For example,
assume that the defect discovery rate is 10 problems per
unit time and 65 problems have been found up to the
current time after 10 time intervals of testing. The failure
intensity function, λ(t), is then:

λ(t) = 107.01*10* e – 10 * t

The function is plotted in Figure 2.

Let us assume that we release the software at the current
time, t=10. Integrating the function from t =10 to infinity
yields ~ 43 field problems

 3

Figure 2. Failure intensity function for the exponential

model

3.1.1.1 Limitations
Before talking about limitations of time based models, we
define the operational profile, deployment and usage
information, and hardware and software configurations
information. Musa defines operational profile,
deployment and usage, and hardware and software
configurations in use in [72]. The operational profile is
defined as the set of operations that the software can
execute along with the probability with which they occur
during operation. The software and hardware
configurations in use are the hardware and software
systems that interact with system during usage.
Deployment and usage are the total number of deployed
systems and the amount of execution of the systems.

In order for the defect occurrence pattern to continue into
future time intervals, the software has to be operated in a
similar manner as that in which reliability predictions are
made. The similarity of testing and deployment
environments assumption is one of the key assumption
for time based models cited by Farr in [72]. To extend the
software reliability model from testing to the field, an
accurate operational profile, similar hardware and
software configurations, and information on deployment
and usage are required.

The information is available in certain situations such as
Navy projects at McDonell Douglas studied by Jelinski
and Moranda in [29] and NASA projects studied by
Schneidewind in [93]. However, for other types of
systems, such as the commercial systems, the operational
profile, information on deployment and usage, and
information on hardware and software configurations in

use may be unattainable or may contain too many
scenarios to be tested compressively.

When the similarity of testing and deployment
environments assumption is broken, it is usually not
possible to extend the software reliability model fitted
using development problems into the field. For example,
Kenny and Li et. al. examined three commercial systems
developed by IBM in [34] and [69]. All the systems
examined exhibited initially increases in the rate of field
defect occurrences. A software reliability model extended
from development cannot describe the observed patterns
of field defect occurrences. Li et. al. show in [70] that a
strictly decreasing software reliability model, e.g. the
exponential model, cannot model an increasing rate of
defect occurrences. Kenny shows in [35] that it is not
possible to model the increasing defect occurrence
pattern using a Weibull model assuming that the rate of
defect occurrences is decreasing at the time of release
(i.e. the software has been properly tested).

3.2 Metrics based models
Metrics based models can use metrics that capture
attributes of the software product, the development
process, deployment and usage, and software and
hardware configurations in use available before release
(predictors) to predict field problems; therefore effects of
various attributes on field problems can be explicitly
accounted for in the models. The idea is that certain
characteristics make the presences of field problems more
or less likely. Capturing the relationship between these
characteristics and field problems using past observations
allows field problems to be predicted for unforeseen
observations.

Metrics are defined by Fenton and Pfleeger in [16] as
outputs of measurements, where measurement is defined
as the process by which values are assigned to attributes
of entities in the real world in such a way as to describe
them according to clearly defined rules.

Unlike time based models, metrics based models use
historical information on predictors and the actual
number of field problems to construct the predictive
model. Different metrics based models use different
modeling methods to model the relationship between
predictors and field problems. Since there is no
assumption about the similarity between testing and field
environments, metrics based models are more robust
against differences between how the software is tested
and how it is used in the field.

4. METRICS BASED MODELS
We examine each component of metrics based models in
this section. Section 4.1 examines the inputs. Section 4.2

 4

examines the output. Section 4.3 examines the modeling
methods.

4.1 Inputs
The inputs to metrics based models are metrics’ values.
We categorize metrics used in literature using an
augmented version of the categorization schemes used by
Fenton and Neil in [18], Khoshgoftaar and Allen in [37],
and the IEEE standard for software quality metrics
methodology [27]:

• Product metrics: metrics that measure the
attributes of any intermediate or final product of
the software development process [27]. The
product metrics in the literature are computed
using a snapshot of the code. There are tools
compute product metrics automatically, such as
the EMERALD [32], COSMOS [13], and
Logiscope [85]. Product metrics have been
shown to be important predictors by studies such
as Khoshgoftaar et. al. [45], Takahashi et. al.
[96], Jones et. al. [32], and Shelby and Porter
[95].

• Development metrics: metrics that measure
attributes of the development process. The
development metrics in the literature are usually
computed using information in version control
systems and change management systems.
Development metrics have been shown to be
important predictors by studies such as
Khoshgoftaar et. al. [50], Harter et. al. [25], and
Shelby and Porter [95].

• Deployment and usage (DU) metrics: metrics
that measure attributes of the deployment of the
software system and usage in the field. Few
studies have examined deployment and usage
metrics, and no data source is consistently used.
DU metrics have been shown to be important
predictors by studies such as Jones et. al. [32],
Khoshgoftaar et. al. [51], Khoshgoftaar et. al.
[64], Mockus et. al. [74].

• Software and hardware configurations (SH)
metrics: metrics that measure attributes of the
software and hardware systems that interact
with the software system in the field. Few
studies have examined SH metrics and no data
source is consistently used. SH metrics have
been shown to be important predictors by
Mockus et. al. [74].

Product, development, deployment and usage, and
software and hardware configuration metrics available
before release are predictors, which are used to predict
field problems.

• Field problems: metrics that measure field
problems. Field problem metrics in literature
are usually computed using information in
change managements systems and defect
tracking systems. Each study has at least one
field problem metric. Field problem metrics
include the number of faults, bugs, errors, and
defects and are discussed in section 2.

The definitions of specific metrics (i.e. rules for
counting) may differ slightly between studies, which
makes comparison and evaluation of metrics difficult.
This is a well known problem and is discussed in detail
by Fenton and Pfleeger in [16].

For example, consider the following example examining
the differences between a widely-used definition of
failures (e.g Lyu in [72] and Zhu et. al. in [108]) by
Laprie [67], and a definition of defects by Li et. al. [69].

Laprie describes failures in [67]. A failure is a deviation
between the delivered service and the specified service,
where the service specifications are an agreed description
of the expected service.

Li et. al defines a defect as a user-reported problem that
requires developer intervention to correct [69].
Examples of defects include APARs (Authorized
Program Analysis Report), which are customer reported
problems that require code change recorded by IBM
development organizations and on-line bug reports,
which are user-reported problems that require a
developer’s action to resolve recorded by open source
software projects [69].

Subtle differences exist between a failure and a defect as
defined above. A defect may not be counted as a failure if
the software system lacks specifications or if the
specifications are incomplete, as discussed by Chillarege
in [72]. A failure may not be counted as a defect if the
user does not report the failure.

Similar problems can occur when two studies report
collecting the same metric. Different studies can report
collecting the same metric but are applying different
counting rules. This is discussed by Ohlsson and
Runeson in [85]

In our survey, we attempt to use the most widely accepted
definition of a metric when necessary and to avoid
differing definitions wherever possible. The idea is to
examine the intent of the metric and not the instantiation
of the metric in any particular setting.

In this section we examine each category of predictors,
the metrics collection process, and methods of showing a
metric is important.

 5

4.1.1 Product metrics
The obvious place to look for attributes that may be
related to software field problems is in the software
product itself. Product metrics are the most widely used
metrics in the studies we survey.

Munson and Khoshgoftaar identify dimensions (i.e.
source of variation) within product metrics in the
literature in [76]. Many of the product metrics used in the
literature measure similar things and are highly
correlated with each other (e.g. lines of code and source
lines of code) as discussed by Fenton and Neil in [18].
Using principal component analysis, Munson and
Khoshgotaar identify metrics that capture the same intent
(i.e. the same dimension) and attempt to describe the
dimensions. Principal component analysis is an analysis
method that creates linear combinations of a set of
predictors to encapsulate the maximum amount of
variation in the dataset and is orthogonal (i.e.
uncorrelated) to the other principal components [76]. By
examining the loading (i.e. how much a predictor
contributes to a principal component) it is possible to see
which predictors capture the same source of variation.
The dimensions of product metrics identified by Munson
and Khoshgoftaar are:

• Control: metrics related to the control flow
complexity. Examples are Cyclomatic
complexity and the number of nodes in the
control graph (refer to [73] for a detailed
explanation of the metrics).

• Volume: metrics related to the number of
distinct operations and statements. Examples are
number of unique operands and source lines of
code (refer to [24] for a detailed explanation of
the metrics).

• Action: metrics related to the number of
operations or operators in the program.
Examples are unique operators and source code
statements (refer to [24] for a detailed
explanation of the metrics).

• Effort: metrics related to the mental effort
required to generate an implementation from a
specification. Examples are Halstead’s program
effort metrics (refer to [24] for a detailed
explanation of the metrics).

• Modularity: metrics related to the degree of
modularization of a program. Examples are the
number of function calls and the number of
statements at a nest level of 10 or greater (refer
to [76] for a detailed explanation of the metrics).

4.1.2 Development metrics
Since the software product is the result of the software
development process, the next logical place to look is in
the development process. The intuition behind

development metrics is that attributes of the development
process (i.e. how the product is implemented) is related
to field problems.

No study has yet identified the dimensions in
development metrics. We present a rough grouping of the
development metrics in the literature based on the
description of the metrics:

• Problems discovered prior to release: metrics
that mention measuring attributes of problems
found prior to release in the description.
Examples are number of field problems in the
prior release used by Ostrand et. al. [87],
number of development problems used by
Fenton and Ohlsson [17], and number of
problems found by designers used by
Khoshgotaar et. al. [62].

• Changes to the product: metrics that mention
measuring attributes of changes made to the
software product in the description. Examples
are reuse status used by Pighin and Marzona
[88], changed source instructions used by
Troster and Tian [99], number of deltas
(changes to the code) used by Ostrand et. al.
[87], and increase in lines of code used by
Khoshgotaar et. al. [63].

