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Abstract—We study the localization of a cluster of activated
vertices in a graph, from adaptively designed compressive mea-
surements. We propose a hierarchical partitioning of the graph
that groups the activated vertices into few partitions, so that a
top-down sensing procedure can identify these partitions, and
hence the activations, using few measurements. By exploiting the
cluster structure, we are able to provide localization guarantees
at weaker signal to noise ratios than in the unstructured setting.
We complement this performance guarantee with an information
theoretic lower bound, providing a necessary signal-to-noise ratio
for any algorithm to successfully localize the cluster. We verify our
analysis with some simulations, demonstrating the practicality of
our algorithm.

I. INTRODUCTION

We are interested in recovering the support of a sparse
vector x ∈ Rn observed through the noisy linear model:

yi = aTi x + εi

Where εi ∼ N (0, σ2) and
∑
i ||ai||2 ≤ m. This support

recovery problem is well known and fundamental to the theory
of compressive sensing, which involves estimating a high-
dimensional signal vector from few linear measurements [1].
Indeed if x is a k-sparse vector whose non-zero components
are ≥ µ, it is now well known that one cannot identify
these components if µ

σ = o(
√

n
m log(n/k)) and one can if

µ
σ = ω(

√
n
m log n), provided that m ≥ k log n [2].

We build upon the classical results of compressive sensing
by developing procedures that are adaptive and that exploit
additional structure in the underlying signal. Adaptivity allows
the procedure to focus measurements on activated components
of the signal while structure can dramatically reduce the
combinatorial search space of the problem. Combined, both
ideas can lead to significant performance improvements over
classical compressed sensing. This paper explores the role of
adaptivity and structure in a very general support recovery
problem.

Active learning and adaptivity are not new ideas to the
signal processing community and a number of papers in recent
years have characterized, the advantages and limits of adaptive
sensing over passive approaches. One of the first ideas in
this direction was distilled sensing [3], which uses direct
rather than compressive measurements. Inspired by that work,
a number of authors have studied adaptivity in compressive

sensing and shown similar performance gains [4], [5], [6].
These approaches do not incorporate any notion of structure.

The introduction of structure to the compressed sensing
framework has also been explored by a number of authors [7],
[8], [9]. Broadly speaking, these structural assumptions restrict
the signal to few of the

(
n
k

)
linear subspaces that contain k-

sparse signals. With this restrictions, one can often design
sensing procedures that focus on these allowed subspaces and
enjoy significant performance improvements over unstructured
problems. We remark that both [7] and [9] develop adaptive
sensing procedures for structured problems, but under a more
restrictive setting than this study.

This paper continues in both of these directions, exploring
the role of adaptivity and structure in recovering activated
clusters in graphs. We consider localizing activated clusters
of nodes whose boundary in the graph is smaller than some
parameter ρ. This notion of structure is more general than pre-
vious studies, yet we are still able to demonstrate performance
improvements over unstructured problems.

Our study of cluster identification is motivated by a number
of applications in sensor networks measurement and monitor-
ing, including identification of viruses in human or computer
networks or contamination in a body of water. In these settings,
we expect the signal of interest to be localized, or clustered,
in the underlying network, and we want to develop efficient
procedures that exploit this cluster structure.

In this paper, we propose two related adaptive sensing
procedures for identifying a cluster of activations in a network.
We give a sufficient condition on the SNR under which the first
procedure exactly identifies the cluster. While this SNR is only
slightly weaker than the SNR that is sufficient for unstructured
problems, we show, via information theoretic arguments, that
one cannot hope for significantly better performance.

For the second procedure, we perform a more refined
analysis and show that the required SNR depends on how
our algorithmic tool captures the cluster structure. In some
cases this can lead to consistent recovery at much weaker SNR.
The second procedure can also be adapted to recover a large
fraction of the cluster. We also explore the performance of our
procedures via an empirical study. Our results demonstrate the
gains from exploiting both structure and adaptivity in support
recovery problems. Due to space restrictions, all proofs are
available in an extended version of the paper [10].



Setting Necessary Sufficient

Passive, unstructured
√

n
m log(n/k) [2]

√
n
m logn [2]

Adaptive, unstructured
√

n
m [11]

√
n
m log k [5]

Adaptive, structured
√

n
m (Thm. 4)

√
n
m log(ρ logn) (Prop. 3)

TABLE I: Compressed Sensing landscape.
Graph Structure Necessary Sufficient

2-d Lattice Rectangle 1
k

√
n
m [9] 1

k

√
n
m [9]

Rooted Tree Rooted subtree
√

k
m [12]

√
k
m log k [7]

Arbitrary Best case 1
k

√
n
m log((ρ+ k) logn)

TABLE II: Adaptive, Structured, Compressed Sensing.

