
10-704 Information Processing & Learning
Quiz 1 Solutions March 5th 2015

Short Questions (50 Points)

Data Processing Inequality. Consider the Markov Random Field (Undirected Graphical Model) shown
below.

Which of the statements are always true of the above graphical model?

1. (5 Points) H(X1|X2) ≤ H(X1|X3)

2. (5 Points) I(X3;X4) ≥ I(X3;X5)

3. (5 Points) I(X4;X5) ≥ I(X4;X6)

Huffman Codes.

4. (5 pts) Construct a binary Huffman code for the following distribution on 5 symbols p = (0.4, 0.25, 0.25, 0.05, 0.05).
What is the expected length of this code ?

5. (5 pts) The above code does not meet the entropy lower bound H(p) ≈ 1.96. Construct a distribution
p′ for which the above code meets the entropy lower bound H(p′).
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Complexity Penalized ERM. Suppose you want to fit a Markov Chain (MC) distribution to your data.
You don’t know the order of the Markov chain to use and would like to set up a complexity penalized ERM
approach using prefix codes to automatically do model selection for you. Let Fm be the class of Markov
chain distributions of order m. In class, we saw how to encode any distribution in Fm. You may assume
that such a coding scheme is available – you do not need to derive it.

6. (5 Points) Propose a scheme to encode the order of the Markov Chain. You do not need to construct
an optimal code for the order. (This is because the length of the code is dominated by the length to
encode the Markov Chain given the order.)

7. (5 Points) Using your answer in part (a) state how you may construct a prefix code for a Markov
chain distribution of any order – i.e. any distribution in the class F =

⋃∞
j=1 Fj .

8. (5 Points) Write down the corresponding complexity penalized ERM optimization problem in F using
the minimum description length principle.

Redundancy and Mixture models. Suppose you would like to minimize redundancy with respect to
a class of distributions {Pθ}θ∈Θ where Pθ = Bernoulli(θ) and Θ = {0, 1}. You decide to use a mixture
distribution 1/2P0 + 1/2P1.

9. (5 Points) What is the worst-case redundancy supP∈P0,P1
D(P‖1/2P0 + 1/2P1)?

10. (5 Points) Argue that coding using a mixture distribution 1/2P0 + 1/2P1 is better than coding using
either P1 or P0.
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Solutions

1. True

2. True

3. False

4. A Huffman code is {0, 10, 110, 1110, 1111} which has expected length of 2.05 bits.

5. The above code achieves the entropy lower bound on the distribution p′ = {1/2, 1/4, 1/8, 1/16, 1/16}.

6. The order m can be encoded via a string of m− 1 0’s and a 1 at the end. E.g: m = 4, =⇒ 0001.

7. Let the order code me cm and the code of the distribution f in the class Fm be cf . We concatenate
the two codes : cmcf .

8. The minimization problem is,

min
f∈F

R̂n(f) +

√
c(f) + log(1/δ)

2n

where c(f) = m+ length(cf ).

9. log(2)

10. Since supP0,P1
D(P‖P0) = supP0,P1

D(P‖P1) =∞.
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Long Questions (50 Points)

1. (15 pts) Let X ∼ p where p is a distribution on the set X = {1, 2, . . . ,m}. We are given a subset
S ⊂ X . We ask whether X ∈ S and receive the answer Y where Y = 1 if X ∈ S and Y = 0 if X /∈ S.
Prove that I(X;Y ) = H(Bern (P(X ∈ S))). Here I(X;Y ) is the mutual information between X and
Y and H(p) is the entropy of the distribution p.

