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Let N be a finite set and z be a real-valued function defined on the set of subsets of N that 
satisfies z(S)+z(T)>-z(SUT)+z(SnT)  for all S, T in N. Such a function is called 
submodular. We consider the problem maXscN {z(S): IS[ <-K, z(S) submodular}. 

Several hard combinatorial optimization problems can be posed in this framework. For 
example, the problem of finding a maximum weight independent set in a matroid, when the 
elements of the matroid are colored and the elements of the independent set can have no more 
than K colors, is in this class. The uncapacitated location problem is a special case of this 
matroid optimization problem. 

We analyze greedy and local improvement heuristics and a linear programming relaxation 
for this problem. Our results are worst case bounds on the quality of the approximations. For 
example, when z(S) is nondecreasing and z(0) = 0, we.show that a "greedy" heuristic always 
produces a solution whose value is at least 1 -  [ (K-1 ) /K]  K times the optimal value. This 
bound can be achieved for each K and has a limiting value of ( e -  l)/e, where e is the base of 
the natural logarithm. 

Key words: Heuristics, Greedy Algorithm, Interchange Algorithm, Linear Programming, 
Matroid Optimization, Submodular Set Functions. 

1. Introduction 

In a recent paper Cornuejols, Fisher and Nemhauser  [2] give bounds on 

approximations (heuristics and relaxations) for the uncapacitated location prob- 

lem. Here we extend these results and generalize them to a larger class of 

problems. We can view the location problem as the following combinatorial one. 

Given a non-negative m x n matrix C = (cii) with column index set N and row 

index se t / ,  for each non-empty S C N define 

z(S) = ~ max cii (1.1) 
i~ l  jES  
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and z (0 )=  0. The problem is to find an S of cardinality less than or equal to a 

specified integer K (K < n) such that z(S)  is maximum;  i.e., 

max {z(S): IS'l <-- K, z(S)  given by (1.1)}. (1.2) 
Sc_N 

As noted in [2], problem (1.2) is a member  of the class of NP-hard  problems.  

A fundamental  proper ty  of the function given by (1.1) is that, for R C S and 

k E N - S, adding k to S will increase z by no more than by adding k to R. Note  

that 

max cij - max ci i = max(0, C~k -- max cij) 
j~Su{k} j~S j~S 

-< max(0, Cik -- max cii) (1.3) 
j~R 

= max c~ j -maxc# ,  i E L  
]~RU(k} ]ER 

where the inequality follows f rom maxjEs c # -  maxj~R cij. By summing the in- 
equalities of (1.3) over  i we obtain that z(S)  defined by (1.1) satisfies 

z ( S U { k } ) - z ( S ) ~ - z ( R U { k } ) - z ( R ) ,  R C S C N ,  k E N - S .  (1.4) 1 

Fur thermore ,  

z (S  U {k}) - z(S)  >- O, S c N, k ~ N - S. (1.5) 

A real-valued function z(S)  defined on the set of subsets of N that satisfies 

(1.4) [and (1.5)] is called a submodular [nondecreasing] set function. Thus a 
natural generalization of (1.2), which we study in this paper,  is 

max {z(S): ISI <- K, z (S)  submodular}. (1.6) 
SC_N 

Note  that when z is nondecreasing the cardinality constraint  is necessary in (1.6) 

to obtain a nontrivial problem. Howeve r  when z does not satisfy (1.5), the 

problem is interesting even without the cardinality constraint  (i.e., K = IN I = n). 

Although our results apply to arbi trary submodular  functions,  they are much 
sharper for nondecreasing submodular  functions. 

In Section 2 we give several  equivalent definitions of submodular  functions 
and we will see that submodular i ty  is in some sense a combinatorial  analogue of 

concavity.  Most of these results are not original; we collect them together and 
prove  them here to facilitate availability and use throughout  this paper.  

A rich variety of combinatorial  optimization problems can be modeled as the 
maximizat ion of submodular  functions as in (1.6). In Section 3 we present  three 

classes of these problems.  One class, which contains the location problem, arises 
f rom matroids,  another  f rom the assignment  problem and a third f rom boolean 
polynomials.  To motivate  the representat ion of combinatorial  optimization 

I This property for the uncapacitated location problem has been observed by Babayev [1], Frieze 
[6] and Spielberg [9]. 
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problems by (1.6), we now present the location problem in its matroid context.  

Le t  E be a finite set and ~ a nonempty collection of subsets of E. The system 

= (E, ~*) is called a matroid if 

(a) F1 E ~ and F2 C F1 ~ F2 E ~-. 
(b) For all E'  C E every maximal member of ~-(E') = {F: F E ~-, F C_ E'} has 

the same eardinality. 
The members of o~ are called independent sets. 

Suppose that the elements {e} of E are assigned weights {Ce} and consider the 

matroid optimization problem of determining 

v ( E ' ) =  max ~ Ce. (1.7) 
FE~(E') eff.F 

The function v(E') is submodular and nondecreasing (see Proposit ion 3.1) but it 
is completely unnecessary to consider approximations for (1.7) since it is 

well-solved by a simple greedy algorithm [5]. 
Consider, however,  a generalization of (1.7) in which the elements of E are 

assigned colors as well as weights; in other words E is partit ioned into subsets 
{Qj: j E N }  and the elements of Qr are colored j. The problem is to find a 

maximum weight independent  set that contains no more than K colors. Let  

z(S) = = max 
jES e~F kj~S 

The function z(S) in (1.8) gives the value of a maximum weight independent  set 
that is restricted to the colors contained in  S. The submodularity of v(E') in (1.7) 

implies the submodularity of z(S) in (1.8), see Proposit ion 2.5. Thus the matroid 
optimization problem of finding a maximum weight independent set that contains 
no more than K colors is a case of (1.6) where z(S) is given by (1.8). 

To show that the location problem can be placed in the f ramework of (1.7) and 
(1.8) let E={(i , j ) :  i EI ,  j E N }  and partition E into the subsets Ei = 
{(i, j): j E N}, i ~ I. Define an F C E to be independent if and only if IF VI Ei[ --< 1, 
i ~ L This system clearly satisfies matroid property (a) and property (b) follows 
from the fact that every  maximal independent set of E' has cardinality [{i E 
I: E' V1Ei~ 0}[. The matroid defined by this system is the well-known partition 
matroid. 

Let  cir --- 0 be the weight of (i, j) E E, i E I, j E N and Qr = {(i, ]): i ~ I}, j ~ N. 
When E' = U rEs Qr, S c_ N, we obtain 

v ( U  0 r ) =  ~ max cir. (1.9) z ( S ) =  
\ rES / iEl rES 

Note that (1.9) is identical to (1.1) so that we have described the location 
problem as an optimization problem with respect  to a partition matroid and have 
obtained another proof  that the location problem belongs to (1.6). The result 
obtained in this indirect and tedious way provided impetus for our work. 
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Sections 4-7 contain the results on approximations.  Here  we briefly sum- 

marize the main results for  z(0) = 0, z nondecreasing and z ~  0. 
In Section 4 we study a greedy heuristic that first solves (1.6) for K = 1 and 

then iteratively approximates  for larger K. If  S, ]SI = p ,  is the approximate  

solution for K = p, then the approximate  solution for K = p + 1 is determined by 

adding to S (if possible) a j* such that z(S U{]*})= maxj~sz(S U{j}) and 

z(S U {j*}) > z(S). We obtain the bound 

value of greedy approximat ion > (K_~ 1) K e - 1  
value of optimal solution - 1 - - -  - > - - e  

where e = 2.718 • • • is the base of the natural logarithm. This result is generalized 

to the case in which the greedy algorithm selects a subset  of cardinality R at 

each iteration. 
In Section 5 we analyze an interchange heuristic for (1.6) that begins with an 

arbitrary set S of cardinality K and at tempts  to improve on the value of this set 

by replacing r members  of S by r members  of N - S, 1 -< r-< R. The procedure  

stops when no such improvement  is possible. When R divides K we obtain the 

bound 

value of interchange a p p r o x i m a t i o n  K 
value of optimal solution - 2K - R" 

For  the matroid case, in which z(S) is given by (1.8), we can state (1.6) as an 
integer program. In Section 6 we study a linear programming relaxation of this 

integer program. The quality of the linear programming approximat ion depends 
on the matroid structure relative to the sets {Qj}. For  a particular case that 

includes the location problem we obtain the result 

value of greedy approximat ion >_ I _ [ K - - I ~ K .  
value of linear programming solution 

All of the bounds mentioned above  are achieved by worst-case examples .  
The per formance  of a heuristic somet imes can be improved by combining it 

with partial enumerat ion.  Suppose for some heuristic we have (value of heuris- 

tic)/(value of optimal solution)-> l - B ( K ) .  In Section 7 we analyze the approx-  
imation that first enumerates  all (IRul) subsets of N for  a specified R < K and then 
applies the heuristic to each of the (1~1) problems (1.6) with a fixed subset  of 

cardinality R, and K replaced by K - R .  Choosing the best  of these solutions 

yields 

value of R-enumerat ion  plus heuristic approximat ion > 
value of optimal solution 

( K - R )  
>-1 ~ B ( K - R ) .  
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2. Submodular set functions 2 

Definition 2.1. G iven  a finite set  E, a rea l -va lued  func t ion  z on the set  of  subse t s  

of  E is cal led submodular if 

(i) z(A)  + z (B)  >- z (A U B) + z(A VI B), VA, B C E. 

