
10-704: Information Processing and Learning Spring 2015

Lecture 9: February 10
Lecturer: Akshay Krishnamurthy Scribes: Rohan Varma

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Source Coding

A source code for a random variable X is a mapping from X , (the range of the random variable X) to D∗ ,
the set of all finite length strings belonging to an alphabet with D letters. We denote the codeword for x as
C(x) and l(x) as the length of the codeword for x.

We typically assume that p , the probability distribution over X is known. Hence, we aim to build a code
for a given p with a short length in expectation:

L(C) =
∑
x∈X

p(x)l(x)

. For the following , we assume that D = {0, 1}is a binary alphabet.

9.1.1 Characterization of Variable-Length Codes

• Non Singular Codes: x1 6= x2 ⇒ C(x1) 6= C(x2) . This is an necessary property for a lossless and
perfectly decodable code. We note that we can easily extend a code to n input symbols.

• Extension: C : X ∗ → D∗ As a result, C(x1, x2, x3, · · ·xn) = C(x1)C(x2) · · ·C(xn)

• Unique Decodability: A code is uniquely decodable if the extension is non-singular. i.e C(xni) 6= C(xmj)
for sequences xni 6= xmi .

• Prefix Code: (self-punctuation or instantaneous) . ∀xi, xj ∈ X , xi 6= xj , C(xi) 6= Prefix(C(xj)).
This implies that we can decode a sequence on the fly

9.1.2 Examples of Codes

We shall first informally state the Source Coding Theorem that we work towards in this lecture. Asymp-
totically H(X) ≤ L(C). ∀ codes C ∃ a code (with L(C) ≤ H(X)). We shall precisely state and prove this
idea. Since this is an asymptotic result we need to code a sequence.

9-1

9-2 Lecture 9: February 10

Figure 9.1: Types of Variable-Length Codes

• Encode a uniform distribution on 4 letters: We simply assign 2 bits per symbol. Hence, El(x) = 2 =
H(x).

• Uniform distribution on 7 letters: We assign 3 bits per letter. Hence El(x) = 3 ≤ H(x) + 1

• p(a) = 1
2 , p(b) = 1

4 , p(c) = 1
4 . We code a → 0, b → 10, c → 11. We have El(x) = 3

2 = H(x). We note
that is a prefix free code.

• Non-Singular Code: p(a) = 0.5, p(b) = 0.25, p(c) = p(d) = 1
8 , We code a → 0, b → 1, c → 00, d → 01.

This is nonsingular but not very useful or practical since it is not uniquely decodable since the string
′01′ can map to both ab or c . El(x) = 1.25 ≤ H(X) = 1.75

• We code a→ 10, b→ 00, c→ 11, d→ 110. This is nonsingular and uniquely decodable but not prefix
free since the code for c, ′11′ is a prefix for the code for d,′ 110′. This would result in decoding ”on the
fly” impossible.

• We code a → 0, b → 10, c → 110, d → 111. Hence this code is prefix-free, and therefore non-singular
and uniquely decodable.

It is clear that the bare minimum requirement when designing a practical code is that it needs to be uniquely
decodable.

We note that H(X) seems to be the achievable rate, but because of rounding effects over the number of bits,
it might not be achievable. As a result we seek to amortize over long blocks of symbols to get closer to the
entropy rate.

9.2 Shannon Source Coding Theorem (Achievability)

We now state and prove the Shannon source coding theorem:

Theorem 9.1 ∃ a code C such that for any ε ≥ 0, ∃n0 such that ∀n ≥ n0 we have :

E[
l(xn)

n
] ≤ H(x) + ε′

Lecture 9: February 10 9-3

Proof: Suppose I could find a set A
(n)
δ ⊆ X (n) with |A(n)

δ | ≤ 2n(H(x)+δ) but also with P
[
A

(n)
δ

]
≥ 1− δ . We

shall revisit this construction.

We present a coding scheme: If x(n) ∈ A(n)
δ , then code by indexing into this set using 1 + dn(H + δ)e bits.

If x(n) /∈ A(n)
δ , we then code with 1 + dn log |X |e bits.

We now write out the expectation of the length of the codeword.

E
[
l(x(n)

]
=
∑
x(n)

p(x(n))l(x(n) ≤
∑

x(n)∈A(n)
δ

p(x(n))(2 + n(H + δ)) +
∑

x(n) /∈A(n)
δ

p(x(n))(2 + n log |X |)

≤ 2 + n(H + δ) + n log |X |(1− P(Anδ)

≤ 2 + n(H + δ) + nδ log |X | ≡ n(H + ε) where ε =
2

n
+ δ(1 + log |X |)

We now consider how to build A
(n)
δ , often called a typical set. Let:

A
(n)
δ = {(x1 · · ·xn)|H(x(n))− δ ≤ − 1

n
log p(x1 · · ·xn)} ≤ H(x) + δ}.

Clearly this is well defined.

Claim 9.2 If X1 · · ·Xn p , then

− 1

n
log p(x1, c . . . xn)→ H(X)

as n→∞

Proof: This essentially holds by the weak law of large numbers.