• People in the process: metrics that mention
measuring attributes of people involved in the
development process in the description.
Examples are the number of different designers
making changes and the number of updates by
designers who had 10 or less total updates in
entire company career both used in
Khoshgoftaar et. al. [64].

• Process efficiency: metrics the mention
measuring attributes of the maturity of the
development process or the effort expended on
the development process in the description.
Examples are CMM level used by Harter et. al.
[25] and total development effort per 1000
executable statements used by Selby and Porter
[95].

4.1.3 Deployment and usage metrics
The intuition behind deployment and usage metrics is the
same idea behind operational profiles. The amount of
execution and the kinds of execution during operation are
related to field problems. Only two distinct research
efforts consider deployment and usage metrics in the
papers we survey: one by Khoshgoftaar et. al. and one by
Mockus et. al..

 6

Khoshgoftaar et. al. consider the following deployment
and usage metrics for modules in e.g. [102], [49], [50],
[40], [64], and [103]:

• Proportion of systems with a module installed

• Execution time of an average transaction on a
system serving customers

• Execution time of an average transaction on a
systems serving businesses

• Execution time of an average transaction on a
tandem system

The execution times are calculated by running the
systems using an operational profile. The proportion of
systems with module installed is derived using
deployment records [102].

Mockus et. al. consider the following deployment and
usage metrics for installations of a telecommunications
software system in [74]:

• Number of ports on the customer installation

• Total deployment time of all installations in the
field at the time of installation

The number of ports is computed using information in a
customer hardware database. The total deployment time
of all machines in the field is computed from customer
deployment records [74].

The intent of each metric above is to capture information
about the amount or the kinds of execution in the field.
However, the data sources used to capture the metrics
may not be available for all systems. In addition, no data
source has emerged as a reliable source of deployment
and usage metrics.

4.1.4 Software and hardware configurations
metrics
The intuition behind software and hardware
configurations metrics is that some field problems can
only be exposed using certain configurations; therefore,
the software and hardware configurations in use are
related to field problems. Only one research efforts
consider software and hardware metrics in the papers we
survey. The paper is by Mockus et. al..

Mockus et. al. consider the following software and
hardware configuration metrics for installations of a
telecommunications software system in [74]:

• Systems size of the installation (the hardware
that is associated with large or small/medium
sized installation)

• Operating system of the installation
(proprietary, Linux, or Windows)

The system size and operating system are computed
using information derived using deployment records
[102].

The intent of each metric above is to capture information
about the software and hardware configurations in use in
the field. However, the above information may not be
available for all systems. No data source has emerged as
a reliable source of software and hardware configuration
metrics.

4.1.5 Metrics collection
The literature shows no agreement on which specific
metrics are “good” metrics as demonstrated by the
continuing debate by Kitchenham et. al. in [65] and by
Weyuker in [107]. Despite disagreement on which
specific metrics to collect, there is general agreement on
the need for more metrics that capture different attributes
as stated in the IEEE standard for software quality
metrics methodology [27]. Prior work shows that, in
general, collecting and using more metrics will result in
more accurate field problem predictions and that metrics
in each category above is important.

The general approach is to collect all reasonable metrics
that are consistent for all observations within the study.
Prior work generally collects metrics that measure
attributes that can be reasoned as being related to field
problems and are measured is the same manner for all
observations. This avoids spurious correlations and
ensures that the relationships discovered will be
reasonable for the particular setting as discussed in [74]
and [16]. Furthermore, IEEE [27] recommends that each
organization perform a cost-benefit analysis to assess
how many metrics to collect and which metrics are
appropriate.

4.1.6 Methods of showing a metric is important
Prior work shows that product, development, deployment
and usage, and software and software configurations
metrics are all important. Due to differences in the exact
definitions of specific metrics and differences in the
metrics collected between studies, we examine categories
of metrics.

To show that a category of metrics is important, it is
sufficient to show that a predictor in the category is
important. There are generally four ways of showing that
a predictor is important:

1. Show high correlation between the predictor and
field defects. This method is recommended by
IEEE [27] and is used by Ohlsson and Alberg
[83] and Ostrand and Wyuker [86].

2. Show that the predictor is selected using a
model selection method. This method is used by
Harter et. al. [24] and Mockus et. al. [74].

 7

3. Show that the accuracy of predictions improves
with the predictor included in the prediction
model. This method is used by Khoshgoftaar et.
al. [46] and Jones et. al. [32].

An example of method 1 is in Ohlsson and Alberg [4].
The authors compute the correlations between product
predictors and the number of field problems. The authors
select predictors that have a correlation higher than .4 as
important. In the paper, 11 out of 27 predicted are
selected using this method. The three highest correlated
metrics and the correlations are shown in table 1.

Table 1. Correlations from Ohlsson and Alberg [4].

Predictor
Correlation

(r)

SigFF: Number of new or modified calls .64

McC1: Cyclomatic complexity number .54

McC2: Modified Cyclomatic complexity
number that does not punish for higher
modularization

.48

An example of method 2 is in Harter et. al. [24]. The
authors use a linear regression model to predict the
number of errors. The authors use the p-value of the
estimated parameter value to select important predictors.
The summary of the linear regression model is in Table
2. The development metric is process maturity measured
by the CMM level. The p-value associated with its
parameter estimate is 0; therefore the product metric is a
significant predictor at the 99% confidence level.

Table 2. Results from Harter et. al. [24]

Variable
Paramete

r
Estimated value

using least squares

Intercept

β0 5.597

s.e .464

T 12.059

P 0.000

ln(Process
Maturity)

CMM level

Β1 1.589

Se .386

T 4.116

P 0.000

ln(Product size)

lines of code

β2 .234

s.e .108

T 2.160

P 0.020

ln(Product-
Design-

Complexity)

subjective

evaluation

β3 -2.11

s.e .712

T -2.963

P 0.003

An example of method 3 is in Jones et. al. [32]. The
authors construct two logistic models that classify
modules as risky (will experience a field problem) and
not risky (will not experience a field problem). One
model uses only product metrics and the other uses
product metrics and a deployment and usage metric. The
authors show that the model with the deployment and
usage metric has lower type II errors for the testing set.
The authors argue that since identifying risky modules
(i.e. not making a type II error) is more important, the
model with the deployment and usage metric is better;
therefore, deployment and usage metrics are important.

FILINCUQ: number of distinct include files
LGPATH: log base 2 of the number of
independent paths in the flow graph
VARSPMAX: maximum span of variables
(statements between declaration and use of a
variable)
USAGE: proportion of systems with module
installed

Logit(Faults) = -5.13 + .0284 FILINCUQ +
.0209 LGPATH + .00043 VARSPMAX
Each predictor is significant at the 15% level

 8

Type I error = 27.32%
Type II error = 34.24%

Logit(faults) = -5.13 + .0284 FILINCUQ +
.0209 LGPATH + 1.2718 USAGE + .00043
VARSPNMX
Each predictor is significant at the 15% level
Type I error = 29.06%
Type II error = 30.77%

We present findings from studies that use method 3 in
Table 3. A level 1 output is a prediction of whether an
observation will be risky (e.g. have a field problem) or
not risky (e.g. will not have a problem). The measures of
accuracy for a level 1 output include the type I error,
which measures the proportion of observations predicted
as risky when it is actually not risky, the type II error,
which measures the proportion of observations predicted
as not risky when it is actually risky, and the overall
error, which measures the overall proportion of
misclassified observations. A level 2 output is a
prediction of the number of field problems. The measures
of accuracy for a level 2 output include the average
relative error (ARE), the average absolute error (AAE).
Types of output and measures of accuracy are discussed
in detail in section 4.2.

Table 3. Changes in accuracy with additional categories of metrics

Research
work

Type of
output

Category of metric
examined

Other categories of
metrics in model

Accuracy of model
without the
category of metric

Accuracy of model
with the category of
metric

Khoshgoftaa
r et. al. [48]

Level 1 Development Product 26.0% type I error

18.75% type II error

25.2% overall error

24.8% type I error

15.0% type II error

23.6% overall error

Khoshgoftaa
r et. al. [45]

Level 1 Development Product 32.4% type I error

21.3% type II error

31.1% overall error

23.8% type I error

13.8% type II error

22.6% overall error

Khoshgoftaa
r et. al.[50]

Level 1 Development Product 27.0% type I error

27.4% type II error

26.2% type I error

28.9% type II error

Ostrand et.
al. [87]

Level 1 Development Product 37% type II error 16% type II error

Jones et. al.
[32]

Level 1 Deployment and
usage

Product 27.32% type I error

34.24% type II error

29.06% type I error

30.77% type II error

Khoshgoftaa
r et. al. [51]

Level 1 Deployment and
usage

Product

Development

23.55% type I error

32.80% type II error

30.30% type I error

23.81% type II error

Khoshgoftaa
r et. al. [64]

Level 1

over
multiple
releases

(release 2)

Development Product

Deployment and
usage

26.6% type I error

24.9% type II error

29.3% type I error

21.2% type II error

Khoshgoftaa
r et. al. [64]

Level 1

over
multiple
releases

(release 3)

Development Product

Deployment and
usage

28.8% type I error

21.3% type II error

29.9% type I error

19.1% type II error

 9

Khoshgoftaa
r et. al. [64]

Level 1

over
multiple
releases

(release 4)

Development Product

Deployment and
usage

32.7% type I error

27.2% type II error

32.7% type I error

19.6% type II error

Khoshgoftaa
r et. al.
[62]/[63]

Level 1

over
multiple
releases

(release 2)

Development Product

Deployment and
usage

 24.76% type I error

25.93% type II error

25.32% type I error

23.81% type II error

Khoshgoftaa
r et. al.
[62]/[63]

Level 1

over
multiple
releases

(release 3)

Development Product

Deployment and
usage

28.25% type I error

29.79% type II error

27.36% type I error

19.15% type II error

Khoshgoftaa
r et. al.
[62]/[63]

Level 1

over
multiple
releases

(release 4)

Development Product

Deployment and
usage

35.59% type I error

21.74% type II error

25.71% type I error

27.17% type II error

4.2 Output
This section examines the output of metrics models (i.e.
what is predicted about field defects). Different results may
allow different action to be taken to reduce the cost of field
problems. Research work generally produced three levels
of output (results) shown in Table 4. Rest of this section
discusses each level of output and the experimental set up
to evaluate an output.