We shall o f t en  make  use  of  the inc rementa l  value of adding e l emen t  j to the set  

N; let p~(S) = z(S U {j}) - z(S). 

Proposition 2.1. Each of the following statements is equivalent and defines a 
submodular set function. 

(i) z(A) + z(B) >-- z (A U B) + z (A f-I B), 

(ii) oj( S) >- oj( T), V S C T C E and 

(iii) oj(S) >- pj(S U {k}), VS C_ E and 

(iv) z (T )<- z (S )+  ~ p j ( S ) -  ~ p j ( S U T - { j } ) ,  
jET S jES-T 

(v) z(T)<--z(S)+ ~ oj(S), V S C _ T C E .  
]ET-S 

(vi) z ( T ) < - z ( S ) -  ~, p i (S -{ j } ) ,  V T C S C E .  
j@S-T 

(vii) z (T)<-z (S )  - ~ p j ( S - { j } ) +  ~] p j ( S A T ) ,  

VA, B C E .  

j @ E - T .  

j @ E -  (S U {k}). 

VS, TC_E. 

VS, T C E .  
jES-T jET-S 

Proof.  W e  will p r o v e  the equ iva lence  of (i) and (ii), and then  
( i i i ) ~  ( i i ) ~ ( i v ) ~  ( v ) ~  (iii). S t a t e m e n t s  (vi) and (vii) can  be  s h o w n  to be  

equ iva len t  in a similar  manner .  
(i) ~ (ii). T a k e  S C  T, j E  T, A = S U {j} and B = T in (i). This  yields 

z(S  U {j}) + z(T)  >- z (T  U {j}) + z(S),  
o r  

pj(S) = z(S  U {/}) - z(S)  >- z (T  U {j}) - z(T)  = pj(T). 

(ii) ~ (i). L e t  {j, . . . . .  Jr} = A - B. F r o m  (ii) we  obta in  

pj,(A n B u {j, . . . . .  ji-,}) >- pi,(B U {j~ . . . . .  Ji ,}), i = 1 . . . . .  r. 

S u m m i n g  these  r inequali t ies  yields 

z ( A ) -  z (A  N B) >- z (A  U B ) -  z(B). 

2 Edmonds  [4] and Shapley [8], among  others,  give various propert ies of submodular  set funct ions.  
See also [ll  and [6]. 
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(iii) ~ (ii). Take  S C T, j •  T, and T - S = { J 1  . . . . .  Jr}. Then  f rom (iii) we have 

pj(S) > pj(S U (Jl}), pj(S U {j,}) _> pj(S U {Jl, j2}) . . . . .  

pj( S U {Jl . . . . .  Jr-I}) >-- pj( T). 

Summing these r inequalit ies yields (ii). 

(ii) ~ (iv). For  arb i t rary  S and T with T - S = {Jl . . . . .  jr} and S - T = {kl . . . . .  kq} 
we have 

z(S  U T) - z(S) = ~ [z(S U {Ji . . . . .  it}) -- z(S  U {Jl . . . . .  jt-l})] 
t -1  

= ~ p j , ( S U l j l  . . . . .  jt_l})<-~Oi,(S) = ~_, pi(S) (2.1) 
t - 1  t = l  j ~ T - S  

where  the inequal i ty  fol lows f rom (ii). Similarly 

q 

z(S U T) - z ( T )  = ~_, 
t = l  

[z(T U {k, . . . . .  k,}) - z (T  U {k, . . . . .  kt-,})] 

q q 

= ~, &,(T 0 {k, . . . . .  kt} - {kt}) -> ~ &,(T U S - {kt}) 
t = l  t = l  

= ~ pj(SU T - { j } ) .  
j E S - T  

We obtain (iv) by subtract ing (2.2) f rom (2.1). 

(iv) ~ (v). If SC_ T, S - T = t~ and the last te rm of  (iv) vanishes.  
(v) ~ (iii). Subst i tu te  T = S  U {j, k}, j¢~ S U {k} in (v) to obtain 

z(S  O {j, k}) -< z(S) + pi(S) + p k ( S ) ,  

o r  

(2.2) 

pj(s o {k}) = z(S o {/, k}) - z(S o { k } )  

= z(S  0 {], k}) - p k ( S )  --  z(S) <~ p j ( S ) .  

In many  cases we consider  nondecreas ing  submodula r  funct ions ,  which,  in 
addit ion to (i), sat isfy z(S) <- z (T) ,  VS C T C E. 

Proposi t ion 2.2. Each of the following statements is equivalent and defines a 
nondecreasing submodular set function. 

(i') z(A) + z(B) >- z(A U B) + z(A A B), VA, B C E, 

z(A)<--z(B), V A C B C E .  

(ii') pj(S)>-pj(T)>-O, V S C T C E ,  V j ~ E .  

(iv') z(T)  <- z (S )+ ~_~ pj(S), VS, T C E. 
j E T - S  

Proof. (i ')¢~(ii ')  is a trivial consequence  of ( i ) ~ ( i i ) .  N o w  ( i i ' )© ( i i ) ~  (iv). But  
pj(T) >--0 implies that  the last te rm of  (iv) is nonposi t ive ,  and this fac t  gives (iv'). 
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Finally, ( i v ' ) ~  (ii') since choosing S = T U {j} in (iv') yields z ( T ) < - z ( T  U {j}) or 

pj(T) >- O. 

We remark that definitions (ii) and (ii') suggest decreasing returns to scale and 
the notion of concave set functions. Fur thermore (i) and (i') when rewritten as 

[ z ( A ) -  z ( A  N B)] + [ z ( B ) -  z ( A  N B)] -> 

> - [ z ( A U B ) - z ( A N B ) ] ,  VA,  B C _ E  

can be thought of as generalized subadditivity. However ,  subadditivity by itself 
is not sufficient to obtain any of our results on approximations given in Sections 
4, 5 and 6. 

Now we look at other properties of submodular set functions that are useful in 

the following sections. Since E is a finite set, upper and lower bounds on pj(S) 

exist. 

Proposition 2.3. 
VSC_E,  j E E -  S, then 

(a) z (T )  <- z (S)  + 

I f  z is a submodular  set funct ion on E with 0 <--oi(S)<-tO, 

~ ,  oi(S)+l S-TIO, VS, TC_E. 
]~T-S 

(b) z(T)<--z(S)  - ~ o j ( S - { j } ) + I T - S I t o ,  VS,  T C E .  
]cS-T 

Proof. Substitute the bounds on Or into definitions (iv) and (vii). 

We shall also make use of the incremental value of adding subset J to subset 
S. Let  o](S) = z (S  U J) - z(S) .  

Proposition 2.4. I f  z is a nondecreasing submodular  set funct ion on E and 

{J1 . . . . .  Jr} is a partition of  T - S, Then 

z (T )  <-- z (S )  + 2 p],(S). 
i=1 

The next  four propositions show how to generate new submodular functions 
from given ones. Of particular interest to us is the creation of submodular 
functions by letting subsets {Qj} of E be the elements in a set function. 

Proposition 2.5 (See (70) of [4]). Given a submodular  set funct ion v on the set o f  
subsets o f  E and a collection of  subsets { Qi}, ] E N, o rE;  if (a) v is nondecreasing, or 

(b) the {Qj} are disjoint, then z (S)  = v ( U  iesQi) is a submodular  set funct ion on the 

set o f  subsets o f  N. 

Proof. (Throughout the proof  we abbreviate U iST Qj by U r Qj.) Submodulari ty 
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of v implies 

z (A)  + z ( B ) =  v ( U  Oj)+ v ( U  Oi) 
A B 

-> vf(U Qj) u (U Qp] + v[(U Oj) n (U Qp]. 
A B A B 

A l s o  (UAQj)N(UBQj)~ UANBQi wi/£h equality if (b) holds. Therefore  either 

(a) or (b) implies v[(UAQj) r~(UBQj)]~v(UArlBQj). S i n c e  ( U A Q p U  
( U  B Qi)= U AUB Qj we obtain z ( A ) +  z ( B ) > - z ( A  U B ) +  z ( A  N B). 

Proposition 2.6. Let  dj be the weight o f  j C E. The linear set funct ion z ( S )  = 

~ j ~ s d  i, S C E, is submodular. 

Proposition 2.7. A positive linear combination of  submodular  funct ions is sub- 
modular. 

Proposition 2.8. Given a submodular  set funct ion v(S),  S C E, then the set 

function z (S)  = v ( E  - S) is submodular  on S C E. 

Proof. 
z (A)  + z (B)  = v ( E -  A ) +  v ( E -  B)  

>- v[(E - A)  U (E - B)] + v[(E - A)  f3 (E - B)] 
= v ( E -  A 71B)+ v ( E -  A U B)  = z ( A  CI B ) +  z (A  U B). 

3. Some classes of submodular functions 

A. Matroid optimization 

Let  d / / = ( E , @ )  be a matroid, Ce the weight of e E E ,  and o%(E')= 
{F: F E J ,  F C E'}, E '  C E. Members of the complement  of ~ are called depen- 

dent sets, minimal dependent  sets are called circuits. If F is independent and 
F U {j} is dependent  then F U {j} contains exactly one circuit. If C' and C 2 are 
distinct circuits of F and e E c l c l  C 2, then C~U C2-{e}  contains a circuit. 
(Refer to Section 1 for other terminology.) 