We put our results in context of the compressed sensing
landscape in Tables I and II. Here k is the cluster size and, for
the structured setting, ρ denotes the number of edges leaving
the cluster. Near-optimal procedures for passive and adaptive
unstructured support recovery were analyzed in [2] and [5] re-
spectively. Our work provides both upper and lower bounds for
the adaptive structured setting. Focusing on different notions
of structure, Balakrishnan et. al. give necessary and sufficient
conditions for recovering a small square of activiations in a
grid [9] while Soni and Haupt analyze the recovery of tree-
sparse signals [7], [12]. Our work provides guarantees that
depends on how well the signal is captured by our algorithmic
construction. In the worst case, we guarantee exact recover
with an SNR of

√
n
m log(ρ log n) (Proposition 3) and in the

best case, we can tolerate an SNR of 1
k

√
n
m log((ρ+ k) log n)

(Theorem 5). It is worth mentioning that [7] obtains better
results than ours, but study a very specific setting where the
graph is a rooted tree and the signal is rooted subtree.

II. MAIN RESULTS

Let C? denote a set of activated vertices in a known graph
G = (V,E) on n nodes with maximal degree d. We observe
C? through noisy compressed measurements of the vector x =
µ1C? , that is we may select sensing vectors ai ∈ Rn and
observe yi = aTi x + εi where εi ∼ N (0, σ2) independently.
We require

∑
i ||ai||2 ≤ m so that the total sensing energy,

or budget, is at most m. We allow for adaptivity, meaning
that the procedure may use the measurements y1, . . . , yi−1 to
inform the choice of the subsequent vector ai. Our goal is
to develop procedures that successfully recover C? in a low
signal-to-noise ratio regime.

We will require the set C?, which we will henceforth call
a cluster, to have small cut-size in the graph G. Formally:

C? ∈ Cρ = {C : |{(u, v) : u ∈ C, v /∈ C}| ≤ ρ}

Our algorithmic tool for identification of C? is a dendro-
gram D, a hierarchical partitioning of G. A dendrogram is
a tree of blocks {D} where each block is a connected set
of vertices in G. For now, we state the critical properties
that we require of D. We will see one way to construct such
dendrograms in Section II-C. Note that results in [13] imply
that one can construct a suitable dendrogram for any graph.

Assumption 1. Let D be a dendrogram for G. We assume that

1) The root of D is V , the set of all vertices, and the
leaves of the dendrogram are all of the singletons

Algorithm 1 Exact Recovery
Require: Dendrogram D and sensing budget m, failure prob-

ability δ.
set α = m

4n log2 ρ
, τ = σ

√
2 log((dρL+ 1)/δ).

(1) Let D be the root of D.
(2) Obtain yD =

√
α1TDx + εD

(3) If yD ≥ µ
√
α|D| − τ add D to the estimate Ĉ.

(4) If τ ≤ yD ≤ µ
√
α|D| − τ recurse on (2)-(4) with D’s

children.
Output Ĉ.

{v}, v ∈ G. The sets corresponding to the children
of a block D form a partition of the elements in D
while preserving graph connectivity in each cluster.

2) D has degree at most d, the maximum degree in G.
3) D is approximately balanced. Specifically the child

of any block D has size at most |D|/2.
4) The height L of D is at most log2(n) 1.

By the fact that each block of D is a connected set of
vertices, we immediately have the following proposition:

Proposition 2. For any C? in Cρ at most ρ blocks are impure
at any level in D. A block D is impure if 0 < |D∩C?| < |D|.

A. Universal Guarantees

With a dendrogram D, we can sense with measurements
of the form 1D for a parent block D and recursively sense
on the children blocks to identify the activated vertices. This
procedure has the same flavor as the compressive binary search
procedure [4]. Specifically, fix a threshold τ and energy param-
eter α and when sensing on block D obtain the measurement

yD =
√
α1TDx + εD (1)

If τ < yD < µ
√
α|D| − τ continue sensing on D’s children,

otherwise terminate the recursion. See Algorithm 1. At a fairly
weak SNR and with appropriate setting for τ and α, we can
show that this procedure will exactly identify C?:

Proposition 3. Set τ = σ
√

2 log((dρL+ 1)/δ). If the SNR
satisfies:

µ

σ
≥

√
8

α
log

(
dρL+ 1

δ

)
(2)

then with probability ≥ 1 − δ, Algorithm 1 recovers C? and
using a sensing budget of at most 3nα log2(dρ).