Table 4. Output of papers

Level Output
Research
question

addressed
Research work

Level
0

A
relationshi
p

What
predicts
field
problems?

Basili and Perricone [3]
Bassin and Santhanam [4]
Fenton and Ohlsson [17]
Harter et. al. [24]
Ohlsson and Wohlin [84]
Ostrand and Weyuker
[86]
Pighin and Marzona [88]
Troster and Tian [99]

Level
1

A
categorical

Is it risky
or not? (Is

Briand et. al.[5]

output the
number of
field
defects
above a
threshold?
)

Ebert [13]/[14]/[15]

Jones et. al. [32]

Karuthanithi [36]

Khoshgoftaar and Allen
[37]

Khoshgoftaar and Allen
[38]

Khoshgoftaar et. al. [39]

Khoshgoftaar et. al. [40]

Khoshgoftaar et. al. [41]

Khoshgoftaar et. al. [42]

Khoshgoftaar et. al.
[43]/[44]

Khoshgoftaar et. al. [45]

Khoshgoftaar et. al. [48]

Khoshgoftaar et. al. [49]

Khoshgoftaar et. al. [50]

Khoshgoftaar et. al. [51]

Khoshgoftaar et. al. [53]

Khoshgoftaar et. al.
[54]/[55]

Khoshgoftaar and Seliya

 10

[59]

Khoshgoftaar and Seliya
[61]

Khoshgoftaar et. al.
[62]/[63]

Khoshgoftaar et. al. [64]

Kokol et. al. [66]

Mockus et. al. [74]

Munson and
Khoshgoftaar [75]

Ohlsson and Runeson [85]

Ostrand et. al. [87]

Pighin and Zamolo [89]

Pighin et. al. [90]

Schenker and
Khoshgoftaar [91]

Selby and Porter [94]

Selby and Porter [95]

Takahashi et. al. [96]

Level
2

A
numerical
output

What is
the
number of
field
problems?

Graves et. al. [22]
Khoshgoftaar et. al. [46]
Khoshgoftaar et. al. [52]
Khoshgoftaar et. al. [56]
Khoshgoftaar et. al. [57]
Khoshgoftaar et. al. [58]
Khoshgoftaar and Seliya
[60]
Xu et. al. [102]
Yuan et. al. [103]

4.2.1.1 Level 0 result
Prior work at level 0 establishes relationships (sometimes
with models) between predictors’ values and the value of
the field problem metric. Results are relationships between
predictors and field problems.

A level 0 result may allow for improvement planning,
better allocation of maintenance resources, or
improvement of testing efforts. Harter et. al. [24] and
Bassin and Santhanam [4] evaluate the effectiveness of the
development process for improvement planning. Harter et.
al. evaluate the development process by examining the
CMM level of the organization. Bassin and Santhanam
evaluate the development process by examining the
distribution of ODC triggers of problems found during
development.

Determining that a predictor is important may allow for
better allocation of maintenance resources and improved
testing. For example, Mockus et. al. establish the

relationship between the operating systems platform (i.e. a
proprietary OS, Linux, and Windows) and field problems
in [74]. In addition to allowing better testing of the fault
prone platforms, this may also allow the right maintenance
personnel (i.e. personnel with knowledge of the right
operating system) to be staffed to address the field
problems.

Methods of evaluating which predictors are important are
discussed in section 4.1.1.5. A study that produce level 1
or level 2 result automatically include a level 0 result;
since in order to have a level 1 or level 2 result, a model
must be first fitted. Some studies that only report a level 0
simply observe a correlation between the predictors’ values
and the values of the field problems metric and appeal to
reason (e.g. Ostrand and Weyuker [86] and Fenton and
Ohlsson [17]).

4.2.1.1 Level 1 result
Prior work at level 1 establishes relationships between
predictors’ values and the class of the field problem metric
using models, then uses the models to classify observations
into one of two classes: risky or not risky. Results are
classifications.

The primary purpose of a level 1 result is to focus testing
efforts on risky modules. First we discuss how to evaluate a
level 1 output.

The most commonly used measures of accuracy of a level 1
output are type I error, type II error, and overall error. We
use the definitions by Ohlsson and Runeson in [85]. A type
I error occurs when an observation is classified as risky
when the observation is actually not risky (i.e. a false
positive). A type II error occurs when an observation is
classified as not risky when the observation is actually
risky (i.e. a false negative). Some papers may reverse the
definitions of type I error and type II error. Overall error is
the overall rate of misclassification.

Determining which observation is risky may allow testing
effort to be focused in the appropriate places. This focus
discussed in detail by Selby and Porter [94] and
Khoshgoftaar et. al. [54]. In general, type II errors are
more important, because the main objective of classifying
observations is to reduce the cost of field problems by
removing problems before the software system is deployed
as cited by Jones et. al. in [32]. However, since resources
are limited, high type I errors and overall errors are also
not desirable. Only a selected number of observations can
be chosen for additional testing. The costs of
misclassification need to be considered in each setting to
select an optimal balance as discussed by Khoshgoftaar et.
al. in [49]. A level 1 output allows the decision to be based
on quantitative results.

 11

For example, consider the data set in table 5 in which the
top 40% of observations ranked according o the number of
field defects are classified as risky. The same kind of
approach is taken by Munson and Khoshgoftaar in [75].
Risky is encoded as 1. Not risky is encoded as 0.

Table 5. Example classification

Obs Predicted
field
problems

Predicted
class

Actual
field
problems

Actual
class

1 .7 0 1 0

2 1.32 0 4 1

3 1.52 0 0 0

4 2.07 0 0 0

5 2.12 0 0 0

6 2.34 1 4 1

7 2.67 1 2 0

8 2.98 1 6 1

9 3.12 1 1 0

10 3.67 1 3 1

Two observations are predicted as risky when they are not
risky (observations 7 and 9). The total number of not risky
observations is 6. This result in a 33.33% type I error. One
observation is classified as not risky when it risky
(observation 2). The total number of risky modules is 4.
This results in a 25% type II error. The overall
misclassification rate is 3 observations out of 10, which
results in a 30% overall error. The classification errors are
summarized in Table 6.

Table 6. Summary of classifications

 Predicted
not risky

Predicted
risky

Total

Actual
not risky

4

66.67%

2

33.33%

6

Actual
risky

1

25%

3

75%

4

Total 5 5 10

4.2.1.2 Level 2 output evaluation
Prior work at level 2 establishes relationships between
predictors’ values and the value of the field problem metric
using a model, and then uses the model to quantify the
risk. Results are predicted values of the field problem
metric.

Determining the number of field problems may allow the
appropriate amount of maintenance resources to be

allocated; in addition, as shown by the example in section
4.2.1.2, it is also possible to use a level 2 output to
determine where to focus testing by selecting a percentage
of the observations. Not having sufficient resources may
delay field problem resolution, which results in reduced
customer satisfaction as shown by Chulani et. al. [10].
Allocating too many resources hinders other efforts (e.g.
development). Therefore, allocating the correct amount of
resources is important. Having a level 2 result and
knowing the errors associated with the predictions are
steps towards quantitatively based decision making [74].

The most commonly used measures of accuracy of level 2
output are the average relative error (ARE), the average
absolute error (AAE), the standard deviation of the relative
errors, and the standard deviation of the absolute errors.
The AAE measures the average error in predictions (i.e.
how much a typical prediction will be off by). The AAE
can be misleading when the predicted number of field
problems differs significantly between observations;
therefore, ARE is often reported as well. The ARE
measures the average percentage of error in the predictions
(i.e. relative to the actual number of field problems, how
much a typical prediction will be off by).

The average absolute error is defined by Khosghgoftaar et.
al. in [56] as the sum over all observations, the absolute
value of the difference between the predicted value and the
actual value.

ỹi = predicted number of field problems

yi = actual number of field problems

AAE = 1/n Σi=1
n | (ỹi-yi) |

Absolute relative error is defined by Khosghgoftaar et. al.
in [56] as the sum over all observations, the absolute value
of the difference between the predicted value and the
actual value divided by the actual value plus one. The
denominator of the ARE has one added to avoid dividing
by zero.

ARE = 1/n Σi=1
n | (ỹi-yi) / (yi +1)|

The standard deviation of the relative error and standard
deviation of the absolute error are the standard deviation of
the relative error of the observations and the standard
deviation of the absolute error of the observations
respectively.

For example, consider the set of predictions in Table 4. On
average, each prediction is off by 86.10%. On average,
each prediction is off by 1.683 ~ 2 field problems.

AAE = 1/10 (0.30 + 2.68 + 1.52 + 2.07 + 2.12 +
1.66 + 0.67 + 3.02 + 2.12 + 0.67) = 1.683
The standard error AE is: 0.901
ARE = 1/10 (.15 + .536 + 1.52 + 2.07 + 2.12 +
.332 + .223 + .431 + 1.06 + .1675) = 0.86095.

 12

The standard error of RE is: .7806
Table 4. Example predictions

Obs Predicted number of

field problems

Actual number of

field problems

1 .7 1

2 1.32 4

3 1.52 0

4 2.07 0

5 2.12 0

6 2.34 4

7 2.67 2

8 2.98 6

9 3.12 1

10 3.67 3

4.2.2 Experimental setup for evaluation
Evaluating predictions (i.e. level 1 and level 2 outputs)
involves fitting a prediction model then evaluating
predictions for unseen observations. There are two
common ways of setting up this evaluation in the
literature. One is the holdout method (i.e. having separated
training and testing data sets) described by Ebert in [14].
The other is cross-validation (i.e. repeatedly withholding
part of the data, fitting the model, predicting for the
withheld observations, and evaluating the predictions)
described in Selby and Porter [94].