Edmonds [5] has given a greedy algorithm that finds a maximum weight 
independent set in a matroid. (Note that, since subsets of independent sets are 
independent,  every  maximum weight independent set contains a maximum 
weight set in which all elements have positive weight. Thus we assume, without 
loss of generality, that all elements of E have positive weight.) The greedy 
algorithm proceeds as follows. Arrange the elements of E in a list such that e' 
above e implies Ce,-- > Ce. Examine the topmost element of the list not yet 
considered and select it if it does not form a circuit with some of the elements 
already selected. The subset selected after  the last element has been considered 
is of maximum weight. 
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Lemma 3.1. Assume that the elements of  E have been put  in a list as described 

above. Let  F be the maximum weight independent set in ~-(E') given by the greedy 

algorithm, G the maximum weight independent set in ~ ( E '  U {e}), e~E E ' ,  given by 

the greedy algorithm and f E E - (E '  U {e}). Exactly one of  the following four  

statements is true. 
and G U {S} are both independent. 
and G U {f} are both dependent and contain the same unique 

(1) F U { f }  

(2) F U {.f} 
circuit. 

(3) F U{f}  
(4) F U{f}  

the circuit of  

is independent and G U{f} is dependent. 
and G u{f} are both dependent. G = F U { e } -  {er}, er# e, and er is in 

F ub~}. 

Proof. These four s tatements  are mutually exclusive. Fur thermore ,  the greedy 

algorithm implies that G must  be F, F U { e }  or F U { e } - { e r } ,  e~#e. More 

precisely G = F U {e} if F O {e} is independent  and otherwise G = F U {e} -  {er}, 
where er (er can be e) is a minimum weight e lement  in the unique circuit of 

F U {e}. 
We now prove,  by considering separately the three possibilities for G, that one 

of the four  s ta tements  must  be obtained. 

(a) G = F. Either (1) or (2) must  be true. 

(b) G = F U { e } . I f  G U { f } E ~ t h e n  F U { f } E ~ a s  F C G  and we ob t a in ( I ) .  

If  G U {f} ~ ~,  we obtain (2) if F U {f} ~E ~ and we obtain (3) if F U {f} E .@. 
(c) G = F U {e} -  {G}, e~# e. Le t  C be the unique circuit in F U {e}. Suppose 

' first that F U {f} E ~. Then C is also the unique circuit in F U {e, f}. Thus er E C 

implies that F U {e , f } - {e~}= G U{f} is independent  and we obtain (1). Now 
suppose that  F U{f} ~E ~ and let C be the unique circuit i n F  U{f}. I f  e, E C, then 

C U C - { e r }  contains a circuit in G U{f} and we obtain (4). I f  er~t~,  then 

C F U{f} - {er} C G U{f}. Hence  C is the unique circuit of G U{f} and we obtain 
(2). 

Proposition 3.1. 3 The set function 

v ( E ' ) =  max ~ ce, E 'C_E,  
FE~(E')  e E F  

is submodular and nondecreasing. 

Proof. Since E C E '  implies ~(/~) _C ~ ( E ' ) ,  v is nondecreasing.  
To prove  submodular i ty  let F, G, e and f be defined as in L e m m a  3.1. By 

Proposi t ion 2.1 it suffices to show that p s ( E ' ) ~  ps(E' U {e}). We will establish this 
result for the four  mutually exclusive and collectively exhaust ive s ta tements  of 

L e m m a  3.1. Note  that for all /~ c E, ps(/~) ~-- Q. 

3 j. Edmonds has pointed out to us that Proposition 3.1 also can be proved using Proposition 2.5 
and the fact that the rank function of a matroid is submodular [4]. We prove Proposition 3.1 here 
because it does not seem to be in the literature, except in an unpublished paper by Woodall [10], 
which proves a more general result for polymatroids. 
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(1) and (3). Since F U {f} E o%, pI(E') = % 
(2) ps(E') = ps(E' U {e}) = c I - min~ec % where C is the unique circuit in F U 

{f} and G U {f}. 
(4) In this case G = F U {e}-{er}, er# e, where er ~.C, the unique circuit of 

F U{e}, and er E (J, the unique circuit of F U{f}. Thus the unique circuit C'  of 

G U{f} is contained in C U C - {er} and 

p s ( E ' U { e } ) = c  f - m i n c g - < c  s -  min cg 
g~C' gCCOC-{er} 

-< c s - min Q = of(E'), 
gEC 

where the last inequality follows f rom G = F U {e}-{¢} ,  which implies % = 
min~ec % 

Combining Proposi t ion 2.5 with Proposi t ion 3.1 we obtain. 

Proposition 3.2. Let {Q~}, ] ~ N, be a collection of subsets of  E. The set function 
z(S) = maX{~e~FCe: F E o~(Ujes  Qj)}, s c N, is submodular and nondecreasing. 

To interpret  the use of Proposi t ion 3.2 in the context  of problem (1.6) we 

consider a graphic matroid. Given a graph G, a subset  of its edges is an 

independent  set it" the subgraph induced by these edges is a fores t  (contains no 

cycles). Each edge is assigned a weight and one or more colors f rom the set N ;  

Qj, ] E N, is the subset  of edges that are colored ]. z(S),  S C N, is the value of a 
maximum weight fores t  that contains colors only in the set S. Problem (1.6) is to 

find a max imum weight fores t  that contains no more than K colors. 

B. Generalized transportation problems 

Let  I be a set of sources,  J a set of sinks and cik the value of assigning source 
i to sink k. Consider the family of t ransportat ion (or assignment) problems 

parametr ized by T C_ I :  

v(T)  = max ~ ~ CikXik, 
iE T k~J 

~,Xik <--bk, k ~ J ,  
lET (3.1) 

~X~k <--l, i ~ T ,  
k@J 

xik -> 0, i E T ,  k E J .  

Proposition 3.3 (Shapley [7]). v(T),  T C_ L given by (3.1) is submodular. 

We now consider a generalization of (3.1) in which there is a set N of 
suppliers. The ]th supplier, ] ~ N, can provide a0 units f rom source i and has a 
fixed cost of d i. Le t  z(S) be the value of an optimal solution to the t ransportat ion 
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problem when the set 

z(S) = max 

of suppliers S C_ N is employed, i.e., 

E E E 4, 
i e l  kEJ rES 

~x~k <--bk, k ~ J ,  
i~I  

i e I ,  
kEJ jES 

X i k ~ O ,  i E I ,  k E J .  

(3.2) 

Proposition 3.4. z(S), S C_ N, given by (3.2) is submodular. 

Proof. For the moment ignore the fixed costs {dj} and consider a problem of the 
form (3.1) with ~ iE1~reN air sources each with an availability of one unit. Let  M 
be the set of these sources and g(T), T C_ M, the maximum value solution of 
(3.1) that can be obtained from the subset T. By Proposition 3.3, ~7(T) is 
submodular. Now let Qr be the subset of M corresponding to the jth supplier. By 
Proposition 2.5, 2(S)=g(UresQj) ,  SC_N, is submodular. Finally, the sub- 
modularity of z(S) = ~ (S ) -  ~,rEs di is a consequence of Propositions 2.6 and 2.7. 

We note that with z(S) given by (3.2), problem (1.6), without the cardinality 
constraint, gives an optimal set of suppliers. In the particular case in which each 
supplier is associated with only one source, we obtain the so-called "capacitated 
location problem". 

C. Boolean polynomials 

Let g be a real-valued function on the set of subsets of N and for all S C_ N 
define 

z(S) = ~ g(T)= ~_~ g(T) I-[ xj, 
TC_S TC_N j E T  

1, j E  S, (3.3) 
w h e r e x  i =  0, j ~ S .  

We note that any set function z(S) can be represented by (3.3) by defining 
g(0) = z(0) and g ( S ) =  z ( S ) - ~ , r c s g ( T ) .  The problem of maximizing z(S) is a 
nonlinear boolean program. 

Proposition 3.5. z(S) given by (3.3)is  submodular if and only if ~,rc_sg(T U 
{j,k})--<0 for all S C N  and ] , k ~ S ,  j # k ,  and nondecreasing if and only if 
~,Tc_sg(T U {j}) --> 0 for  all S C N and ]~ S. 

Proof. We have 

p~(S) = g ( T ) -  ~_. g (T)= ~ g(T O {j}) 
TC_SU{j} TC_S TC_S 
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and 

pj(S)-pj(SU{k})= ~ g (TU{ j } ) -  ~, E(TU{j}) 
TCS TC_SU{k} 

= - ~ g ( r  u {j, k} ) .  
TcS 

An interesting case of (3.3) is the quadratic boolean polynomial  that is 

obtained by putting g ( T )  = 0 for  [TI > 2. Here  a simple necessary  and sufficient 

condition for submodular i ty  is g({i, j})<-O for all {i, j} with i #  j, and z is 

nondecreasing if and only if g ({ j} ) -  -~ , i¢ ig({ i ,  1}) for all j ~ N. In this context,  

problem (1.6) takes the form: 

max{xHx:  ex <- K,  x i E {0, 1}, j = 1 . . . . .  n}, 

where H is a symmetr ic  matrix with non-posit ive off-diagonal elements  and 

e = (1, 1 . . . . .  1). 

Submodular  quadratic polynomials  can be used to describe the cut function of 

a graph. Given an undirected graph G = (V, E),  let w[ i >- O, i < j be the weight of 

edge (i, ]) E E. A cut in G is a partition of the vertices into sets S and V - S. The 

value of the cut is given by the function v (S) = ~ ies ~, ie  v-s wo, where wij = wii = wb 

if (i, ]) ~ E and wij = 0 otherwise.  

