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8.1 Generalized Maximum Entropy

Instead of maximizing entropy with respect to some constraints, generalized maximum entropy minimizes
the relative entropy and puts the constraint into the objective function. The primal problem of generalized
maximum entropy is

(Primal) min
p∈∆

D(p||p0) + U(Ep[r]),

where p0 is a base distribution, U(·) is some penalty function, and Ep[r] ∈ Rd is a set of features, corre-
sponding to d constraints. Then, the dual problem is

(Dual) max
λ∈Rd

− lnZλ − U?(λ),

where Zλ is the partition function of a Gibbs distribution (q ∝ p0(x) exp{−λT r(x)}) with features r and the
based distribution p0, and U?(·) is the conjugate function for U . Denote

Q(λ) = − lnZλ − U∗(λ)

= Lt(0)− Lt(λ)− U∗t (λ),

where Lt(λ) = −Et[ln pλ] and t is any distribution, the dual problem can be reformulated as

min
λ
Lt(λ) + U∗t (λ). (8.1)

If t = p̂, then (8.1) is actually maximum likelihood with regularization because

Lp̂(λ) = − 1

n

n∑
i=1

ln pλ(Xi).

Note that

Lt(λ) = −Et[ln pλ] = D(t||pλ) +H(t),

equation (8.1) is then

min
λ
D(t||pλ) + U∗t (λ), (8.2)

where t is typically p̂.

Recall that the dual (or conjugate) function of Ψ(u) = I(u ∈ A) is

Ψ∗(λ) = sup
u

[λ · u−Ψ(λ)]

= sup
u∈A

λ · u.
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We then look at some examples of the penalty functions.

Examples:

1. U(Ep[r]) = I(Ep[r] = Ep̂[r]). Then,

U∗p̂ (Ep[r]) = I(Ep[r] = 0). (8.3)

U∗p̂ (λ) = 0. (8.4)

The problem thus gets back to the basic maximum entropy duality.

2. U(Ep[r]) = I(|Ep[rj ]− Ep̂[rj ]| ≤ βj ,∀j).
Then,

U∗p̂ (Ep[r]) = I(|Ep[rj ]| ≤ βj ,∀j). (8.5)

U∗p̂ (λ) =
∑
j

βj |λ|, (8.6)

which corresponds to the maximum likelihood with `1 regularization.

3. U(Ep[r]) = ||(|Ep[r]− Ep̂[r]||22/2α.

Then,

U∗p̂ (Ep[r]) = ||Ep[r]||22/2α. (8.7)

U∗p̂ (λ) = α||λ||22/2, (8.8)

which corresponds to the maximum likelihood with `22 regularization.

8.2 Entropy Rate of Stochastic Processes

Entropy of random variable X is H(X), the joint entropy of X1 . . . Xn is then

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1 . . . X1) chain rule

≤
n∑
i=1

H(Xi) since conditioning does not increase entropy

= nH(X) if the variables are identically distributed

If the random variables are also independent, then the joint entropy of n random variables increases with n.
How does the joint entropy of a sequence of n random variables with possibly arbitrary dependencies scale?

To answer this, we consider a stochastic process which is an indexed sequence of random variables with
possibly arbitrary dependencies. We define

Entropy rate of a stochastic process {Xi} =: X as

H(X ) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. the limit of the per symbol entropy, if it exists.

Stationary stochastic process: A stochastic process is stationary if the joint distribution of any subset
of the sequence of random variables is invariant with respect to shifts:

p(X1, . . . , Xn) = p(X1+l, . . . , Xn+l) ∀l, ∀n
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Theorem 8.1 For a stationary stochastic process, the following limit always exists

H(X ) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. limit of per symbol entropy, and and is equal to

H ′(X ) := lim
n→∞

H(Xn|Xn−1, . . . , X1)

i.e. the limit of the conditional entropy of last random variable given past.

For stationary first order Markov processes:

H(X ) = lim
n→∞

H(Xn|Xn−1) = H(X2|X1)

Theorem 8.2 Burg’s Maximum Entropy Theorem
The max entropy rate stochastic process {Xi} satisfying the constraints

E[XiXi+k] = αk for k = 0, 1 . . .m ∀i (?)

is the Gauss-Markov process of the pth order, having the form:

Xi = −
m∑
i=1

akXi−k + Zi,

where Zi
iid∼ N (0, σ2), ak and σ2 are parameters chosen such that constraints ? are satisfied.