Each method has its drawbacks. It may not be possible to
use the holdout method if there is only a limited amount of
data. Also, there is the possibility that the training set is
biased (i.e. an “unfortunate” sample in which anomalous
observations are selected to be the training set), which will
result in an inaccurate model. With the cross-validation
technique, the estimated error rate will be higher or the
variance of the estimated error will be larger. In addition,
the cross-validation technique is more computationally
expensive. The tradeoffs between the holdout method and
the cross-validation are discussed in detail in Venables and
Ripley [100].

4.3 Modeling methods
Modeling methods are ways to produce models using
historical information on predictors’ values and field
problem metric values such that the resulting model can
produce a prediction given the predictors’ values for a new
observation (we will not examine level 0 outputs). We will
examine modeling methods by the kind of output they
produce:

• Level 1 output (section 4.3.2):
o Linear modeling (logistic regression)

o Trees
o Discriminant analysis
o Rules
o Neural networks
o Clustering
o Sets
o Linear programming
o Heuristics or any level 2 method with

heuristics
• Level 2 output (section 4.3.3):

o Linear modeling (linear regression and
negative binomial regression)

o Non-linear regression
o Trees
o Neural networks

The exceptions are principal component analysis, bagging,
boosting, and logitboost, and fuzzy logic. Principal
component analysis takes the predictors as input and
outputs a set of new predictors. This technique is described
in section 4.3.4. Bagging, boosting, and logitboost take
results from multiple runs of a modeling technique to
decide upon an output. These techniques are described in
section 4.3.5. Fuzzy logic accounts for uncertainty in
values by assigning probability to values. This technique is
discussed in detail in section 4.3.6. We discuss
combination of techniques in section 4.3.7. We provide a
partial ordering of modeling methods in section 4.3.8. We
examine other methods of evaluating modeling methods in
section 4.3.9. First we present an example.

4.3.1 Example: the trees technique
We illustrate the model construction process and the
prediction process using the trees technique. The trees
technique is the most popular modeling technique in the
literature

According to Selby and Porter in [94], the trees technique
involves creating partitions in the observations based on
predictors’ values that minimizes the error in
classifications within the partitions. The process is
repeated until the error within each partition is below some
limit or until the number of observations within each
partition is below some limit. The most important
predictors are automatically selected, and the trees
technique is distribution independent (i.e. does not require
errors to be normally distributed).

We illustrate the construction and use of a trees model to
classify modules as risky and not risky.

While minimum error or minimum observation is not
reached for all partitions, first generate candidate
partitions using predictor values, then partition the data
using the predictor value that minimizes error.

Consider the following simple example:

 13

Predictor A has three values: 1, 2, 3

Predictor B has two values: 1, 2

The field problem metric has two classes (values):
1 (at least 1 field problem), 0 (no field problems)

The measure of error is: Σ partitions Σ all observations in

partition |yi - ỹ|

ỹ = mean of classifications in the partition

The minimum error in partition: 0

The minimum number of observation: 2

We use the training set in Table 7.

Table 7. Training set

Obs
Value of

Predictor A
Value of

Predictor B
Class of the field
problems metric

1 1 1 0

2 1 2 0

3 1 1 0

4 1 2 0

5 2 1 1

6 2 1 1

7 3 1 0

8 3 2 0

9 3 1 0

10 3 2 1

Iteration 1

Minimum error or minimum observation not reached for
all partitions.

Generate candidate partitions using predictors’ values:

• A <=1
o error in partition 1 (A<=1)

� (0 + 0 + 0 + 0) = 0
o error in partition 2 (A>1)

� (1/2 + 1/2 + 1/2 +1/2 + 1/2 +
1/2) = 3

o total error = 3
• A <=2

o error in partition 1 (A<=2)
� (1/3 + 1/3 +1/3 +1/3 + 2/3 +

2/3) = 2.667
o error in partition 2 (A>2)

� (1/4 + 1/4 +1/4 +3/4) = 1.5
o total error = 4.167

• B <= 1
o error in partition 1 (B<=1)

� (1/3 + 1/3 +1/3 +1/3 + 2/3 +
2/3) = 2.667

o error in partition 2 (B>1)
� (1/4 + 1/4 +1/4 +3/4) = 1.5

o total error = 4.167
Based on total error, partition using A<=1. The resulting
tree is in Figure 4. Since the error in partition A<=1 is 0,
only observations in the partition A>1 (observations 5-10)
are examined in the next iteration.

Figure 4. Tree after one iteration

Iteration 2

Minimum error or minimum observation not reached for
all partitions.

Generate candidate partitions using predictors’ values:

• A <=1: not possible
• A <=2

o error in partition 1 (A<=2)
� (0 + 0) = 0

o error in partition 2 (A>2)
� (1/4 + 1/4 +1/4 +3/4) = 1.5

o total error = 1.5
• B <= 1

o error in partition 1 (B<=1)
� (1/2 + 1/2 +1/2 + 1/2) = 2

o error in partition 2 (B>1)
� (1/2 + 1/2) = 1

o total error = 3
Based on total error, partition using A<=2. The resulting
tree is in Figure 5. Since the error in partition A<=1 and
partition A<=2 is 0, only observations in the partition A>2
(observations 7-10) are examined in the next iteration.

Figure 5. Tree after two iterations

Iteration 3

Minimum error or minimum observation not reached for
all partitions.

Generate candidate partitions using predictors’ values:

• A <=1: not possible

 14

• A <=2: not possible
• B <= 1

o error in partition 1 (B<=1)
� (0+0) = 0

o error in partition 2 (B>1)
� (1/2 + 1/2) = 1

o total error = 1
Based on total error, partition using B<=1. The resulting
tree is in Figure 6. Since the error in partition A<=1,
partition A<=2, and partition B<=1 is 0, only observations
in the partition B>2 (observations 8 and 10) are examined
in the next iteration.

Figure 6. Tree after three iterations

Iteration 4

Minimum error or minimum observation reached for all
partitions

To classify a new observation, the observation traverses the
tree according to its predictors’ values. Consider the
following predictions:

Predictor values: A = 3, B = 1

Classification =0 (not risky)

The path down the tree is shown in Figure 7.

Figure 7. Path down classification tree

Predictor values: A= 2, B =2

Classification =1 (risky)

The path down the tree is shown in Figure 8.

Figure 8. Path down classification tree

Predictor values: A=3, B=2

Classification = ? (unclear)

The prediction is unclear. In practice a cutoff is usually
used to classify observations for partitions that are not
homogenous such as in Khoshgotaar et. al. [40]. For
example, if we use >.75 as the cut off, then the
classification is 0 (not risky).

4.3.2 Techniques that produce level 1 output
Techniques that produce a level 1 output are concerned
with putting observations into classes; therefore techniques
that produce a level 1 output use the training set to
determine how the predictors’ values influence which class
an observation belongs to. Different techniques determine
the influence of prior observations differently or determine
the class of a new observation differently.

 15

Linear modeling (with model selection)

The logistic regression technique is the variant of the
linear modeling technique that produces a level 1 output
and is explained in detail by Weisburg in [104]. The idea
behind linear modeling is that each increase in a
predictor’s value increases the probability that the
observation belongs to one of the classes by the same
amount.

The logistic regression technique involves fitting a
parameterized linear model between the predictors’ values
and the logit transformed field problem metric value (e.g.
0 for risky and 1 for not risky). The parameter values are
determined by minimizing a measure of the fit (such as
residual sum of squares, absolute difference, least relative
difference, etc.).

In most situations, linear modeling involves model section.
Model selection fits models with sub-sets of predictors and
selects a model that balances the bias-variance tradeoff.
Model selection balances the trade-off by including only
predictors that have the most amount of benefit or by
dropping predictors that have the least amount of benefit
as judged by a model selection criterion (e.g. AIC, BIC,
Cross-validation).

Given a new observation, the predictors’ values are
inserted into the fitted linear model used to produce a real
value between 0 and 1 representing the probability of the
observation belonging to a class (e.g. risky). A pre-
determined cutoff is used to classify the observation.

Research work that uses this technique includes: Briand et.
al. [5] Jones et. al. [32], Khoshgoftaar et. al. [49], Mockus
et. al. [74]

Trees (classification trees)

The trees technique involves creating partitions in the
observations based on predictors’ values that minimize the
error in classifications within each partition and is
explained in detail by Selby and Porter in [94]. The idea
behind trees is that predictors have critical values that
distinguish between classes; therefore by identifying the
critical values, an observation can be classified using its
predictors’ values.

The partitioning process is repeated until the error within
each partition is below some limit or until the number of
observations within each partition is below some limit.
The binary splitting process produces a tree. A
predetermined cut off is usually used to assign a leaf to a
class based on the proportion of observations in each class.

A new observation traverses the tree according to its
predictors’ values until the observation reaches a leaf node.
The class of the leaf node is the predicted class of the new
observation.

An example is given in section 4.3.1.

Research work that uses this technique includes: Briand et.
al. [5], Ebert [13]/[14]/[15], Khoshgoftaar and Allen [37],
Khoshgoftaar et. al. [40], Khoshgoftaar et. al. [41],
Khoshgoftaar et. al. [43]/[44], Khoshgoftaar et. al. [50],
Khoshgoftaar et. al. [51], Khoshgoftaar et. al. [53],
Khoshgoftaar and Seliya [59], Khoshgoftaar et. al.
[62]/[63], Khoshgoftaar et. al. [64], Kokol et. al. [66],
Selby and Porter [94], Selby and Porter [95], Takahashi
et. al. [96], Troster and Tian [99]

Discriminant analysis (with model selection)

The discriminant analysis technique involves dividing
observations in the training set into classes (risky or not
risky) and then when a new observation needs to be
classified, the technique computes a closeness function to
determine which class the new observation belongs to. The
discriminant analysis technique is explained in detail by
Khoshgoftaar et. al. in [45]. The idea behind discriminant
analysis is that observations that belong to the same class
share similarities in their predictors’ values; therefore, a
new observation’s proximity to each class based on its
predictors’ values is used to determine the class of the new
observation.