Let  z ( S ) = - ½ ~ , i E s ~ , j e s  wii; z is submodular  since 

p,(S) - p,(S U {k}) = j E S L I { k }  £ Wrj -- ~S" Wr] = Wrk ~ O. 

The submodular i ty  of v follows by noting that v ( S )  = z ( S ) +  z ( V -  S)  - z ( V )  and 

then using Proposi t ions 2.7 and 2.8. Problem (1.6) in this context ,  without  the 

cardinality constraint,  is to find a max imum cut in the graph. Using the set 

function z we see that it is equivalent  to 

max{½[eWe - x W x  - (e - x )  W ( e  - x)l: xj C {0, 1}, j = 1 . . . . .  n}, 

where W = {wij}. 

4. The greedy heuristic for submodular set functions 

A natural way to find solutions to problem (1.6) quickly is to start f rom the 
null set and add elements  one at a time, taking at each step that e lement  which 
increases z the most.  The resulting solution is called a "g reedy"  solution, and 

the procedure,  which we now define formally,  the "g reedy"  heuristic. As before,  
we let pj(S)  = z ( S  U {j}) - z (S) .  

The greedy heuristic f o r  set func t ions  

Initialization. Let  S ° =  0, N O= N and set t = 1. 
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Iteration t. Select i ( t ) E  N t-I for which pi(t)(S t-l) = maxieN,-l(S t-l) with ties 

settled arbitrarily. Set pt-~ = Pi(t)(St-1) • 
Step 1. If Pt 1<-0, stop with the set S t(* , K * = t - I < K .  If p t - l > 0 ,  set 

S' = S t-~ U {i(t)} and N t = N t-~ - {i(t)}. Continue. 

Step 2. If t = K, stop with the set S K*, K* = K. Otherwise set t -~ t + 1. 

Let  Z be the value of an optimal solution to problem (1.6) and let Z a be the 

value of a particular solution to (1.6) constructed by the greedy heuristic. Note 

that 

Z G = z ( 0 ) + p 0 + ' ' ' + p K , - b  K * - < K ,  

and, since the {Or} may depend on how ties are settled, Z G may as well. We will 

assume throughout this section that K* -> 1, thus excluding trivial problems with 

Z = Z ~ = z ( 0 ) .  

Let  C(O) be the class of submodular set functions satisfying or(S)>--O, 
V S C N ,  j ~ N - S .  

Proposition 4.1. 
steps, then the corresponding {p~}ff_-*o 1 satisfy 

Suppose z E C(0), 0 -> 0, and the greedy heuristic stops after K* 

t = 0  . . . . .  K * - I  
t-1 

Z <- z(fJ) + Y~ pi + Kp, + tO, 
i = 0  

and also (4.1) 
K * - I  

Z<-z( t t )+  ~, p i+K*O,  i f K * < K .  
i = 0  

Proof. By Proposit ion 2.3, z (T )  <- z (S)  + ~ jeT-sp i (S )  + [S - T]O. 
Taking T to be an optimal solution of problem (1.6), S to be the set S t 

generated after t iterations of the greedy heuristic, and using 

Z = z ( T ) ,  pi(S')<-p,, p,>-O, 

[S t -T l<_ t ,  0>_0, [ T - S t I ~ K ,  

and 

we obtain 

t l 

z(S ' )  = z(O) + ~ p~, 
i = 0  

t - I  

Z < - z ( f a ) + ~ p i + K p t + t O ,  t = 0  . . . . .  K * - I .  
;=0 

In addition, if K* < K, taking S = S K* yields 

K * - I  

Z<--z(O)+ ~ p i + K * O  
i = 0  

a s  PK* ~ O. 

From Proposition 4.1 we immediately obtain some simple results. For exam- 
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pie, putting 0 = 0 in the last inequality of (4.1) yields 

Proposition 4.2. I f  the greedy heuristic is applied to problem (1.6) with z non- 

decreasing and stops after K*  < K steps, the greedy solution is optimal. 

From the first inequality of (4.1) with t = 0 we obtain 

Proposition 4.3. I f  the greedy heuristic is applied to problem (1.6) then 

Z - Z  G K -  1 

z -  z(O)- K 

Proof. The inequality for t = 0 of (4.1) yields Z - z ( 0 ) - <  Kpo <-K(Z  G -  z(0)) or, 
equivalently, 

Z - Z  G K - 1  

Z -  z ( 0 ) -  K 

The bound of Proposit ion 4.3 can be tight only for very large values of 0. For  

example, when 0 = 0 we will obtain the much sharper bound 

Z - z ( 0 )  -< 

In fact, we will obtain a family of K bounds, each one of which is tight for a 
different interval containing /9. These intervals cover  the whole nonnegative 
domain of /9 that is of interest. The bounds are obtained by applying linear 
programming to the problem of minimizing Z c subject to the inequalities (4.1). 
Lemma 4.1 states the linear program and its solution. After proving the lemma, 
we will use it to establish the bounds. Let  a = (K  - 1)/K. 

Lemma 4.1. Given positive integers j and K, j < K, and a non-negative real 

number b, let 

J 
P (b )  = Kb + rain ~ xl, 

i=O 

t -1  

~ _ ~ x i + K x t > - l - ( K + t ) b ,  t = 0  . . . . .  j, (4.2) 
i=0 

i 
xi ~- 1 - ( K  + j + 1)b, 

i=0 

then 

and 

~ '1-  (j + 1)b 
P(b)  = (1 + (K - ]  - 1)b - O~ j+ l  

/ / j  "~- 1 ~  j+ l  minb_~0 P ( b ) ;  1 -  ~ , -R- ]~  . 

if b ~ aJ+l/K, 
if b >- ai+l/K, 



G.L. Nemhauser, L.A. Wolsey, M.L. Fisher/Maximizing submodular set functions 279 

I f  the  last  c o n s t r a i n t  is o m i t t e d  f r o m  (4.2), then  P ( b )  = 1 + ( K  - j - 1)b - ai--i f o r  

all b >-O. 

Proof. The  dua l  of  p r o b l e m  (4.2) is 

j+l 

W ( b )  = K b  + m a x  ~'~ {1 - ( K  + t )b}ut ,  
t=0 

j+l 

Kui  + ~ ut = l ,  i = O . . . . .  j, (4.3) 
t=i+l  

ut>--O, t = O  . . . . .  j + l .  

W e  now p r o c e e d  to ca l cu la t e  W ( b ) ,  and  h e n c e  b y  L P  dua l i ty  P ( b ) .  L e t  

h = 1 - u i + l  in (4.3). T h e n  we o b s e r v e  tha t  f eas ib le  va lues  of  the  r e m a i n i n g  

va r i ab l e s  ut, t = 0 . . . . .  j, are  un ique ly  d e t e r m i n e d  wi th  ut = ( M K ) a  j-t and  

J 
{1 - ( g  + t )b}u t  = h[1 - o / j+ l -  (J At- 1)b]. 

t=O 

T h e r e f o r e  

W ( b )  = m a x  { K b  + x[1 - aj.l _ (] + 1)b] + (1 - h)[1 - ( K  + j + 1)b]} 
O~A~I 

= m a x  { 1 - ( ] +  1)b + h ( K b -  aJ+l)}. 
O_<h~l 

I t  f o l l ows  i m m e d i a t e l y  tha t  h = 0 (us+1 = 1), if K b  < a i+l, and  h = 1 (uj-+t = O) if 

K b  > a i+1. T h e r e f o r e  

W ( b )  = max{ l  - (j + l )b ,  1 + ( K  - j - 1)b - iff  j + l }  

if b < - d + l / K ,  

if b >- aJ+l/K. 

and  

{ l - ( j +  l )b ,  (4.4) 
P ( b )  = W ( b )  = + ( K  - j - 1)b - ai+l,  

N o w  we  o b s e r v e  tha t  as ] +  1 > 0  and  K -  j -  1 - 0 ,  

[ a i + l ' ~  / j  + 1"~ i+, 
min P ( b )  = PI ] = 1 - 
b_ 0 -g -  t - 2 - )  

C o n s i d e r  now the  case  w h e r e  the  l as t  c o n s t r a i n t  of  (4.2) is omi t t ed .  D r o p p i n g  

this  c o n s t r a i n t  is e q u i v a l e n t  to  f inding an op t ima l  dua l  so lu t ion  wi th  ui+l = 0. But  

then  f rom (4.4) w e  ob t a in  P ( b )  = 1 + ( K  - j - 1)b - a i+1. 