We must set α appropriately so we do not exceed our
budget of m. With the correct choice, the SNR requirement is:

µ

σ
≥

√
24n

m
log2(dρ) log

(
dρL+ 1

δ

)
Algorithm 1 performs similarly to the adaptive procedures

for unstructured support recovery. For constant ρ, the SNR
requirement is ω(

√
n
m log log2 n) which is on the same order

1Unless explicitly stated, log will denote the natural logarithm.



as the compressive binary search procedure [4] for recovering
1-sparse signals. For k-sparse signals, the best results [6], [5]
require SNR of

√
n log k
m which can be much worse than our

guarantee when k ≥ log n and ρ is small.

Thus, the procedure does enjoy small benefit from exploit-
ing structure, but the generality of our set up precludes more
substantial performance gains. Indeed, we are able to show that
one cannot do much better than Algorithm 1. This information
theoretic lower bound is a simple consequence of the results
from [11].

Theorem 4. Fix any graph G and suppose ρ ≥ d. If:

µ

σ
= o

(√
n

m

)
then infĈ supC?∈Cρ P[Ĉ 6= C?]→ 1

2 so that no procedure can
reliably estimate C? ∈ Cρ.

The lower bound demonstrates one of the fundamental
challenges in exploiting structure in the cluster recovery prob-
lem: since Cρ is not parameterized by cluster size, in the
worst case, one should not hope for performance improvements
that depend on cluster size or sparsity. More concretely, if
ρ ≥ d, the set Cρ contains all singleton vertices, reducing to a
completely unstructured setting. Here, the results of [4] imply
that to exactly recover a cluster of size one, it is necessary to
have SNR of

√
n
m . This is one argument for the lower bound.

While our lower bound relies on singletons, they are not the
only challenging facet of the problem. Another is the generality
of the graph G. Indeed, nothing in our setup prevents G from
being a complete graph on n vertices, in which case there is
no structure, so one should not expect stronger results.

The inherent difficulty of this problem is not only infor-
mation theoretic, but also computational. The typical way to
exploit structure is to scan across the possible signal patterns,
using the fact that the search space is highly restricted as in
the Generalized Likelihood Ratio Test or the Scan Statistic. In
the cluster setting, Karger proved that the number of cuts of
size ρ is on the order of Θ(nρ) [14], meaning that restricting
signals to Cρ does not significantly reduce the search space.

Even if we could sweep across all cuts of size ρ, without
further assumptions on G or Cρ there could be a number of
clusters that disagree with C? on only a few vertices, and
distinguishing between these would require high SNR. As a
concrete example, if we are interested in localizing a contigu-
ous chain of activations in the line graph, an adaptation of the
lower bound in [9] shows that if µ

σ = o(max{ 1k
√

n−k
m ,

√
1
m})

then localization is impossible. The second term arises from
the overlap between the contiguous blocks. It is independent of
n, but also independent of k, showing that exploiting structure
does not significantly help when distinguishing clusters that
differ only by a few vertices.

B. Cluster-Specific Guarantees

The main performance bottleneck for Algorithm 1 comes
from testing whether a block of size 1 is active or not. If
there are no such singleton blocks, meaning that the cluster
C? is grouped into large blocks in D, we might expect

Algorithm 2 Approximate Recovery
Require: Dendrogram D, sensing budget parameters α, β.

Set α, z as in Theorem 5. Initialize K = ∅.
(1) Let D be the root of D.
(2) Obtain yD =

√
α1TDx + εD.

(3) If yD ≥ z add D to K and recurse on (1)-(3) with Ds
children.
Construct U an orthonormal basis for span{1D}D∈K.
Sense y =

√
βUTx + ε and form x̂ = Uy/

√
β.

Output Ĉ = argmaxC⊆[n]
1TC x̂

||x̂||
√
|C|

.

that Algorithm 1 or a variant can succeed at lower SNR.
We formalize this idea here, analyzing an algorithm whose
performance depends on how C? is partitioned across the
dendrogram D.

We quantify this dependence with the notion of maximal
blocks D ∈ D which are the largest blocks that are completely
active. Formally D is maximal if D∩C? = D and D’s parent
is impure, and we denote this set of maximal blocks M. If
the maximal blocks are all large, then we can hope to obtain
significant performance improvements.