When a new observation, x, needs to be classified, a multi-
variate probability density function, fk(x), is used to give
the probability of the new observation being in each class,
k. The probability density function is based on how close
the predictors’ values are to the predictors’ values in the
training set for each class. The probability of class
membership and a pre-determined cut off (usually the
prior proportion of observations in each class) are used to
determine class membership. In most case, this technique
also uses model section.

Research work that uses this technique includes:
Karuthanithi [36], Khoshgoftaar and Allen [38],
Khoshgoftaar et. al. [42], Khoshgoftaar et. al. [45]/[46],
Khoshgoftaar et. al.[48], Khoshgoftaar et. al.[54]/[55],
Kokol et. al. [66], Munson and Khoshgoftaar [75],
Ohlsoon and Runeson [85], Pighin and Zamolo [89]

Rules

The rules technique captures rules of thumb and formally
known relations among the facts. The rules are presented
as if-then rules that associate a conclusion (i.e. a
classification) with a set of antecedents. The rules
technique is explained in detail by Yuan et. al. in [103].
The idea behind rules is that a set of if-then rules can
decide which class an observation belongs to.

A new observation is classified by determining which rules
apply to the new observation.

 16

Research work that uses this technique includes: Ebert
[13]/[14]/[15], Yuan et. al. [103]

Clustering

The clustering technique groups observations into clusters
according to predictors’ values and a distance function.
The clustering technique is explained in detail by
Khoshgoftaar et. al. in [56]. The idea behind clustering is
that the predictors’ values can be used to find similar
observations (i.e. clusters) and that all members of the
same cluster should belong to the same class.

A distance function specifies how close predictors’ values
need to be to the other members of a cluster to be included
in a cluster. A majority function determines the class of a
cluster based on the classes of the observations within the
cluster.

A new observation is placed into one of the clusters based
on a predictors’ values. The class of the cluster is the
predicted class of the new observation.

Research work that uses this technique includes:
Khoshgoftaar et. al. [39], Khoshgoftaar et. al.[56], Yuan
et. al. [103]

Neural networks

The neural networks technique simulates how a set of
neurons or processing elements are interconnected through
different connection strengths. The neural networks
technique is explained in detail by Khoshgoftaar et. al. in
[55]. The idea behind neural networks is that predictors’
values are like neural inputs, which is used by the neural
network to arrive at a conclusion about a new observation.

A neural networks model is a multi-layer perceptron model
that produces a real value between 0 and 1, which
indicates class membership. The predictors are in one
layer, with each predictor as one neuron, and the output is
in one layer. There is at least one intermediate hidden
layer in between with different number of neurons. Each
neuron in one layer is connected to each neuron in the next
layer. The connection strength between the neurons can
vary. A non-linear function is used to combine values
coming into the neuron to produce the output from the
neuron.

For a new observation, the predictors’ values are placed on
the outer layer and the predicted value between 0 and 1 is
produced at the output neuron. A predetermined cut off is
used to classify the observation.

Research work that uses this technique includes:
Karuthanithi [36], Khoshgoftaar et. al. [42], Khoshgoftaar
et. al. [54]/[55], Kokol et. al. [66], Xu et. al. [102]

Case based

The case based technique classifies a new observation by
identifying similar cases and examining the classes of the
similar cases. The case based technique is explained in
detail by Khoshgoftaar et. al. in [39]. The idea behind case
based is that similar cases can be used to determine the
class of a new observation.

There is no training involved for case based models.

For a new observation, the case based technique
determines training observations that are similar to the
observation using predictors’ values and a closeness
function. Then, the class of the new observation is
determined using the similar cases and a solution
algorithm that determines class of the new observation
based on the classes of the similar cases.

Research work that uses this technique includes:
Khoshgoftaar et. al. [39], Schenker and Khoshgoftaar [91]

Sets

The sets technique ranks the predictors according to their
ability to discriminate between classes, then it uses a
subset to classify observations. The sets technique is
explained in detail by Briand et. al. in [5]. The idea behind
sets is that predictors’ have critical values that distinguish
between classes. This method is similar to the trees
technique; however, the model construction process is not
iterative.

The sets technique ranks the predictors according to their
ability to discriminate between classes. The critical value
that maximizes the difference between partitions is
determined for each predictor. A Boolean function is then
constructed using a subset of the predictors and their
critical values to classify observations.

For a new observation, the Boolean function is applied to
the predictors to derive the class of the new observation.

Research work that uses this technique includes: Briand et.
al. [5], Khoshgoftaar and Seliya [61]

Linear programming

The linear programming technique involves cutting the n-
dimensional space (representing the n predictors) using
multi-dimensional planes. The linear programming
technique is described in detail by Pighin et. al. in [90].
The idea is that predictors’ values determine an
observation’s location in an n dimensional space and
regions of the space (as defined by the planes) belong to
the same class.

The cutting process is repeated until the homogeneity of
each region is below a threshold or the number of
observations in each region is below a threshold. A
predetermined cut off is used to assign a class to each
region based on the classes of the observations in the
region.

 17

A new observation is placed into one of the regions based
on the predictor’s value. The class of the region is the
predicted class of the new observation.

Research work that uses this technique includes: Kokol et.
al.[66], Pighin et. al.[90]

Heuristics or any level 2 output with heuristic

The heuristics technique involves applying a heuristic rule
(e.g. the Pareto distribution). The heuristics technique is
explained in detail by Ebert in [13]/[14]/[15]. The idea
behind heuristics is that a small percentage of observations
account for most of the problems.

New observations are ranked according to a predictor’s
value or modeling output from a level 2 model, then a
percentage of the observations are assigned to one class
according to a heuristic.

Research work that uses this technique includes: Ebert
[13]/[14]/[15], Kokol et. al.[66], Ohlsson and Wohlin [84],
Ostrand et. al. [87]

4.3.3 Techniques that produce level 2 output
Techniques that produce a level 2 output are concerned
with predicting a specific number; therefore techniques
that produce a level 2 output use the training set to
determine what the number of field problems will be given
the predictors’ values. Different techniques determine how
the predictors’ values influence the number of field
problems differently.

Linear modeling (with model selection)

The linear regression technique and the negative binomial
regression technique are the variants of the linear
modeling technique that produces a level 2 output and is
explained in detail by Weisburg in [104]. The idea behind
linear modeling is that changes in a predictor’s value
changes the predicted number of field problems (or
transformed form of field problems in the case of binomial
modeling) by a fixed amount.

The transformation function for the negative binomial
regression model is the log function. The fitting process is
same as the linear modeling process to produce a level 1
output. Model selection technique is also usually used.

For a new observation, the predictors are inserted into the
linear model to produce a prediction of the number of field
problems.

Research work that uses this technique includes: Graves et.
al. [22], Harter et. al. [24], Khoshgoftaar and Allen [38],
Khoshgoftaar et. al. [39], Khoshgoftaar et. al. [47],
Khoshgoftaar et. al. [52], Khoshgoftaar et. al.[54]/[55],
Khoshgoftaar et. al.[56], Khoshgoftaar et. al. [57],
Khoshgoftaar et. al. [58], Kokol et. al. [66], Mockus et. al.
[74], Ostrand et. al. [87], Yuan et. al. [103]

Non-linear regression

The non-linear regression technique is similar to the linear
modeling technique. It involves fitting a parameterized
non linear model (e.g. a power function) between the
predictors’ values and the value of the field problem
metric. The model fitting procedure is the same as the
procedure for the linear modeling technique. The non-
linear regression technique is explained in detail by
Weisburg in [104]. The idea behind non-linear modeling is
that a change in the predictor’s value change the predicted
number of field problems by a parameterized amount.

For a new observation, the predictors’ values are inserted
into the non-linear model to produce a prediction of the
number of field problems.

Research work that uses this technique includes: Graves et.
al. [22], Khoshgoftaar et. al.[52]

Trees (Regression trees)

This is the same technique used to produce a level 1 output
except that the value of the field problem metric is
predicted. Using the trees technique to produce a level 2
output is explained in detail by Khoshgoftaar and Seliya in
[60]. The idea is that critical values identify similar
observations and that all similar observations have similar
numbers of field defects.

A new observation traverses the tree, then the mean or
median of the values of the field problem metric in the leaf
is taken as the predicted number of field problems for the
new observation.

Research work that uses this technique includes:
Khoshgoftaar and Seliya [60]

Neural networks

This is the same technique used to produce a level 1 output
except that the output (a continuous value between 0 and
1) is scaled according to the range of the values of the field
problem metric in the training set. Using the neural
networks technique to produce a level 2 output is
explained in detail by Khoshgoftaar et. al. in [57]. The
idea behind neural networks is that predictors’ values are
like neural inputs and can be used by a neural network to
arrive at a conclusion.

For a new observation, the predictors’ values are used to
produce a value between 0 and 1. Then the value is scaled
up according to the range of the number of field problems
in the training set.

Research work that uses this technique includes:
Khoshgoftaar et. al. [57], Khoshgoftaar et. al. [58]

4.3.4 Principal component analysis (PCA)
The principal component analysis (also called singular
value decomposition) technique produces a new set of

 18

predictors using linear combinations of the original
predictors and is explained in detail by Khoshgoftaar et. al.
in [45]/[46].

The idea behind PCA is that there are only a few sources
of true variation within a set of predictors and that many
predictors are highly correlated with each other because
they capture similar attributes. PCA solves this problem by
constructing new predictors that capture the different
sources of variation using linear combinations of the
original predictors. The new predictors will be
independent of each other and will contain all the
information in the original predictors.