T h e o r e m  4.1. f f  the  greedy  heur is t ic  is app l ied  to p r o b l e m  (1.6) with  z E C(0) ,  
then  

(a) i f  it t e rm ina t e s  a f t e r  K *  s teps ,  then  

(b) i f  

Z -  Z ~ [ K * \  K* 
z -  z(O) + KO =- ' 

0 < _ 
0 OL k 

~ 2 m  
Z - z ( O )  + K O  - -  K '  
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then  

Z -  Z ° 

Z - z(O) + KO 

< ak+l O ( K  - k - 1) < a k + l  ' 

- - K - 0 -  

(c) there is a f a m i l y  o f  p r o b l e m s  o f  the f o r m  

1 . . . . .  K - 2 a n d  

k + l  k ot 0 ot 
K - Z - z ( O ) + K O - K '  

a n d  f o r k = K - 1  and  

g 
0 a 

0 <- Z - z(O) + KO <- -K'  

the f i rs t  inequa l i t y  o f  (b) is an  equa l i t y  a n d  K *  = k + 1. 

k = 0  . . . . .  K - l ,  

(1.6) s u c h  tha t  f o r  k = 

Before proving Theorem 4.l we state a much simpler version of it. Although 

far less general, the simplified version presents  the most  useful part  of Theorem 
4.1. The right-hand side of (a) increases with K*,  hence setting K* = K we 

obtain 

Theorem 4.2. 4 / f  the  greedy  heur i s t i c  is app l ied  to p r o b l e m  (1.6) wi th  z E C(0), 

then  

Z - Z  ° 

Z - z(O) + KO -~ aK" 

Proof of Theorem 4.1. We first dispose of the case 0 < 0 (z strictly increasing) in 

(a). Le t  z ' (S) = z ( S )  + ]S]O. We observe  that Z - Z G - Z '  - Z 'G, Z -  z(O) + KO = 

Z ' - z ' ( O )  and z' is nondecreasing.  Therefore  applying the result for 0 = 0 to z' 

yields the desired conclusion for z. For the remainder  of the proof  we assume 

that 0 -> 0. 

The rest  of the proof  uses L e m m a  4.1 with 

0 and xi : Pi 
b = Z - z(O) + KO Z - z(~) + KO" 

With this t ransformat ion of variables the inequalities of the linear program are 

identical to the inequalities (4.1) of Proposi t ion 4.1 and we obtain 

i 

P ( b ) ( Z  - z(O) + K O )  <-- KO + ~ ,  pi. (4.5) 
i=O 

Now for j < K*,  ~]~=o Pi <-- Z a - z(O) and (4.5) yields 

P ( b ) ( Z  - z(O) + K O )  <- KO + Z G - z(O). (4.6) 

4 For uncapacltated location problems this result appears in [2]. 
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The proof  of (a) is now separated into two parts. 

( K * <  K). Here with j + 1 = K* all of the inequalities of (4.2) are valid and 

from Lemma 4,.1, 

P ( b ) > -  l -  ~ a (4.7) 

By substituting (4.7) into (4.6) and doing some algebraic manipulation we obtain 

the result (a). 
(K* = K). Here with ] + 1 = K only the first K inequalities of (4.2) are valid 

and from Lemma 4.1 

P ( b ) > -  l + ( K -  K ) b - a  K = l - a  K. (4.8) 

Now substituting (4.8) into (4.6) and doing some algebraic manipulation yields 
(a). 

To prove (b) for a given non-negative integer k, suppose first that k < K*. 

Thus the first k + 1 inequalities of (4.2) are valid and by Lemma 4.1 

O ( K  - k - 1 )  k ÷ J  

P ( b ) > -  I + z _  z (O)+ K 0 a (4.9) 

Substituting (4.9) into (4.6) and doing some algebraic manipulation yields 

Z -  Z G O ( K -  k -  1) k+l  --< a if k < K*. (4.10) 
Z - z(O) + KO Z - z(O) + KO'  

The right-hand side of (4.10) decreases with O / ( Z - z ( O ) + K O )  and a k + l -  

( a k / K ) ( K  - k - 1) = ( k / K ) a  k. Therefore  

( k ) a k <  ak+, O ( K - k - l )  i f 0 <  0 a k 
- - ~ - -  ( 4 . 1 1 )  

Z - z(O) + KO'  Z - z(O) + KO - K"  

Now from (a) we have 

Z_-z~O~-~ KO -~ a K*< - ~ a , if k >- g * (4.12) 

since ( k / K ) a  k increases with k. Combining (4.11) and (4.12) yields 

Z -  Z G O ( K -  k -  1) k+l  

Z - z(0) + KO - Z - z(0) + K O '  
k 0 a 

if k > K *  and 0 < -~-- (4.13) 
- - Z - z ( 0 )  + K O  - K "  

Finally, combining (4.10) and (4.13) yields (b). 

(c) For K = 2, 3 . . . . .  let C K be a K ( K - 1 )  by 2 K - 1  matrix with entries as 
follows' 

( K - 1 ) K  K 2a J-l, i f i = ( j - 1 ) K + l  . . . . .  jK, 
f o r j = l , . . . , K - 1 ,  c i f=  0, otherwise, 
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and 

J 'K K-l, if i =  l + j + ( l - 2 ) K ,  l =  1 . . . . .  K - l ,  
for  J K 2 K  1, Ci K 1 

(0 ,  o therwise ,  

and let 0 be a nonnegat ive  scalar. We claim that  z ( S )  = Y~ zel max~es c ( -  O IS[ is the 
required funct ion.  

For  this funct ion,  problem (1.6) is an uncapac i ta ted  locat ion problem with a 

fixed cos t  of  0 at each location.  For  the case 0 = 0 it can be shown (the details 

are given in [2]) that  the g reedy  heurist ic can select  the first K co lumns  so that 

Z a =  ( K - 1 ) K ~ ( 1 -  aK), while the last K co lumns  are an opt imal  set so that  

Z = (K - 1)K K. More  general ly when  

k+l 0 
a - ( K - <  1)K ~:-1 -< ak' k = O , . . . , K - 2  

or 0 - < 0 - < ( K - I )  K for  k = K - 1 ,  

the g reedy  heurist ic can select  the first k + 1 co lumns  while the last K co lumns  

are an opt imal  set. We then obtain Z G = ( K - 1 ) K ~ : ( 1 - a k + ~ ) - ( k + l ) O  and 

Z = ( K  - 1)K K - KO. Using  these values of  0, Z G and Z, (c) is easily verified. 

Having  ana lyzed  the wors t -case  behavior  of  the g reedy  heuristic,  we consider  

whe ther  the results can be substant ial ly improved  by finding the R best  possible 

e lements  to add to the given solution at each iteration. The R-s tep  g reedy  

heurist ic requires O(n R+I) evaluat ions  of  z so that  increasing R by  one increases  

the number  of  computa t ions  by a fac tor  of  n. H o w e v e r  we will show that,  in the 

wors t  case,  increasing R does not  yield a substantial  i m p r o v e m e n t  in the quali ty 

of  solutions.  For  simplicity,  we consider  only  nondecreas ing  funct ions .  

The R-s tep  greedy heuristic f o r  set func t ions  

Suppose  K = q R - p ,  where  q is a posi t ive integer and 0 - < p  < R .  Le t  S t =  

[.-J I=1 1 i and S o = 0. For  t = 1 . . . . .  q - 1 choose  P _c N - S t-I with ]P[ = R so as to 

maximize  ~t-1 = z ( S  t) - z(St-1). Finally choose  I*  _C N - S q-I with [I*] = R - p so 

as to maximize  ~ = z ( S  q-1 U 1") - z(Sq-~). 

Let  
q-2 

Z G~R) = z(O) + Y~ ~i + n = z ( S  q 1 U I*)  
i=0 

denote  the value of  an R-s tep  g reedy  solution. 

Theorem 4.3. Suppose  z is nondecreasing and the R-s tep  greedy heuristic is 

applied to problem (1.6): 
(a) I f  K = qR - p, with q a posit ive integer, p integer 0 <- p <-- R - 1, 

Z - - z ° ( R ) < { q - - A ) { q - - l ~ q - I < ( q - - l )  q-~, w h e r e A - R - P  
Z -  z(O) - \ q J \ q J  " q / R 

(b) I f  p = 0, i.e., K is a multiple o f  R, the bound  is tight. 
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Proof. (a) Let  ~q_~ = maxll>R z ( S q - ~ U  I ) - z ( S  q-~) and T be an optimal solution 
___ + q to (1.6). By submodularity and Proposit ion 2.4, z ( r )  z ( S  t) ]~i=lOj~(S'),  where 

{Ji}q~ is any partition of T - S  t with IJ i l<-R ,  i =  1 . . . . .  q. Since z(St) = 
z(~) + ~]'i2-1 ~i and Oj~(S') <- ~,, we have 

Z - < z ( 0 ) + ~ 0 + ~ l  + ' ' ' + ~ , - j + q ~ t ,  t = 0  . . . . .  q - 1 .  (4.14) 
Also 

q-2  q -2  

z ~R' = z(O) + ~o ;' + ~ >- ~(o) + ~o= ;' + ~'q- '  = 2 ~ %  

since submodularity implies ~; -> )~6q_~. Therefore  

Z - 2 o(R) Z -  Z °{R} 

z -  z(0) - z -  z(0)" 

It now suffices to prove that 

2 ~ " ~ -  z(0) 
{¢im~}~ Z - z ( O )  subject to (4.14) (4.15) 

equals 1 - [(q - A )]q][(q - 1)/q] q-1. Reasoning as in the analysis of the 1-step greedy 
heuristic (see Lemma 4.1 with b = 0), we can formulate problem (4.15) as the 
linear program 

q-2  

min ~ ~i + ;t~q_,, 
i=0 

t-1 

E ~ i + q ¢ , > - - l ,  t = O  . . . . .  q - 1 .  
i=O 

Its dual is 
q-1 

max ~] ut, 
t=0 

q-1 

q u i +  2~ u t = l ,  i = 0  . . . . .  q - 2  
t = i + l  

qUq-1 = A,  Ut >-- O, t = 0 . . . . .  q -- 1. 