Solution

Let P(X ∈ S) = α. Then,

I(X;Y ) = H(X)−H(Y |X) = H(X)−

(
−
∑
x,y

p(x, y) log p(x, y)/p(y)

)

= H(X)−

(
−
∑
x∈S

p(x) log(p(x)/α)−
∑
x/∈S

p(x) log(p(x)/(1− α))

)
=
∑
x∈S

p(x) log(1/α) +
∑
x/∈S

p(x) log(1/(1− α))

= α log(1/α) + (1− α) log(1/(1− α)) = H(α)

2. Consider three dependent binary random variables (X1, X2, X3) where Xi ∈ {0, 1} ∀i. You have the
following 4 data points from their joint distribution: (0, 0, 1), (0, 1, 1), (1, 0, 0) and (1, 1, 1).

(a) (15 Points) Obtain the plug-in estimates Î12, Î13 and Î23 for the Mutual Inforations I(X1;X2),

I(X1;X3) and I(X2;X3). Recall that I(X,Y ) =
∑
x,y p(x, y) log

(
p(x,y)
p(x)p(y)

)
.

You do not need to simplify the expressions completely – you can leave fraction/ log terms.

(b) (5 Points) Depict the Chow-Liu tree for (X1, X2, X3) obtained from the above data.

Solution

(a) We have the following empirical marginal probability distributions,

X1 0 1
1/2 1/2

X2 0 1
1/2 1/2

X3 0 1
1/4 3/4

X1\X2 0 1
0 1/4 1/4
1 1/4 1/4

X1\X3 0 1
0 0 1/2
1 1/4 1/4

X2\X3 0 1
0 1/4 1/4
1 0 1/2
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Therefore, the plug-in estimates are

Î12 = 4

(
1

4
log

(
1/4

1/2 · 1/2

))
= 0

Î13 =
1

4
log

(
1/4

1/2 · 1/4

)
+

1

4
log

(
1/4

1/2 · 3/4

)
+

1

2
log

(
1/2

1/2 · 3/4

)
> 0

Î23 =
1

4
log

(
1/4

1/2 · 1/4

)
+

1

4
log

(
1/4

1/2 · 3/4

)
+

1

2
log

(
1/2

1/2 · 3/4

)
> 0

(b) Since Î12 = 0 and the other two are positive, the Chow-Liu tree would be X1—–X3—–X2

3. (15 Points) We have samples x1, . . . , xn from a discrete distribution π on support X . Let D = |X |.
We wish to estimate π using d features f . Here f : X → Rd and f(x) = [f1(x), . . . , fd(x)]. Since D � n,
in order to improve generalization performance we wish to find the MaxEnt distribution subject to an
`∞-ball constraint. I.e. we wish to solve,

min
p∈∆D−1

D(p‖q0)

subject to |Ep[fi(X)]− En[fi(X)]| ≤ β ∀i = 1, . . . , d

where ∆D−1 = {x ∈ RD; 1>x = 1, xi ≥ 0} and Ep, En denote the expectation w.r.t p and the empirical
expectations respectively.

Obtain the dual of this problem as a penalized Maximum Likelihood problem in the Exponential family
Ef ,q0 = {q(x) ∝ q0(x) exp(λ>f(x)) : λ ∈ Rd}. The dual should be in terms of empirically computable
quantities.
You may use any results we covered in class. You do not need to derive the dual from first principles.

Hint: The Fenchel conjugate of U(u) = 1(‖r − u‖∞ ≤ β) is U∗(λ) = λ>r + β‖λ‖1.

Solution Note that we can rewrite the problem as,

min
p∈∆d−1

D(p‖q0) + U(Ep[f ])

where U(u) = 1(‖En[f ]− u‖∞ ≤ β). Then, the dual can be written as

inf
λ∈Rd

Lt(λ) + U∗t (λ)

for any distribution t in ∆D−1. By taking t to be the empirical distribution we get,

Ln(λ) = − 1

n

n∑
i=1

log qλ(xi)

U∗n(λ) = U∗(−λ) + λ>En[f ] = β‖λ‖1

Then, we need to solve

max
λ∈Rd

1

n

n∑
i=1

log qλ(xi)− β‖λ‖1
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