PCA tries to include all the variance captured in the
original predictors while reducing the number of
predictors. The new predictors (principal components) are
in ranked order so that the first new predictor captures the
most variation, the second predictor captures the second
most, and so on. Usually, a subset of the principal
components that capture a large proportion of the total
variance (e.g. 90% as in Khoshgoftaar et. al. [45]) is then
used.

Research work that uses this technique includes: Briand et.
al. [5], Khoshgoftaar and Allen [38], Khoshgoftaar et. al.
[42], Khoshgoftaar et. al. [45]/[46], Khoshgoftaar et. al.
[47], Khoshgoftaar et. al. [48], Khoshgoftaar et. al. [56],
Khoshgoftaar et. al. [64], Khoshgoftaar et. al. [62]/[63],
Kokol et. al. [66], Munson and Khoshgoftaar [75],
Ohlsson and Runeson [85], Pighin and Zamolo [89], Xu
et. al. [102]

4.3.5 Bagging, boosting, and logitboost
Bagging, boosting, and logitboost are used by Khoshgotaar
et. al. in [53] to improve the predictions of individual
models produced by the trees technique. The authors show
that the accuracy of classifications can be improved by
combining classifications from multiple models. The idea
is that the training set used to build a model could be
biased. By combining predictions from models built using
different samples, a more accurate prediction can be made.

Bagging

The bagging technique randomly re-samples from the
training set, fits a model for each re-sampled data set, and
takes the consensus of the classifications as the output.

Boosting

The boosting technique is similar to the bagging
techniques. However, it builds models that complement
each other by building models that focus on data that
previous models performed poorly on. In the boosting
technique the re-sampling process is an iterative and
weighted process, in contrast to the random process in the

bagging technique. Each time, the weight of correctly
classified observations is decreased while the weight of
misclassified instances is increased. Therefore, the model
in the next iteration is more likely to focus on misclassified
instances. In addition, the voting process is modified. The
models that have better overall performance are given
more weight in the voting process.

LogitBoost

The logitboost technique is a re-derivation of the AdaBoost
as a method for fitting an additive model in a forward
stepwise process. The idea is to fit an additive model by
minimizing the squared loss in a forward stepwise manner.

4.3.6 Fuzzy logic
Fuzzy logic is used in systems where values can have
degrees of truthfulness or falsehood represented by a range
of values between 1 (true) and 0 (false) and is explained in
detail by Schenker and Khoshgoftaar in [91]. The idea
behind fuzzy logic is that information cannot always be
described accurately (e.g. middle-aged: 40-50? 45-65?);
therefore, the imprecision in information needs to be
captured. Fuzzy logic describes the imprecision using
intervals and probabilities. With fuzzy logic, the outcome
of an operation can be expressed imprecisely and a
probability distribution is assigned to values.

Research work that uses this technique includes: Ebert
[13]/[14]/[15], Schenker and Khoshgoftaar [91], Xu et. al.
[102]

4.3.7 Combining techniques
Each modeling method can comprises of several
techniques. It is not clear what the complete set of valid
combinations is. We discuss the combinations that have
been explored in prior work. Research work that combines
techniques and their findings are listed in Table 8.

 19

Table 8. Research work with combination of
techniques

Research work Method
Type of
output

Edbert [13]/[14]/[15] Fuzzy logic
and rules

Level 1

Khoshgoftaar and Allen [38]

Khoshgoftaar et. al. [42]

Khoshgoftaar et. al. [45]/[46]

Khoshgoftaar et. al. [48]

Khoshgoftaar et. al. [54]/[55]

Kokol et. al. [66]

Munson and Khoshgoftaar
[75]

Pighin and Zamolo [89]

Principal
component
analysis and
discriminant
analysis

Level 1

Briand et. al. [5] Principal
component
analysis and
logistic
regression

Level 1

Schenker and Khoshgoftaar
[91]

Fuzzy logic
and case based

Level 1

Khoshgoftaar et. al. [53] Bagging,
boosting, and
LogitBoost
with trees

Level 1

Khoshgoftaar et. al. [62]/[63]

Khoshgoftaar et. al. [64]

Principal
component
analysis and
trees

Level 1

Khoshgoftaar et. al. [56] Principal
component

Level 2

analysis,
clustering, and
linear
modeling

Xu et. al. [102] Principal
component
analysis, fuzzy
logic, and
neural
networks

Level 2

Yuan et. al.[103] Fuzzy logic,
clustering, and
linear
modeling

Level 2

Khoshgoftaar et. al. [47] principal
component
analysis and
linear
regression

Level 2

4.3.7.1 Accuracy
The most widely used criterion for comparing modeling
methods is accuracy; however, it is difficult to compare
accuracy across research work due to differences such as
different metrics, different modeling parameters, and
environmental differences (e.g. organizational related
differences). A few studies have compared predictions of
different modeling methods in the same setting. Table 9
summarizes the findings. Based on the research work a
partial ordering of methods using accuracy is in Figure 9.

Table 9. Findings of research work comparing accuracy of different modeling methods

Research work Accuracy of preferred method Accuracy of other methods

Briand et. al. [5] Sets

7.81% type I error

4.11% type II error

6.04% overall error

Linear modeling (logistic regression) with model
selection

23.44% type I error

32.88% type II error

28.47% overall error

Linear modeling (logistic regression) with
principal component analysis and model
selection

20% type I error

28.77% type II error

 20

24.64% overall error

Classification trees

16.67% type I error

17.81% type II error

7.24% overall error

Ebert [13]/ [14] /[15] Fuzzy rules

18.4% type I error

21.6% type II error

19% overall error

Heuristics

10.43% type I error

45.95% type II error

18.5% overall error

Trees

8.59% type I error

43.24% type II error

15% overall error

Discriminant analysis

15.95% type I error

32.43% type II error

19% overall error

Karuthanithi [36] Neural networks

(trained using 25% of the data)

20.19% type I error
12.11% type II error

(trained using 50% of the data)

17.41% type I error

15.04% type II error

(trained using 90% of the data)

9.77% type I error

15.47% type II error

Discriminant analysis

(trained using 25% of the data)

13.16% type I error

15.61% type II error

(trained using 50% of the data)

12.45% type I error

16.01% type II error

(trained using 90% of the data)

14.17% type I error

21.11% type II error

Khoshgoftaar and Allen [38] Discriminant analysis with principal
component analysis

23.8% type I error

13.7% type II error

22.6% overall error

Discriminant analysis

33.8% type I error

16.3 % type II error

31.7% overall error

Khoshgoftaar et. al. [39] Case based

16.0% type I error

15.8% type II error

Linear modeling (linear regression)

16.0% type I error

15.8% type II error

Clustering

14.7% type I error

21.1% type II error

Khoshgoftaar et. al .[42] Neural networks Discriminant analysis with principal component

 21

26.0% type I error

26.9% type II error

26.2% over all error

analysis and model selection

27.9% type I error

39.4% type II error

29.5% overall error

Khoshgoftaar et. al. [54]/[55] Neural networks

12.5% type I error

6.7% type II error

11% overall error

Discriminant analysis with principal component
analysis

6.25% type I error

26.7% type II error

11% overall error

Khoshgoftaar et. al. [57] Neural networks

(System 1)

.3980 ARE

.28 standard deviation

(System 2)

.5467 ARE

.08 standard deviation

Linear modeling (linear regression) with model
selection

(System 1)

.5877 ARE

.62 standard deviation

(System 2)

.9998 ARE

1.37 standard deviation

Khoshgoftaar et. al. [64]. Trees with principal component
analysis

(release 2)

29.3% type I

21.2% type II

(release 3)

29.9% type I

19.1% type II

(release 4)

32.7% type I

19.6% type II

Trees

(release 2)

31.7% type I

23.3% type II

(release 3)

30.3% type I

14.9% type II

(release 4)

35.6% type I

22.8% type II

Kokol et. al. [66] Discriminant analysis with principal
component analysis

6.3% type I error

14.3% type II error

8.3% overall error

Linear programming

25.3% type I error

4.9% type II error

10.9% overall error

Trees

15.1% type I error

22.2% type II error

17.0% overall error

Heuristics

17.1% type I error

29.2% type II error

21.1% overall error

 22

Table 9. Ordering of modeling methods using accuracy

4.3.8 Other methods of evaluation
The idea here is that in some situations the accuracy of
predictions is not the most important criterion. Other
methods of evaluating modeling methods have been
proposed but are not frequently used. For example, a
widely discussed criterion for comparing modeling
methods is the explicability of the resulting model (i.e.
how easy is it to interpret the effects of each predictor).
This may be important if the objective of field problem
prediction is to identify important predictors to plan for
improvements.

To demonstrate explicability, consider the following two
models produced by Khoshgoftaar et. al., one is a tree
model from [60] and the other is a linear model using
principal component analysis from [47]. Both models
predict the number of field problems within a module.

RLSTOT: the number of vertices plus the number
of arcs within loop control structure spans with a
flow graph
NL: the number of loops with a flow graph
VG: Cyclomatic complexity
PCSTOT: the total number of arcs located within
the span of conditional arcs in a flow graph
NELTOT: the total nesting level of all arcs
TCT: the number of calls to entry points
UCT: the number of unique entry points called by
this module
IFTH: the number of arcs that contain a predicate
of a control structure, but are not loops
NDI: the number of include files that this
modules uses, including itself

ISNEW: if the module is new (1 for yes, 0 for no)
ISCHG: if the module has been changed since last
release (1 for yes, 0 for no)
Tree model is in Figure 10:

Figure 10. Classification tree from [60]

The principal components are in Table 10.

 23

Table 10. principal components from [47]

Metric Component 1 Component 2 Component 3

RLSTOT .901 .359 .137

NL .880 .370 .134

PCSTOT .719 .545 .316

NELTOT .683 .593 .334

TCT .359 .864 .216

UCT .426 .830 .245

VG .597 .724 .309

IFTH .599 .681 .357

NDI .177 .265 .939

The linear model is:

Field problems = .520 + 1.233 (ISCHG) + .541
(ISNEW) + .577 (Component 3) + .368
(Component 1) + .338 (Component 2)

The tree model is easily understood. The important
predictors are clearly identified by internal nodes. Leaf
nodes present the predicted number of field problems. The
important values are clearly indicated.