The solutions 

f f i = q  i = 0  . . . . .  q - l ,  

1 [ q -  X ~ ( q -  1~ q ,-1 = ~_ 
" t = q l k - ~ - - f ~ l ] l T ,  ] , t = O  . . . . .  q - - R ,  Uq- 1 q,  

are primal and dual feasible, and give the required result. 
(b) To show that the bound ( Z  - Z a ( e ) ) l ( Z  - z(O)) = ((q - 1) lq)  q is attained when 

K -- qR ,  take the uncapacitated location problem with 

C =  C q 

• C q 
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where the matrix C q defined in the proof of part (c) of Theorem 4.1 is repeated R 

times along the diagonal. At iteration t the R-step greedy heuristic can choose 

the tth column of each matrix C q, and therefore the behavior is the same same 
as if the greedy heuristic is applied to C q. 

Example .  K = 6, R = 3, q = 2, 

E c2 1 C = C 2 = 

C 2 

1 2 0 0 0 0 0 0 0 -  

1 0 2 0 0 0 0 0 0 

0 0 0 1 2 0 0 0 0 

0 0 0 1 0 2 0 0 0 

0 0 0 0 0 0 1 2 0 

0 0 0 0 0 0 1 0 2 

We obtain 

Z =  12, ZG(3' = 9, Z - z a ( R ~ - 1 2 - 9 - ( ~ - )  2. 
Z -  z(O) 12 

Consider the problem 

max {z(S): IS I >-[NI-  K, z(S) submodular}. (4.16) 
S C N  

For problem (4.16) we can apply a "stingy heuristic", where one starts with the 

set N at each step removes an element so as to maximize the value of the 

remaining ones. An alternative but equivalent view of this heuristic is to apply 

the greedy heuristic with the submodular set function v (S )=  z ( N - S ) ,  see 

Proposition 2.8. This observation allows us to use Theorem 4.1 to obtain a worst 

case analysis for the stingy heuristic applied to (4.16). Let Z be the optimal value 

and Z s the value of a stingy heuristic solution to (4.16). 

Theorem 4.4. If the stingy heuristic is applied to the problem (4.16) with pi(S) <_ 0 
and terminates after K* steps, then 

Z - z (N)  + KO -~ ~K*. 

When K = fNI problems (1.6) and (4.16) are identical and we can apply both 

the greedy and stingy heuristics and consequently obtain the better of the two 

bounds from Theorems 4.1 and 4.4. 

5. The interchange heurist ic  for submodular  set functions 

Here we consider another familiar way of trying to generate a good solution 

for problem (1.6). If z is nondecreasing, there is an optimal solution containing K 
elements. Thus it makes sense to start from an arbitrary set of K elements and 
look for a subset of R or fewer elements that can be profitably replaced by an 

equal number of elements not in the set. The procedure is then repeated until no 
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fur ther  improvemen t s  of  this type  can be made.  The  result ing solut ion is called 

an R- in te rchange  solution,  and the p rocedure  the R- in te rchange  heuristic.  

The R - in t e rchange  heuris t ic  f o r  nondecreas ing  set f u n c t i o n s  

Ini t ial izat ion.  Pick  an arbi t rary  set S°'C_ N with IS°I-- K. Set  t = 1. 

I tera t ion  t. Given a set S t-~ with IS'-~[ = K ,  t ry to find a set P C_ N with IPI = K, 

and ]P - St-l[ = IS ~-~ - PI  <-- R such that  z ( P )  > z (S t - ' ) .  Set S '  = P, t -~ t + 1, and 

cont inue.  If  no such set P exists, stop. S* = S ' ~ is an R- in te rchange  solution. 

Le t  Z ~¢R~= z ( S * )  denote  the value of  an R- in te rchange  solution. 

We  note  that  the above  heurist ic  is far f rom being comple te ly  specified. In 

part icular  bo th  the choice  of  start ing set S °, and the me thod  of  searching for  P 

are arbitrary.  The  bound  given in T h e o r e m  5.1 applies, however ,  regardless  of  

how we make  these choices .  

Theorem 5.1, 5 S u p p o s e  z is nondecreas ing ,  and the R - i n t e r c h a n g e  heuris t ic  is 

applied to prob lem (1.6). 

(a) / f  K = qR - p with q a pos i t i ve  integer, and p integer 0 <- p ~ R - 1, 

Z - Z ~(m K - R + p 

Z - z(O) - 2 K  - R + p" 

(b) I f  p = O, i.e., K is a mul t ip le  o f  R,  the bound  is tight. 

P r o o f .  (a) For  simplicity we show the result  only for  p = 0. Apply  the R-s tep  

g reedy  heurist ic  of  the prev ious  sect ion to problem (1.6) with N replaced  by  S*, 

the e lements  of  the R- in te rchange  solution. We obtain  a part i t ion {Ii}~=1 of  S* 
where  

[I'[=e, ~, ~ - -  z P - z I i , b g o ~ - . . > / ~ q _ l ,  

and Z I~R) - z(O) + ~ q - I  ~ - -  i = 0  ~ i .  

Let  I*  I I  q-1 i i S* = "~ i=~ , so that  = I*  t.J I q. Let  T = U ~=~ T k be any part i t ion of  an 
opt imal  set T of  cardinal i ty  K into q disjoint  sets of  size R. 

By submodular i ty ,  as in P ropos i t ion  2.4, 
q 

Z = z ( T )  "< z ( I * ) +  ~ {z(I* U T k) - z(I*)}. 
k - I  

H o w e v e r  S *  = I *  U I q is an R- in te rchange  solution. There fo re  

(q l =  z ( l * U 1 4  ) -  z ( l * ) ~  z ( l * k I  T k ) -  z ( I* ) ,  k = l  . . . . .  q, 

and hence  Z < - z ( I * ) + q ~ q  l = Z  1~n)+(q-1)~'q-1. As ~'i~'i+1, (q-1)~ 'q-1 

((q - 1)[q)(Z I~n)- z(fJ)). So finally we obtain  Z <- Z ~e) + ((q - 1 ) /q ) (Z  l~m-  z(fJ)), 

which,  af ter  rewrit ing as (2q - 1)(Z - Z I~m) <- (q - 1)(Z - z(0)), gives the required 
result. 

s Fo r  u n c a p a c i t a t e d  l o c a t i o n  p r o b l e m s  and  R = 1 th is  r e su l t  a p p e a r s  in [2]. 
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When p > 0 the proof  is almost  identical to the proof  given above,  except  that 

in applying the R-step greedy heuristic to S e a set of size (R - p )  is chosen first, 

fol lowed by (q - 1) sets of size R. 

(b) The R-interchange algorithm applied to the following class of un- 

capaci tated location problems in the form of problem (1.6) shows that the bound 

is tight for p = 0. 

The matrix C =(cij) has K 2 rows and 2K columns. The first K columns 

consist  of K (K x K)  identity matrices,  and column (K + s), s = 1 . . . . .  K has K 

successive entries equal to ( 2 K - R ) / K  in rows K ( s -  1)+ t, t = 1 . . . . .  K, and 

zeroes elsewhere.  (An example  with K = 4 and R = 2 is shown below.) 
We claim that the first K columns form an R-interchange solution. Suppose 

without loss of generality that columns K - R  + 1 . . . . .  K are removed,  and 

columns K + 1 . . . . .  K + R are added. The decrease in value f rom dropping the 

columns is K R .  The increase when adding the new columns is 

R ( K - R ) ( ~ R  1t + ~ ( ~ - ~ ) _ -  KR. 

On the other hand, if fewer  than R columns are interchanged, the object ive 

value decreases.  
Therefore  the first K columns form an R-interchange solution and Z I(R~= K 2. 

The last K columns clearly form the optimal solution with Z =  
K2((2K - R ) / K )  = K ( 2 K  - R ) .  Hence  

Z - Z 1~m K - R 
Z - z(0) 2 K  - R" 

Example. K = 4, R = 2, 

1 

1 

C = 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
1 

1 
1 

.3 
2 
_3 
2 
3 
2 
3 
2 

_3 
2 
3 
2 

2 
_3 
2 

_3 
2 
3 
2 
3 
2 
3 
2 

3 

3 
2 
3 
2 
3 
2 
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When K is not a multiple of R the bound of Theorem 5.1 is weaker than the 
corresponding tight bound for K = qR. It is possible that for nondecreasing 

submodular functions the bound ( Z  - zI~R))/(Z -- z(0)) --< (K - R ) / ( 2 K  - R )  holds 
for  all R -- K. We have established this result for nondecreasing functions that 

arise from uncapacitated location problems. 
When 0 > 0 an optimal solution to problem (1.6) may contain fewer  than K 

elements. Therefore ,  the R-interchange heuristic given above must be modified 
to allow sets of differing cardinality. In particular, at iteration t, given the set S t-I 

we at tempt to find a set P C_ N with IP[ -< K, and IP  - S ' -1I  -- R and IS t-~ - P[ <- R 

such that z ( P )  > z(St-1).  

With this generalized version of the R-interchange heuristic we have for 

R = I  

Theorem 5.2. S u p p o s e  z E C(0), 0 -> 0, and the general ized 1- interchange heuris-  

tic is applied to prob lem (1.6). Then 

Z - Z I(1) K - 1 

Z - z(0) + KO - 2 K  - 1" 

Proof. Let  S be the interchange solution. If IS[ = K, the proof parallels the proof  
of (a) in Theorem 5.1. If ISI -< K - 1, then by Proposit ion 2.3 and 0 -> 0 

z ( T ) < - - z ( S ) +  ~ p i ( S ) + ( K - 1 ) O .  
j~T-S  

A s  S is an interchange solution p j (S )<-0  for j E N -  S and p ~ ( S - { j } ) -  0 for 
j ~ S. This last inequality implies z ( S )  >- z(O). Hence 

z ( T )  <-- z ( S )  + ( K  - 1)0 + - ~  ( z ( S )  - z(0)). 