The algorithm consists of two phases. The first phase (the
adaptive phase) is similar to Algorithm 1. With a threshold z,
and energy parameter α, we sense on a block D with

yD =
√
α1TDx + εD

If yD > z we sense on D’s children and we construct a pruned
dendrogram K of all blocks D, for which yD > z. The
pruned dendrogram is much smaller than D but it retains a
large fraction of C?.

Since we have significantly reduced the dimensionality of
the problem we can now use a passive localization procedure
to identify C? at a low SNR. In the passive phase, we construct
an orthonormal basis U for the subspace:

{1D : D ∈ K}

With another energy parameter β, we observe yi =
√
βuTi x+

εi for each basis vector ui and form the vector y =
√
βUTx+ε

by stacking these observations. We then construct the vector
x̂ = Uy/

√
β. With the vector x̂ we solve the following

optimization problem to identify the cluster ([n] = {1, . . . , n}):

Ĉ = argmaxC⊆[n]
1TC x̂

||x̂||
√
|C|

which can be solved by a simple greedy algorithm. A detailed
description is in Algorithm 2. For a more concise presentation,
in the following results, we omit the dependence on the
maximum degree of the graph, d. This localization guarantee
is stated in terms of the distance d(Ĉ, C?) , 1− |Ĉ∩C?|√

|Ĉ||C?|
.

Theorem 5. Set z so that P[N (0, 1) > σz] ≤
√
5−1
d and2:

α =
m

n log2((ρ+ k) log n)
, β =

m

(ρ+ k)polylog(n, ρ)

2We provide exact definitions of α and β in the supplementary material [10].



Setting µ
σ

One maximal block ω
(

1
k

√
n
m log(k logn)

)
Uniform sizes ω

(
ρ
k

√
n
m log(k logn)

)
Worst Case ω

(√
n
m log(k logn)

)
TABLE III: Instantiations of Theorem 5

where k = |C?|. If:

µ

σ
= ω

(
(ρ+ k)polylog(n, ρ)√

mk
+

√
n log2((ρ+ k) log n)

m|Mmin|2

)

where Mmin = argminM∈MM , then d(Ĉ, C?) → 0 and the
budget is O(m).

The SNR requirement in the theorem decomposes into
two terms, corresponding to the two phases of the algorithm,
and our choice of α and β distribute the sensing budget
evenly over the terms, allocating O(m) energy to each. Note
however, that the first term, corresponding to the passive
phase, has a logarithmic dependence on n while the second
term, corresponding to the adaptive phase, has a polynomial
dependence, so in practice one should allocate more energy to
the adaptive phase. With our allocation, the second term will
usually dominate, particularly for small ρ and k, which is a
regime of interest. Then the required SNR is:

µ

σ
= ω

(
1

|Mmin|

√
n

m
log2((ρ+ k) log n)

)
To more concretely interpret the result, we present suffi-

cient SNR scalings for three scenarios in Table III. We think
of ρ � |C?|. The most favorable realization is when there is
only one maximal block of size k. Here, there is a significant
gain in SNR over unstructured recovery or even Proposition 3.

Another interesting case is when the maximal blocks are
all at the same level in the dendrogram. In this case, there
can be at most ρd maximal blocks since each of the parents
must be impure and there can only be ρ impure blocks per
level. If the maximal blocks are approximately the same size,
then |Mmin| ≈ k/ρ, and we arrive at the requirement in the
second row of Table III. Again we see performance gains from
structure, although there is some degradation.

Unfortunately, since the bound depends on Mmin, we do
not always realize such gains. When Mmin is a singleton block
(one node), our bound deteriorates to the third row of Table III.
We remark that modulo log log factors, this matches the SNR
scaling for the unstructured (sparse) setting. It also nearly
matches the lower bound in Theorem 4.

Theorem 5 shows that the size of |Mmin| is the bottleneck
to recovering C?. If we are willing to tolerate missing the
small blocks we can sense at lower SNR.

Corollary 6. Let C̃ =
⋃
M∈M,|M |≥tM and k = |C?|. If:

µ

σ
= ω

(
(ρ+ k)polylog(n, ρ)√

mk
+

1

t

√
n

m
polylog(n, ρ, j, t)

)
then with probability 1− o(1), d(Ĉ, C̃)→ 0 and n→∞.

Algorithm 3 FindBalance
Require: T a subtree of G and initialize v ∈ T arbitrarily .