The linear model with principal components analysis is
not easy to understand due to the principal components.
Components are constructed out of linear combinations of
predictors. It is not clear what the contributions of each
metric are. In addition, it is not clear which metrics are
important.

Explicability is often discussed in literature, such as Ebert
in [13]/[14]/[15], Khoshgoftaar et. al. in [42], and
Khoshgoftaar et. al. in [45], but no established measure of
explicability is used to compare modeling methods. There
is no established measure of explicability since “easily
understood” is a subjective measure and may differ from
person to person.

5. CONCLUSION
We present the current state of research in metrics based
models. Hopefully, this survey will help researchers who
are interested in researching metrics based models and
practitioners who wish to use metrics based models to
predict field problems.

6. ACKNOWLEDGMENTS
This research is supported by the National Science
Foundation under Grand CCR-0086003, by the Sloan
Software Industry Center at Carnegie Mellon University,
and by the NASA High Dependability Computing Program
under cooperative agreement NCC-2-1298.

7. REFERENCES
[1] American Institute of Aeronautic and Astronautics.

Recommended practice for software reliability.
ANSI/AIAA 1993.

[2] Victor Basili and Lionel Briand and Steven Condon
and Yong-Mi Kim and Walcelio Melo and Jon Valett.
Understanding and Predicting the Process of Software
Maintenance Releases. In Proceedings of ICSE,1996.

[3] Victor Basili and Barry Perricone. Software Errors
and Complexity: An Empirical Investigation. In
Communications of the ACM, 1984.

[4] Kathyrn Bassin and P. Santhanam. Use of software
triggers to evaluate software process effectiveness and
capture customer usage profiles. In Eighth
International Symposium on Software Reliability
Engineering, 1997.

[5] Lionel C. Briand and Victor R. Basili and Christopher
J. Hetmanski. Developing interpreTable models with
optimized set reduction for identifying high-risk
software components. In IEEE Transaction on
Software Engineering, 1993.

[6] Sarah Brocklehurst and P.Y. Chan and Bev
Littlewood and John Snell. Recalibrating Software
Reliability Models. In IEEE Transaction of Software
Engineering, 1990.

[7] Sarah Brocklehurst and Bev Littlewood. New Ways to
Get Accurate Reliability Measures. In IEEE Software,
1992.

[8] Michael Buckly and Ram Chillarege. Discovering
Relationships between Service and Customer
Satisfaction. In Proceedings of the International
Conference on Software Maintenance 1995.

[9] Timothy A. Budd. Mutation analysis: ideas, examples,
problems and prospects. In Computer Program
Testing. (B. Chandrasekaran and S. Radicchi, editors),
Elsevier North-Holland, 1981.

[10] Sunita Chulani and P. Santhanam and Darrell Moore
and Gary Davidson. Deriving a Software Quality View
from Customer Satisfaction and Service Data. In
European Software Conference on Metrics and
Measurement, 2001.

[11] Sunita Devnani-Chulani. Bayesian Analysis of
Software Cost and Quality Models. In Dissertation
presented to the Faculty of the Graduate School
University of Southern California, 1999.

[12] Edsger Wybe Dijkstra. Notes on structured
programming. In Structured Programming, Academic
press 1972.

 24

[13] Chistof Ebert. Evaluation and application of
complexity-based criticality models. In METRICS
1996.

[14] Chistof Ebert. Experiences with criticality predictions
in software development. In Proceedings of FSE 1997.

[15] Chistof Ebert. Industrial application of criticality
predictions in software development. In ISSRE 1998.

[16] Norman Fenton and Shari Pfleeger. Software Metrics
- A Rigorous and Practical Approach. Chapmann &
Hall, London, 1997

[17] Norman E. Fenton and Niclas Ohlsson. Quantitative
Analysis of Faults and Failures in a Complex Software
System. In IEEE Transaction on Software
Engineering, 2000.

[18] Norman Fenton and Martin Neil. Software metrics:
road map. In Proceedings of ICSE, 2000.

[19] Norman Fenton and William Marsh and Martin Neil
and Patrick Cates and Simon Forey and Manesh
Tailor. Making Resource Decisions for Software
Projects. In Proceedings of ICSE, 2004.

[20] Norman Fenton, R.W. Whitty, and AA Kaposi. A
generalized mathematical theory of structured
programming. In Theoretical Computer Science,
Volume 36, 1985.

[21] Lynn M. Foreman and Stuart H. Zweben. A study of
the effectiveness of control and data flow testing
strategies. In J Systems Software, 1993.

[22] Todd L. Graves and Alan K. Karr and J.S. Marron
and Harvey Siy. Predicting Fault Incidence Using
Software Change History. In IEEE Transaction on
Software Engineering, 2000.

[23] Swapna Gokhale and W. Eric Wong and Kishor
Trivedi and J. R. Hogan. An Analytical Approach to
Architecture-Based Software Reliability Prediction. In
International Performance and Dependability
Symposium, 1998.

[24] Maurice Halstead. Elements of Software Science.
Elsevier, 1977.

[25] Donald E. Harter and Mayuram S. Krishnan and
Sandra A. Slaughter . Effects of Process Maturity on
Quality, Cycle Time, and Effort in Software Product
Development. In Management Science, 2000.

[26] William Hetzel. The complete guide to software
testing. Collins, 1984.

[27] IEEE standard for a software quality metrics
methodology. In IEEE Std 1061-1998, 1998.

[28] IEEE standard for software productivity metrics. In
IEEE Std 1045-1992, 1993.

[29] Z. Jelinski and Paul B. Moranda. Software reliability
research. In Statistical Methods for Evaluation of
Computer Software Performance, 1972.

[30] Daniel.R. Jeske and M. Akber Qureshi. Estimating the
failure rate of evolving software systems. In 11th
International Symposium on Software Reliability
Engineering, 2000.

[31] Capers Jones. Applied software measurement,
productivity and quality, McGraw-Hill, 1996.

[32] Wendell Jones and John P. Hudepohl and Taghi M.
Khoshgoftaar and Edware B. Allen. Application of a
Usage Profile in Software Quality Models. In 3rd
European Conference on Software Maintenance and
Reengineering, 1999.

[33] Garrison Kenney and Mladen A. Vouk. Measuring the
Field Quality of Wide-Distribution Commercial
Software. In 3rd International Symposium on Software
Reliability Engineering, 1992.

[34] Garrison Kenney. Estimating Defects in Commercial
Software During Operational Use. In Transactions on
Reliability, 1993.

[35] Garrison Kenney. The Next Release Effect in the Field
Defect Model for Commercial Software. In Thesis
Submitted to the Graduate Faculty of North Carolina
State University, 1993.

[36] M. Karuthanithi. Identifying fault-prone software
modules using feed-forward networks: a case study. In
NIPS, 1993.

[37] Taghi M. Khoshgoftaar and Edward B. Allen.
Predicting fault-prone software modules in embedded
systems with classification trees. In IEEE Symposium
on High-Assurance Systems Engineering, 1999.

[38] Taghi M. Khoshgoftaar and Edward B. Allen.
Multivariate assessment of complex software systems:
a comparative study. In IEEE International
Conference on Engineering of Complex Computer
Systems, 1999.

[39] Taghi M. Khoshgoftaar and Edward B. Allen and
Jason C. Busboom. Modeling software quality: the
software measurement analysis and reliability toolkit.
In IEEE Software, 1996.

[40] Taghi M. Khoshgoftaar and Edward B. Allen and
Jianyu Deng. Using regression trees to classify fault-
prone software modules. In IEEE Transactions on
reliability, 2002.

[41] Taghi M. Khoshgoftaar and Edward B. Allen and
Jianyu Deng. Controlling over fitting in software
quality models: experiments with regression trees and
classification. In METRICS, 2001.

 25

[42] Taghi M. Khoshgoftaar and Edward B. Allen and
John P. Hudepohl and Stephen J. Aud. Application of
neural networks to software quality modeling of a very
large telecommunications system. In IEEE
Transaction on Neural Networks, 1997.

[43] Taghi M. Khoshgoftaar and Edward B. Allen and
Wendel Jones and John P. Hudepohl. Classification-
tree models of software-quality over multiple releases.
In ISSRE, 1999.

[44] Taghi M. Khoshgoftaar and Edward B. Allen and
Wendel Jones and John P. Hudepohl. Classification-
tree models of software-quality over multiple releases.
In IEEE Transaction on Reliability, 2000.

[45] Taghi M. Khoshgoftaar and Edward B. Allen and
Kalai S. Kalaichelvan and Nishith Goel. Early Quality
Prediction: A Case Study in Telecommunications. In
IEEE Software, 1996.

[46] Taghi M. Khoshgoftaar and Edward B. Allen and
Kalai S. Kalaichelvan and Nishith Goel. Predictive
modeling of software quality for very large
telecommunications systems. In International
Conference on Communications, 1996.

[47] Taghi M. Khoshgoftaar and Edward B. Allen and
Kalai S. Kalaichelvan and Nitith Goel. Predictive
modeling of software quality for very large
telecommunications systems. In IEEE International
Conference on Communications, 1996.

[48] Taghi M. Khoshgoftaar and Edward B. Allen and
Kalai S. Kalaichelvan and Nitith Goel and John
Hedepohl and Jean Mayrand. Detection of fault-prone
program modules in a very large telecommunications
system. In Proceedings of ISSRE, 1995.

[49] Taghi M. Khoshgoftaar and Edward B. Allen and
Wendell D. Jones and John P. Hudepohl. Return on
investment of software quality predictions. In
Workshop on Application-Specific Software
Engineering, 1998.

[50] Taghi M. Khoshgoftaar and Edward B. Allen and
Archana Naik and Wendell D. Jones and John P.
Hudepohl. Using classification trees for software
quality models: lessons learned. In International
High-Assurance Systems Engineering Symposium,
1998.