Substituting z ( T )  = Z and z ( S )  = Z m) into this last inequality yields the result. 

One might hope that the greedy heuristic followed by the R-interchange 
heuristic would yield a significant improvement  on both. Unfortunately,  in terms 
of worst  case behavior this improvement  is not achieved. We have constructed a 
family of uncapacitated location problems for which the R-interchange heuristic 
cannot improve on the greedy heuristic, For  these problems the error 
approaches a ~c as K ~ o o .  Examples of this behavior are given in [2] for  R = 1. 

In the worst  case the interchange heuristic does not perform as well as the 
greedy heuristic. Also the number of iterations required by the interchange 
heuristic depends on the method used to find improving solutions. A poor 
method can take an exponential  number of iterations as shown by 

Theorem 5.3. There is a f a m i l y  o f  uncapac i ta t ed  locat ion  p r o b l e m s  with IN[ = 
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2K, K = 2, 3, . . . ,  for  which the 1-interchange heuristic can take 2 K+I-  (K + 2) 

iterations. 

Proof. The K th  problem,  K = 2, 3 . . . . .  is defined by the K × 2 K  matrix C K with 

e lements  c~ where  for  i = I . . . . .  K 

t 2 i -  1, j = 2 i -  1, 

c~f= 2 ( U - l ) ,  j = 2 i ,  

L 0, otherwise.  

Start ing f rom S O = {1, 3 . . . . .  2 K  - 3, 2 K  - 1} with z (S  °) = 2 ~:+~ - (K + 2) there is 

easily seen to be a sequence  of  2 K + ~ - ( K + 2 )  i terations where  z ( S t ) =  

2 ~:÷j - (K + 2) + t for  t = 0, 1 . . . . .  2 K+I - (K + 2). 

The example  below gives C 3 and the sequence  of  in terchanges  for  this 

problem. 

Example 

C 3= 0 0 3 6 0 

c0 0 0 0 7 14 

The sequence  of  S t , t = 0  . . . . .  1 1 - - 2  K ÷ l - ( K + 2 )  is 

(1 ,3 ,5)  (2 ,3 ,5)  (3 ,4 ,5)  (1 ,4 ,5)  (2 ,4 ,5)  (2 ,5 ,6)  (3 ,5 ,6)  

(1 ,3 ,6)  (2 ,3 ,6)  (3 ,4 ,6)  (1 ,4 ,6)  (2 ,4 ,6) .  

No te  that  the first five and last five sets are identical  except  that  the 6th 

e lement  has rep laced  the 5th. Also these five sets wi thout  the last e lement  are 

precise ly  the sets genera ted  in the problem defined by  K = 2. 

6. A linear programming approximation 

Here  we s tudy problem (1.6) in the case where  the submodula r  func t ion  is 

genera ted  f rom a matroid  as in Propos i t ion  3.2; i.e., z(S)  = 
m a X { ~ e c F c e : F E ~ ( U i c s Q i ) } ,  and the {Qi}, j @ N  are a part i t ion of  E and 
sat isfy an independence  condi t ion to be given below. Unde r  these condi t ions  

problem (1.6) can be fo rmula ted  as an integer p rogram and the linear p rogram-  

ming relaxat ion of  this integer p rogram provides  an upper  bound  on Z. The 

result  we obtain  is a bound  on the "dual i ty  gap"  be tween  the opt imal  values of  
the integer and real solutions to this linear program.  More  general ly,  it is a 

s t rengthening of  T heo rem  4.2 in the case where  z(S)  is genera ted  f rom a 

matroid.  
Le t  ~ = (E, if)  be a matroid,  C e the weight  of  e ~ E, ~ ( E ' )  = {F:  F ~ ~ ,  F C E '}  

for  E ' C  E and v (E ' )=  maXFE~S(E,)Ee~FCe . 
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Proposition 6.1 (Edmonds [5]). 

v(E') = max ~ qXe, 
eEE 

~2 Xe<_r(A), A C E ,  
eEA 

(6.1) 

Xe-->0, e ~ E ' ,  x e = 0  otherwise, 

where r(A) is the cardinality of  a largest independent set in A and Xe = 1 if element e 

is chosen. 

Thus if z(S)  = max{~eeFCe: F ~ of(Urns  Q~) }, where {Qj}, j E N is a partition 
of E, problem (1.6) can be written as the integer program 

Z = max ~ CeXe, 
eEE 

E Xe ~ r(A), A C_ E, (6.2) 
eEA 

Xe<--yi, e E Q i ,  j E N ,  (6.3) 

~ Yi <- K, (6.4) 
j=l 

Xe >-- O, e E E, (6.5) 

yj ~ {0, 1}, j E N .  

Define the linear programming relaxation of this integer program by 

Z LP = max ~ CeX e 
e~E 

subject to (6.2)-(6.5) and 

O ~ yi <-- l, j E N. (6.6) 

We have zLe- -  > Z and, by Theorem 4.1, ( Z -  ZG)/Z <-a K, where Z ~ is the value 

of the greedy solution to (1.6). 

Theorem 6.1. Let J / /=  (E, ~-) be a matroid and {Qj}, j E N, be a partition of  E 
that satisfies the independence condition: " i f  e, f @ Qj, there is no circuit in 
containing both e and f . "  Then 

Z LP _ Z G 
z L p  ~ o/K. 

The " independence condit ion" holds for the uncapacitated location problem, 
for which Theorem 6.1 is given in [2]. More generally when the matroid (E, ~ )  is 
obtained by combining r distinct matroids (Ei, ~i) so that E = U Ei, with Ej n 
E~ = 0, j ¢  k, and F E ~ only if F n E~ E ~ for all i, 6 the independence property 
will hold if the {Qj} are chosen to satisfy IE~ N Qi] -< 1, i = 1 . . . . .  r, j ~ N. 

6 R. Gi les  has  p o i n t e d  ou t  to us  tha t  t he se  cond i t i ons  are  a lso  n e c e s s a r y  for  a m a t r o i d  (E, ~ )  to  be 
partitionahle into sets {Q/} that satisfy the independence condition. 
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The  p r o o f  of  T h e o r e m  6.1 is a s imple  c o n s e q u e n c e  of  the p roo f  of  T h e o r e m  
4.2 (with 0 = 0) and  

Lemma 6.1. f f  the condit ions o f  Theorem 6.1 hold, then 

Z LP<-z(S)+ ~ pi(S),  S C N  
iES(K) 

where S ( K )  C_ N - S is an index set o f  K largest or(S). 

The p roo f  of  L e m m a  6.1 requi res  some  proper t i es  of  op t imal  dual  var iab les  to 

the l inear p r o g r a m  (6.1). The  dual  of  (6.1) is 

min ~ r(A)UA, 
ACE 

Z UA ~ Ce, e E E' ,  (6.7) 
A~e 

UA~O , A C E .  

Le t  F = {e~ . . . . .  es} C E '  be  the e l emen t s  co r r e spond ing  to an op t imal  solut ion 

of  p r o b l e m  (6.1) with %>-. . .>-Ces ,  and let sp (T) ,  T C_E, deno te  the set  
{ e E E :  r ( T U { e } ) = r ( T ) } .  The  fol lowing p ropos i t ion  is k n o w n  and easi ly  

verified. 

Proposition 6.2. Le t  A t = sp(el . . . . .  e l ) ,  j = 1 . . . . .  s ,  and define ces+~ = O. A n  opt imal  

solution o f  (6.7) is u* i = Cej -- C~+~, ] = 1, . . . ,  S, and u* = 0 otherwise. 

We use P ropos i t i on  6.2 to es tabl ish  o ther  p roper t i e s  of  the op t imal  dual 

var iables .  

Proposition 6.3. Suppose  e ~ E - E' .  

(i) I f  F U {e} E ~ ,  then ~'A~e U~ = O. 

(ii) I f  F U {e} ~ o~, then ~'A~e U~ = mini{Cei: ei E C - {e}} where C is the unique 

circuit in F U {e}. 

Proof.  (i) I f  F U {e} E o~, e f t  Aj for  any  ] = 1 . . . . .  s, and  hence  u~ = 0, VA ~ e. 

(ii) Suppose  {el . . . . .  e i, e } E  o ~, but  {eb . . . ,  ej, ei+l, e}f f  ~ .  Then  ef t  Ak fo r  k <-], 

and e E Ak for  k > ]. T h e r e f o r e  

UA* = ~ ( c ~  - ce~+,) = %,. 
ADe k>j 

N o w  ej+l ~ C C_ {el . . . . .  ei, ej+l, e}, and the re fo re  

~] u* = Cej+ 1 = min{%:  ei E C -  {e}}. 
A3e 
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We now consider the change in v in problem (6.1) when the constraints x e = 0 

and x i = 0 are suppressed, for e, f E E - E' .  

