

SIGGRAPH2007

Creating Spherical Worlds

Kate Compton, James Grieve, Ed Goldman, Ocean Quigley, Christian Stratton, Eric Todd, Andrew Willmott

Maxis, Electronic Arts

Background

Spore based on "powers of 10"

- Cell life (2D world)
- Planet: creatures, tribes, civilisations
- Solar System
- Interstellar
- Galaxy

Want seamless transitions
 planets need to be spherical

Planet Constraints

- Need to have lots (millions? billions?)
 many more than we can manually author
- Need to be playable
- Must look good
- Need to be fast to generate

 We can't store all these planets
 Would like to transmit them at some point
- Need to support terraforming
 - Player modification of planet to support life

Areas of Interest

Parameterization

- How do we store planet representation over surface? How do we store game data?
- Generating Heightfields
 - What are the operations? How can we make it fast?

Texturing

- Must be heightfield driven
- Authoring
 - Variety, art control

Parameterization

- Possible approaches:
 - Longitude/latitude (pole cap)
 - Gnomic
 - Freeform 3D: Sparse Voxel
 - Charts
 - Regular: cubemap, diamond, duodecahedron ...
 - On-the-fly (Voronoi-style)
 - Orthographic projection
 - Perspective projection

Parameterization Goals

- Minimize distortion and discontinuities
- Efficient (heightfield) storage
- Fast mapping from (x,y,z) to (u,v) and back

- Wrapping between charts
- Rectangular area splatting
- Efficient normal map generation

Parameterization: Cube Maps

Chose cube maps as the best compromise

Parameterization: Cube Maps

- Chose cube maps as the best compromise
- Faces are grids
 - Familiar from previous games
- Distortion at corners
 - But not too bad, much better than pole distortion
- Face wrapping is tractable
 - Pick right face mappings -> simple permutation rules
- Projective projection
 - Lines map to great circles on sphere: very useful!

Colour Map

Normal Map

Normal Map

Derived from height map

Large source of CPU time early on

Standard DDF to find 'flat' normal map

Can then use Jacobian to warp to spherical form

$$J(s,t,h) = \begin{pmatrix} h/w(1-s^2/w^2) & -sth/w^3 & -sh/w^3 \\ -sth/w^3 & h/w(1-t^2/w^2) & -th/w^3 \\ s/w & t/w & 1/w \end{pmatrix}$$
$$w = \sqrt{(s^2+t^2+1)}$$

Generating Height Fields

- Brush system that operates on the sphere
- Brushes are 2D textured rects

Several different brush operations

Conditionally raise or lower terrain

Applied on GPU, after clipping brush footprint to faces

Controlling Terrain Brushes

 Use our effects system, Swarm, to run brushes over the surface

Controlled by:

- Particle systems (spawning other particle systems)
- Randomized parameter ranges, random walks
- Terrain forces
- Force/control operates in the tangent plane

Texturing

- Derive Control Map from height field

 Filter: water level, gradient, curvature
 Combine according to tech artist formula
- Blends source textures to form base colour
 Blends detail maps on the fly
- Planets have type, atmosphere, temperature
 Control colour ramps, and atmosphere/fogging

Color Ramp

Color ramp tinted map

mid

Base Texture is blended with Detail Textures (colorized and controlled by ranges)

Height Field

pack into RGB

RGB Detail Map

ace tomoriou

Terraforming

SIGGRAPH2

Authoring

Concept Sketches

SIGGRAPH

PLAYABLE: Yes TAXONOMY CATAGORY: Storybook

Based on the floor of an ancient forest, this planet has landforms that appear to be ginat roots covered in moss and various fungii-looking rocks.

DEAD

CLOUD PATTERNS

LOOPBOX PARTICLES

LAND SCRIPT

POND SCRIPT

ACH

CIVILIZATION VIEW

SCRIPT TO GO UNDER MASSIVE OBJECT

PLAYABLE: Yes TAXONOMY CATAGORY: Storybook

Inspired by crab shells, this planets is made mostly of small strips of land that randomly connect to each other and to a main section where there is more room for cities.

PLAYABLE: Yes TAXONOMY CATAGORY: Storybook

moss scattered randomly near base of big rocks

Small rocks clustered together

Authoring

- Originally one mega effects script

 random selection between various child effects

 Difficult to control

 Hard to get art-directed

 Introduced a top layer with more control: *terrain scripts*Each script produces a particular kind of
- Each script produces a particular kind of planet

The Result

SIGGRAPH2007

Authoring: Planet Editor

Questions?