[51] Taghi M. Khoshgoftaar and Edward B. Allen and
Xiaojing Yuan and Wendell D. Jones and John P.
Hudepohl. Preparing measurements of legacy software
for predicting operational faults. In International
Conference on Software Maintenance, 1999.

[52] Taghi M. Khoshgoftaar and Bibhuti B. Bhattacharyya
and Gary D Richardson. Predicting software errors,

during development, using nonlinear regression
models: a comparative study. In IEEE Transaction on
reliability, 1992.

[53] Taghi M. Khoshgoftaar and Erik Geleyn and Laruent
Nguyen. Empirical case studies of combining software
quality classification models. In Proceedings of QSIC,
2003.

[54] Taghi M. Khoshgoftaar and David L. Lanning and
Abhijit S. Pandya. A comparative study of pattern
recognition techniques for quality evaluation of
telecommunications software. In IEEE Journal on
selected areas in communication, 1994.

[55] Taghi M. Khoshgoftaar and David L. Lanning and
Abhijit S. Pandya. A neural network modeling
methodology for the detection of high-risk programs.
In Proceedings of ISSRE, 1993.

[56] Taghi M. Khoshgoftaar and John C. Munson and
David L. Lanning. A comparative study of predictive
models for program changes during system testing
and maintenance. In Conference on software
maintenance, 1993.

[57] Taghi M. Khoshgoftaar and Abhijit S. Pandya and
David L. Lanning. Application of neural networks for
predicting program faults. In Annals of Software
Engineering, 1995.

[58] Taghi M. Khoshgoftaar and Abhijit S. Pandya and
Hermant B. More. A neural network approach for
predicting software development faults. In ISSRE,
1992.

[59] Taghi M. Khoshgoftaar and Naeem Seliya. Software
quality classification modeling using the SPRINT
decision tree algorithm. In ICTAI, 2002.

[60] Taghi M. Khoshgoftaar and Naeem Seliya. Tree-based
software quality estimation models for fault
prediction. In METRICS, 2002.

[61] Taghi M. Khoshgoftaar and Naeem Seliya. Improving
usefulness of software quality classification models
based on Boolean discriminant functions. In
Proceedings of ISSRE, 2002.

[62] Taghi M. Khoshgoftaar and Ruqun Shan and Edward
B. Allen. Using product, process, and execution
metrics to predict fault-prone software modules with
classification trees. In HASE, 2000.

[63] Taghi M. Khoshgoftaar and Ruqun Shan and Edward
B. Allen. Improving tree-based models of software
quality with principal component analysis. In ISSRE,
2000.

 26

[64] Taghi M. Khoshgoftaar and Vishal Thaker and
Edward Allen. Modeling fault-prone modules of
subsystems. In Proceedings of ISSRE, 2000.

[65] Barbara Kitchenham and Shari Lawrence Pfleeger and
Norman Fenton. Towards a framework for software
measurement validation. In IEEE Transaction on
Software Engineering, 1995.

[66] P. Kokol and V. Podgorelec and M. Zorman and M
Sprogar and M Pighin. An analysis of software
correctness prediction methods. In Second Asia-
Pacific Conference on Quality Software, 2001.

[67] Jean-Claude Laprie. Dependability of computer
systems: concepts, limits, improvements. In ISSRE,
1995.

[68] Paul Luo Li, Mary Shaw, Kevin Stolarick, and Kurt
Wallnau. The Potential for synergy between
certification and insurance. In Special edition of ACM
SIGSOFT Int'l Workshop on Reuse Economics (in
conjunction with ICSR-7), 2002.

[69] Paul Luo Li and Mary Shaw and Jim Herbsleb and
Bonnie Ray and P.Santhanam. Empirical Evaluation
of Defect Projection Models for Widely-deployed
Production Software Systems. In Proceedings of FSE,
2004.

[70] Paul Luo Li and Mary Shaw and Jim Herbsleb and
Bonnie Ray and P.Santhanam. Empirical Evaluation
of Defect Projection Models for Widely-deployed
Production Software Systems. In CMU tech report
CMU-ISRI-04-130, 2004.

[71] Zhaohui Liu and Nalini Ravishanker and Bonnie Ray.
Modeling Dynamic Reliability Growth Using
Bayesian Methods. In Reliability Review, 2003.

[72] Michael Lyu. Handbook of Software Reliability
Engineering. McGraw-Hill, 1996.

[73] Thomas J. McCabe. A complexity measure. In IEEE
Transaction on Software Engineering, 1976.

[74] Audris Mockus and Ping Zhang and Paul Luo Li.
Drivers for Customer Perceived Quality. In
Proceedings of ICSE, 2005.

[75] John C. Munson and Taghi M. Khoshgoftaar. The
detection of fault-prone programs. In IEEE
Transactions on Software Engineering, 1992.

[76] John C. Munson and Taghi M. Khoshgoftaar. The
dimensionality of program complexity. In ICSE, 1989.

[77] John Musa and Anthony Iannino and Kazuhira
Okumoto. Software Reliability. McGraw-Hill, 1990.

[78] National Institute of Standards and Technology. The
economic impacts of inadequate infrastructure for
software testing. Planning Report 02-3, 2002

[79] Dinesh D. Narkhede. Bayesian Model for Software
Reliability. www.ee.iitb.ac.in/uma/~dineshn/

[80] Martin Neil and Norman Fenton. Predicting Software
Quality Using Bayesian Belief Networks. In
Proceedings of 21st Annual Software Engineering
Workshop NASA/Goddard Space Flight Centre, 1996.

[81] Martin Neil and Paul Krause and Norman Fenton.
Software Measurement: Uncertainty and Casual
Modeling. In IEEE Software, 2001.

[82] Martin Neil and Paul Krause and Norman Fenton. A
Probabilistic Model for Software Defect Prediction. In
IEEE Transaction in Software Engineering, 2002.

[83] Niclas Ohlsson and Hans Alberg. Predicting fault-
prone software modules in telephone switches. In
IEEE Transactions on Software Engineering, 1996

[84] Magnus C. Ohlsson and Claes Wohlin. Identification
of green, yellow, and red legacy components. In
ICSM, 1998.

[85] Magnus C. Ohlsson and Per Runeson. Experiences
from replicating empirical studies on prediction
models. In METRICS, 2002.

[86] Thomas J. Ostrand and Elaine J. Weyuker. The
Distribution of Faults in a Large Industrial Software
System. In Proceedings of ISSTA, 2002.

[87] Thomas J. Ostrand and Elaine J. Weyuker and
Thomas Robert M. Bell. Where the bugs are. In
Proceedings of ISSTA, 2004.

[88] Maruizio Pighin and Anna Marzona. An empirical
analysis of fault persistence through software releases.
In ISESE, 2003.

[89] Maruizio Pighin and Roberto Zamolo. A predictive
metric based on discriminant statistical analysis. In
ICSE, 1997.

[90] Maruizio Pighin and Vili Podgorelec and Peter Kokol.
Program risk definition via linear programming
technique. In METRICS, 2002.

[91] Donald F. Schenker and Taghi M. Khoshgoftaar. The
application of fuzzy enhanced case-based reasoning
for identifying fault-prone modules. In International
High Assurance Systems Engineering Symposium,
1998.

[92] Norman F. Schneidewind. Body of Knowledge for
Software Quality Measurement. In IEEE Computer,
2002

[93] Norman F. Schneidewind. Analysis of error processes
in computer software. In Sigplan Note, 1975

[94] Richard Selby and Adam Porter. Learning from
examples: generation and evaluation of decision trees

 27

for software resource analysis. In IEEE Transaction
on Software Engineering, 1988.

[95] Richard Selby and Adam Porter. Software metric
classification trees help guide the maintenance of
large-scale systems. In Proceedings of the Conference
on Software Maintenance, 1989.

[96] Ryouei Takahashi and YoichiMuraoka and Yurihiro
Nakamura. Building software quality classification
trees: approach, experimentation, evaluation. In
ISSRE,1997.

[97] Jeff Tian. Integrating Time Domain and Input
Domain Analyses of Software Reliability Using Tree-
Based Models. In IEEE Transaction on Software
Engineering, 1995

[98] Joel Troster and Jeff Tian. Exploratory Analysis Tools
for Tree-Based Models in Software Measurement and
Analysis. In Proceedings of SAST, 1996.

[99] Joel Troster and Jeff Tian. Measurement and Defect
Modeling for a Legacy Software System. In Annals of
Software Engineering, 1995.

[100] W.N. Venables and Brian D. Ripley. Modern
Applied Statistics with S-plus, 4th edition. Springer-
Verlag, 2000

[101] Michalis Xenos and Dimitris Stavrinoudis and
Dimitris Christodoulakis. The Correlation Between
Developer-oriented and User-oriented Software

Quality Measurements (A Case Study). 5th
European Conference on Software Quality, 1996.

[102] Zhiwei Xu and Taghi M. Khoshgoftaar and
Edward B. Allen. Prediction of software faults using
fuzzy nonlinear regression modeling. In HASE, 2000.

[103] Xiaohong Yuan and Taghi M. Khoshgoftaar and
Edward B. Allen and K Gasesan. An application of
fuzzy clustering to software quality prediction. In
IEEE Symposium on Application-Specific Systems and
Software Engineering Technology, 2000.

[104] Sanford Weisburg. Applied linear regression.
Wiley, 1985.

[105] Lee J. White and Edward I. Cohen. A domain
strategy for computer program testing. In IEEE
Transaction on Software Engineering, 1980.

[106] Alan Wood. Software reliability from the
customer view. In IEEE Computer, 2003.

[107] Elaine Weyuker. Evaluating software complexity
measure. In IEEE Transaction on Software
Engineering, 1988.

[108] Hong Zhu and Patrick Hall and John May.
Software Unit Test Coverage and Adequacy. In ACM
Computing Surveys, 1997.