(1) Let T ′ be the component of T \{v} of largest size.
(2) Let w be the unique neighbor of v in T ′.
(3) Let T ′′ be the component of T \{w} of largest size.
(4) Stop and return v if |T ′′| ≥ |T ′|.
(5) v ← w. Repeat at (1).

Algorithm 4 BuildDendrogram
Require: T is a spanning tree of G.

Initialize D = {{v : v ∈ T }}.
Let v be the output of FindBalance applied to T .
Let T1, . . . , Tdv be the connected component of T \ v and
add v to the smallest component.
Add {v : v ∈ Ti} for each i as children of T to D.
Recurse at (2) for each Ti as long as |Ti| ≥ 2.

In particular, we can recover all maximal blocks of size t
with SNR on the order of Õ( 1

t

√
n
m ), which clearly shows the

gain in exploiting structure in this problem.

C. Constructing Dendrograms

A general algorithm for constructing a dendrogram paral-
lels the construction of spanning tree wavelets in [13]. Given
a spanning tree T for G, the root of the dendrogram is V , and
the children are the subtrees around a balancing vertex v ∈ T .
The dendrogram is built recursively by identifying balancing
vertices and using the subtrees as children. See Algorithm 4 for
details. It is not hard to verify that a dendrogram constructed
in this way satisfies Assumption 1.

III. EXPERIMENTS

We conducted two simulation studies to verify our theo-
retical results and examine the performance of our algorithms
empirically. First, we empirically verify the SNR scaling in
Proposition 3. In the second experiment, we compare both
of our algorithms with the algorithm from [5], which is
an unstructured adaptive compressed sensing procedure with
state-of-the-art performance.

In Figure 1 we plot the probability of successful recovery
of C? as a function of a rescaled parameter. This parameter
θ(n,m, ρ, µσ ) = µ

σ

√
m

n log2 ρ log(ρ logn)
was chosen so that the

Fig. 1: Probability of success for Algorithm 1 as a function of
the θ = µ

σ

√
m

n log2 ρ log(ρ log(n))
for the torus.



Fig. 2: Error as a function of m for n = 512 and k = 10, 50
(top, bottom) demonstrating the gains from exploiting struc-
ture. Here G is a line graph and ρ = 2, resulting in one
connected cluster.

condition on the SNR in Proposition 3 is equivalent to θ = c
for some constant c. Proposition 3 then implies that with
this rescaling, the curves should all line up, which is the
phenomenon we observe in Figure 1. Here G is the two
dimensional torus and D was constructed using Algorithm 4.

In Figure 2 we plot the error, measured by |Ĉ∆C?|, as a
function of m for three algorithms. We use both Algorithms 1
and 2 as well as the sequentially designed compressed sensing
algorithm (SDC) [5], which does not exploit structure, but
has near-optimal performance for unstructured sparse recovery.
Here G is the line graph, D is the balanced binary dendrogram,
and ρ = 2 so each signal is a contiguous block.

In the first figure, k = 10 and since the maximal clusters
are necessarily small, there should be little benefit from
structure. Indeed, we see that all three algorithms perform
similarly. This demonstrates that in the absence of structure,
our procedures perform comparably to existing approaches for
unstructured recovery. When k = 50 (the second figure), we
see that both Algorithms 1 and 2 outperform SDC, particularly
at low SNRs. Here, as predicted by our theory, Algorithm 2
can identify a large part of the cluster at very low SNR by
exploiting the cluster structure. In fact Algorithm 1 empirically
performs well in this regime although we do not have theory
to justify this.

IV. CONCLUSION

We explore the role of structure and adaptivity in the
support recovery problem, specifically in localizing a cluster
of activations in a network. We show that when the cluster
has small cut size, exploiting this structure can result in
performance improvements in terms of signal-to-noise ratios
sufficient for cluster recovery. If the true cluster C? coincides
with a dendrogram over the graph, then weaker SNRs can

be tolerated. These results do not contradict the necessary
conditions for this problem, which shows that one cannot do
much better than the unstructured setting for exact recovery.

While our work contributes to understanding the role of
structure in compressive sensing, our knowledge is still fairly
limited. We now know of some specific instances where
structured signals can be localized at very weak SNR, but we
do not have a full characterization of this effect. Our goal
was to give such a precise characterization, but the generality
of our set-up resulted in an information-theoretic barrier to
demonstrating significant performance gains. An interesting
direction for future research is to precisely quantify settings
that are not too general nor very specific when structure
can lead to improved sensing performance and to develop
algorithms that enjoy these gains.
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