Note: The process {Xi} is NOT assumed to be (1) zero-mean, (2) Gaussian or (3) stationary.
Note: The theorem states that AR(m) auto-regressive Gauss-Markov process of order m arise as natural
solutions when finding maximum entropy stochastic processes under second-order moment constraints up to
lag m.

Proof: Let {Xi} be a stochastic process that satisfies constraints ?, {Zi} be a Gaussian process that satisfies
constraints ?, and {Z ′i} be a mth order Gauss-Markov process with the same some distribution for all orders
up to p. (Existence of such a process will be established after the proof.)

Since the multivariate normal distribution maximizes entropy over all vector-valued random variables under
a covariance constraint, we have:

H(X1, . . . , Xn) ≤ H(Z1, . . . , Zn)

= H(Z1, . . . , Zm) +

n∑
i=m+1

H(Zi|Zi−1, . . . , Z1) (chain rule)

≤ H(Z1, . . . , Zm) +

n∑
i=m+1

H(Zi|Zi−1, . . . , Zi−m) (conditioning does not increase entropy)

= H(Z ′1, . . . , Z
′
m) +

n∑
i=m+1

H(Z ′i|Z ′i−1, . . . , Z
′
i−m)

= H(Z ′1, . . . , Z
′
m)

⇒ lim
m→∞

1

m
H(X1 . . . Xm) ≤ lim

m→∞

1

m
H(Z ′1 . . . Z

′
m)
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Existence: Does a mth order Gaussian Markov process exists s.t. (a1 . . . am, σ
2) satisfy ??

XiXi−l = −
m∑
k=1

akXi−kXi−l + ZiXi−l

E[XiXi−l] = −
m∑
k=1

akE[Xi−kXi−l] + E[ZiXi−l]

Let R(l) = E[XiXi−l] = E[Xi−lXi] = αl be the given m+ 1 constraints. Then we obtain The Yule-Walker
equations - m+1 equations in m+1 variables (a1 . . . ap, σ

2):

for l = 0 R(0) = −
m∑
k=1

akR(−k) + σ2

for l > 0 R(l) = −
m∑
k=1

akR(l − k) (since Zi ⊥ Xi−l for l > 0.)

The solution to the Yule-Walker equations will determine the mth order Gaussian Markov process.

8.3 Data Compression / Source coding

Figure 8.1 shows the coding scheme.

Figure 8.1: Coding schema.

Source code: A source code C is a mapping from the range of a random variable or a set of random
variables to finite length strings of symbols from a D-ary alphabet, that is

C : X → D?,

and the code C(X) for a symbol X is an element in D?.

Instead of encoding an individual symbol, we can also encode blocks of symbols together. A length n block
code encodes n length strings of symbols together and is denotes by C(X1, · · · , Xn) =: C(Xn). We then
define the extension of the code using concatenation as C(Xn) = C(X1)...C(Xn)

Expected length of a source code denoted by L(C) is given as follows:

L(C) =
∑
x∈X

p(x)l(x)

where l(x) is the length of codeword c(x) for a symbol x ∈ X , and p(x) is the probability of the symbol.

Several classes of symbol codes have appealing properties that are widely used. For example,



Lecture 8: Feb 5 8-5

• Non-singularity : ∀X1 6= X2 ⇒ C(X1) 6= C(X2)

• Unique-decodability : ∀Xn
1 6= Xm

2 ⇒ C(Xn
1 ) 6= C(Xm

2 )

• Self-punctuating (Prefix) : ∀X1 6= X2 ⇒ C(X1) /∈ Prefix(C(X2))

Note that unique decodability implies non-singularity and self-punctuating implies unique decodability. Self-
punctuating codes are also called instantaneous or prefix codes. For unique decodability, we may need
to see the entire sequence to decode it uniquely, but for instantaneous ones, you can decode a symbol as
soon as you’ve seen its encoding.

Figure 8.2: Codes.