1

n
log p(x1 · · ·xn) = − 1

n

∑
i

log p(xi)→ Ex p − log p(x) = H(x)

The finite sample version holds by Hoeffding’s inequality. If p(x) ≥ pmin, then 0 ≤ − log p(x) ≤ log pmin , γ
and as a result :

P
[1

n
|
∑
i

− log p(xi)−H(X)| ≥ ε
]
≤ 2e

−2nε2

γ2

or with probability 1− δ

| 1
n

∑
i

− log(p(xi))−H(x)| ≤
√
γ2

2n
log(

2

δ
)

Hence we simply set A
(n)
ε,δ with ε =

√
γ2

2n log(2
δ) and we have P

[
A

(n)
ε,δ

]
≥ 1− δ

9-4 Lecture 9: February 10

Hence, we have proven the achievability part of the Source Coding Theorem. Recapping, we use the Law
of large numbers that most of the probability mass concentrates on a few sequences characterized by the
entropy. We use the code that assigns short sequences to these sequences in the typical set and long sequences
to the rest that are not in the typical set.

We make a few remarks about the above statement and proof. This is an asymptotic statement and where the
asymptotics kick in depends on the distribution of p. (We note that we have a dependence on γ = log pmin).

This code is non-singular for each n, but is extension is not necessarily uniquely decodable. Indeed the
code may be completely different for each n since the typical sequences may change. Essentially we have
constructed a sequence of codes (one for each n) that achieves the Shannon Rate. This code requires
maintaining look up tables exponential in n so this is not necessarily the most practical code construction.

9.2.1 Optimality and Kraft and McMillan Inequalities

We’ll see that this construction using the typical set is optional and this has a few consequences. You cannot
build a typical set with ”better” properties. If you give me a set with good coverage then it will be roughly
2nH(x)+ε in size. To show this we need the following two lemmas.

Lemma 9.3 Kraft’s Inequality: If a prefix free code has lengths (l1, · · · , lA) and is D-ary, then

A∑
i=1

D−li ≤ 1

Proof: Any prefix code can be thought of as a D-ary tree with code words on the leaves as shown in the
diagram. No internal nodes can correspond to code words because that would violate the prefix property. If
depth is lmax, then if a symbol appears at depth li , it annihilates Dlmax−li leaves so

∑
iD

lmax−li ≤ Dlmax

where Dlmax is the maximum number of leaves at depth lmax.

We also present an alternate proof: Proof: Drop 1 unit of dust at the root of the tree and split it evenly
at each split, i.e send half down the left branch and half down the right branch at every split. If a leaf is
at depth li, it accumulates D−li dust and by conservation since we only added one unit at the beginning at
the root, necessarily

∑
iD
−li ≤ 1

The other direction uses a similar idea. If
∑
iD
−li ≤ 1 then build a D-ary tree of depth lmax and put the

symbols at the correct levels.

Lemma 9.4 McMillan’s Inequality If a uniquely decodable code has lengths (l1, · · · , lA) and is D-ary, then

A∑
i=1

D−li ≤ 1

Proof: Since we have already shown that we can construct a uniquely decodable code given li with∑A
i=1D

−li ≤ 1, and prefix-free codes ⊆uniquely decodable codes, we have already shown one direction
of the McMillan inequality.

For the other direction, we first clarify some notation. If X is a symbol then C(X) is the code word and
l(C(X)) is the length. If Xk is a k-sequence , then Ck(Xk) is the codeword C(X1) · · ·C(Xk) with length
l(Ck(Xk)). Hence

l(Ck(Xk)) =
∑
i

l(Ck(Xi))

Lecture 9: February 10 9-5

We also know that the number of codewords of length l is nl ≤ Dl by uniqueness. We also note that this is
not true for non-singular codes. As a result, we have

(
∑
x

D−l(C(x)))k = (
∑
x1

D−l(C(x1)))(· · ·)(
∑
xk

D−l(C(xk))) =

=
∑
x1

· · ·
∑
xk

D−l(C(x1)) · · ·D−l(C(xk)) =
∑
xk

D−l(Ck(x
k)) =

klmax∑
l=1

nlD
−l ≤

klmax∑
l=1

DlD−l = klmax

Hence
∑
xD
−lC(x)) ≤ (klmax)

1
k and this holds for any k. Since the left hand side does not depend on k, it

holds in the limit and since limk→∞(kl)
1
k ⇒ 1, we conclude that∑

x

D−l(x) ≤ 1

9.2.2 Achievability of Uniquely Decodable Codes

We find the D-adic distribution r, ri = D−li∑
j D

−lj minimizing

D(p‖r)− log(
∑

D−li) ≥ 0, D(p‖r) =
∑

pi log(
pi
∑
D−lj

D−li
)

The choice is li = logD
1
pi

This however may not be integral so we round up to li =
⌈
logD

1
pi

⌉
and we satisfy

MacMillan’s inequality since ∑
i

D
−
⌈
logD

1
pi

⌉
≤
∑
i

D
− logD

1
pi =

∑
i

pi = 1.

Hence the length is clearly H(x) ≤ L ≤ H(x) + 1

9.3 Shannon Source Coding Theorem: Necessity

Theorem 9.5 Shannon Source Coding Theorem (Necessity) : Any uniquely decodable coding scheme using
D-ary codes has

Epli(x) ≥ Hp(x)

Proof: Consider the convex minimization problem:

min
li

∑
i

pili subject to
∑
i

D−li ≤ 1

with Lagrangians:

L =
∑
i

pili + λ(
∑
i

D−li − 1)

9-6 Lecture 9: February 10

and derivative
∂L
∂li

= pi − λD−li logD = 0⇒ D−li =
pi

λ logD

Using complementary slackness, we know that the constraint should be tight so since λ∗ must be positive
for the above to make sense. ∑

i

D−li =
∑
i

pi
λ logD

= 1⇒ λ =
1

logD

or

D−li = pi ⇒ li = logD
1

pi

This concludes the proof of this theorem.