Proposition 6.4. (i) v(E '  U {e}) - v(E ' )  = (ce - EASe u~) +, where x ÷= max{0, x}. 
(ii) I f  there is no circuit containing e and f, 

+ + 

v ( E ' U { e , f } ) - v ( E ' ) =  (Ce-- A~eU*A) + (Cf--  E U~) . 
A3f 

Proof. (i) It follows from the greedy algorithm that if e enters the new solution, 
either F U {e} is independent or it replaces the cheapest  element in the unique 

circuit C containing it. Therefore  the result follows from (i) and (ii) of the 
previous proposition. 

(ii) Let  G be the elements corresponding to an optimal solution of (6.1) over 
E ' U  {e} given by the greedy algorithm. We now consider the forms of the 
optimal solutions over E ' U  {e} and E ' U  {e,f} given in Lemma 3.1. However ,  
note that when e and f are in no common circuit cases (3) and (4) of Lemma 3.1 
cannot  occur. This is obvious for case (3). In case (4) G = F U{e}-{er},  er~ e 

and er is in the circuit of F U {f}, which implies that F U {e, f} -{er}  contains a 
circuit. Since F U{e}-{er} and F U{f}-{er}  are independent,  e and f are 
contained in a common circuit of F U {e,f}--{e~}. Thus we are left w i thcases  (1) 
and (2), which imply that either F U {f} and G U {f} are both independent or both 

contain the same unique circuit. Therefore  v ( E ' U { e , f } ) -  v ( E ' U { e } )  = 
~(E' U {f}) - v(E') ,  and the result follows. 

Proof of Lemma 6.1. Let  u s be the optimal variables as given in Proposit ion 6.2 

for problem (6.7) with E ' =  UiEsQj. From Propositions 6.1 and 6.2, z ( S ) =  
v ( U  j~s Qi)= ~A uSAr(A), the value of the objective function Of (6.7). 

By definition 

Z LP = max ~ CeXe, subject to (6.2)-(6.6) 
x,y e~E 

--< max {e~z CeX, + ~ USa(r(A) - e~aXe)}, 
x,y AC_E \ 

subject to (6.2)-(6.6), (since u s-> 0 and (6.2) holds) 

<-- z(S)+ max X ( ce -- E U~)Xe' subject to (6.3)-(6.6) 
x,y eEE \ A3e 

: z ( S ) +  max ~'~ X (Ce--A~ge USA) Xe' subject to (6.3)-(6.6), 
x,y j~S eEQ i \ 

(as U Q j = E , Q ~ N Q k = O , j ~ k a n d c , - ~  uAS--Ofor e E  U Qj) 
jEN A3e j~S ," 
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+ } 
= z ( S ) + m a x l ~  ( ~  ( C e - E U A "  ~ )2 - / :2  ~ g ,  0 ~ : y j <  1 _  __ 

Y (jES \eEOj A~e / / jff.5 

v U  v U  

yj --< K, 0 -< Yi -< 1 } (by Proposition 6.4) 
j~S 

:z(S)+maxty. o,(S),,:2 i} 
kjffs j~S 

(since p , ( S ) : z ( S U  {] , ) -  z(S) : v((i?s Q;)U Q , ) - v ( , ? s  Q~)) 

= z(S) + ~ p~(s). 
ieS(K) 

P r o o f  of  T h e o r e m  6 . 1 .  Using Lemma 6.1 and S = S t, t = 0 . . . . .  K - 1 as the sets 
chosen by the greedy heuristic we have that 

Z Le<-z(S')+ ~ pi(St), t = O  . . . . .  K - 1  
jESt(K) 

and 
t-1 

Z L e < - ~ p i + K p .  t=O . . . . .  K - 1 .  
i=0 

Exactly as in Theorem 4.1 (with 0 = 0), we obtain (Z Le - ZG)/Z Le <- a K. 

A surprising consequence of Theorem 6.1 is that if a particular problem is a 
worst case example for the greedy heuristic in the sense of Theorem 4.2, then 
Z Le= Z, while if the duality gap is maximum i.e., (Z LP- Z ) / Z  Le= a ~, then the 
greedy heuristic gives the optimal solution. 

Finally, we note that under the hypotheses of Theorem 6.1 we can prove an 
analogous theorem for the interchange heuristic. Here we obtain the bound 
(Z LP- ZI(1))/zLP~ ( K -  1) / (2K-  1) (see Theorem 5.1). This theorem is proved by 

applying the greedy heuristic to the interchange solution and then using the 
result of Lemma 6.1 for t = K -  1. 

7.  H e u r i s t i c s  a n d  p a r t i a l  e n u m e r a t i o n  

By combining partial enumeration with the heuristics of Sections 4 and 5 we 
can improve the bounds given previously. Suppose for each subset S of 
cardinality R we apply some heuristic (H) to the problem 

max {z(S U r) :  IT I-< K -  R}. (7.1) 
TC_N-S 

Call the value of the best of these (1~J) approximations Z* and the method the 
"R-enumeration plus H" heuristic. 
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Theorem 7.1. Suppose that z (S) ,  S C_ N is submodular  and nondecreasing and 

the heuristic (H)g ives  a bound of  

Z - Z H 
Z - z(0) ~ f l (K)  

when applied to problem (1.6). Then 

Z - Z *  K - R  
- - < -  f l ( K - R ) .  
z - z(O) K 

Proof. Le t  T of cardinality K be an optimal solution to problem (1.6). Apply at 

most  R steps of the greedy heuristic of Section 4 to T to obtain a set S * C  T, 

IS*]-< R. If  the greedy heuristic stops before  R steps have been executed,  then 
Proposi t ion 4.2 implies that z(S*)  = z (T)  = Z. Otherwise submodular i ty  implies 
that z ( S * ) -  z (O)>- (R /K) (Z - z (O) ) .  Now applying heuristic (H)  to problem (7.1) 

with S = S*, we obtain a set S* tO T* for which 

Z - z (S*  tO T*) 
< - f l ( K - R ) .  

Z - z(S*)  

Noting that Z* >- z (S*  kJ T*) and substituting z(0) + ( R / K ) ( Z -  z(O)) <- z(S*)  we 
obtain the required result. 

Theorem 7.1 suggests that the " ( R -  1)-enumeration plus 1-greedy" heuristic 
may ou tper form the R-step greedy heuristic, and similarly the " ( R - 1 ) -  

enumerat ion plus 1-interchange heurist ic" may be preferable  to the R-interchange 
heuristic. 

We close this section by noting that all of the bounds on approximat ions  can 
also be viewed as bounds on the value of an optimal solution. If  we have a 

particular heuristic value and know that the heuristic value is at least a specified 

fract ion of the optimal value, we then have an upper  bound on the optimal value. 

Fur thermore ,  if z is nondecreasing,  f rom any heuristic solution S = {il . . . . .  iK} we 
obtain 

Z_< min z (S  t)+ ~,  oj(S t) (7.2) 
t = 0  . . . . .  K - 1  j~St(K) 

where S t = {il . . . . .  it}. For  example,  f rom the greedy heuristic and (7.2) we obtain 

a bound that is at most  Z/(1 - aK). But on specific problems the bound computed  
f rom (7.2) f requent ly  will be much tighter. 

Thus in branch-and-bound algorithms a heuristic solution can serve the dual 

purpose  of providing an upper  bound on the optimal value as well as the usual 
feasible solution and lower bound. In this regard, the bound of Theorem 7.1 
could be helpful in an implicit enumerat ion algorithm that used a tree in which 
the nodes at level k represents  subsets of N in which k elements  are chosen. 

Similarly, when viewed in this way,  linear programming approximat ions  
provide lower bounds as well as the usual upper  bounds.  
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8. Future work 

Problem (1.6) is a particular case of 

max {z(S): z(S) submodular, 
S C N  

S an independent set in a matroid ~ }  (8.1) 

where in (1.6) the maximal independent sets in d,/are all subsets of cardinality K. 
The approach and many of the results of this paper generalize to problem (8.1) 
and to the maximization of submodular functions over other independence 
systems as well. In a sequel to this paper we will analyze approximations for 
these problems. 

References 

[1] D.A. Babayev, "Comments on the note of Frieze", Mathematical Programming 7 (1974) 
249-252. 

[2] G. Cornuejols, M.L. Fisher and G.L. Nemhauser, "Location of bank accounts to optimize float: 
An analytic study of exact and approximate algorithms", Management Science 23 (1977) 
789-810. 

[3] J. Edmonds, "Matroid partition", in: G.B. Dantzig and A.M. Veinott, eds., Mathematics of the 
decision sciences, A.M.S. Lectures in Applied Mathematics 11 (Am. Math. Soc., Providence, RI, 
1968) pp. 333-345. 

[4] J. Edmonds, "Submodular functions, matroids and certain polyhedra", in: R. Guy, ed., Com- 
binatorial structures and their applications (Gordon and Breach, New York, 1971) pp. 69-87. 

[5] J. Edmonds, "Matroids and the greedy algorithm", Mathematical Programming 1 (1971) 
127-136. 

[6] A.M. Frieze, "A cost function property for plant location problems", Mathematical Program- 
ming 7 (1974) 245-248. 

[7] L.S. Shapley, "Complements and substitutes in the optimal assignment problem", Naval 
Research Logistics Quarterly 9 (1962) 45-48. 

[8] L.S. Shapley, "Cores of convex games", International Journal of Game Theory 1 (1971) 11-26. 
[9] K. Spielberg, "Plant location with generalized search origin", Management Science 16 (1969) 

165-178. 
[10] D.R. Woodall, "Application of polymatroids and linear programming to transversals and 

graphs", presented at the 1973 British Combinatorial Conference (Aberystwyth). 


