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7.1 Review

7.1.1 Maximum Entropy

In the Maximum Entropy (MaxEnt) problem we seek to maximize entropy over all probability densities p

p∗(x) = argmax
p∈∆

−
∫
p(x) log p(x)dx,

given constraints

subject to p ≥ 0,

∫
p = 1

Ep[ri(x)] = αi i ∈ 1, . . . , n,

Ep[sj(x)] ≤ βj j ∈ 1, . . . ,m

where ri, sj : R→ R.

Since entropy is a concave function over a convex set, we can differentiate the Lagrangian (shown in the
previous notes) and obtain the form for maximizing density:

p?(x) ∈ e1−λ?0−
∑
i λ
?
i ri(x)−

∑m
j=1 ν

?
j sj(x),

For Lagrange parameters λ?, ν? that are chosen so that p? meets the constraints. Note that if the constraints,
ri are linear, then these distributions belong to the exponential family.

Several parametric distributions that are used commonly for modeling belong to the exponential family, and
arise as solutions to the maximum entropy problem under different linear moment constraints and support
sets. We give some examples below.

Example 7.1 Multivariate Gaussian distribution

Given the constraints

Ep[XiXj ] = Kij ∀i, j ∈ 1, . . . , p

Ep[Xi] = 0

then this is the multivariate Gaussian distribution and the MaxEnt density is

p∗(x) =
1

(
√

2π)n|K|1/2
e−

1
2x
TK−1x (7.1)
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Example 7.2 Ising graphical model

Graphical models are a special case of exponential families. In the Ising graphical model, we consider inter-
acting spins of electrons, represented by Xi ∈ 0, 1. Given constraints on the first and second moments

Ep[XiXj ] = xixj ∀i, j ∈ 1, . . . , n

Ep[Xi] = xi ∀i ∈ 1, . . . , n

then we obtain the probability density

p(x) ∝ e
∑
i,j λij(xi∗xj+(1−xi)(1−xj)).

Example 7.3 Discrete distributions (Gibb’s distribution)

The solution to the linear constraints can be rewritten to simplify entry conditions for different sets of
problems. λ∗i is such that p∗ satisfies the constraints. In the case of the discrete distribution, p∗ is proportional
to the normalized solution, commonly known as the Gibb’s distribution:

p∗(x) =
e
∑
i λ
∗
i ri(x)

Zλ∗

where the normalizing constant is the partition function:

Zλ∗ =

n∑
j=1

e
∑
i λ
∗
i ri(xj)

7.1.2 Information Projection

Definition 7.4 Information Projection

We define information projection of a distribution p onto a set of distributions P as

p∗(x) = argmin
p

D(p||p0)

If all distributions in P have bounded support, p is the dominating uniform distribution and P has linear
constrains, ie. Ep[ri(X)] = αi, then the information projection is the maximum entropy distribution in P .
We can show that the probability density estimator for P with linear constraints is

p∗(x) =
p(x)e

∑
i λiri(x)∑

x p(x)e
∑
i λiri(x)

i.e. it is in the exponential family.

7.1.3 I-Geometry

Information projection has a nice geometric interpretation captured by the following Pythagoras theorem:

Theorem 7.5 Pythagorean Theorem for KL-Divergence
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Let P be closed and convex, p0 6∈ P, and p∗ = argmin
p∈P

D(p||p0), then

D(p||p0) ≥ D(p||p∗) +D(p∗||p0)

Note that this does not satisfy the triangle inequality.

=⇒ D(·||·) ≡ (Euclideandistance)2

Equality holds if P is linear.

See 7.1.3 for an intuitive graphical explanation of the Pythagoras theorem. This implies that information
divergence behaves as the square of euclidean distance since if the angle between two vectors AB and BC is
obtuse, then d2

AC ≥ d2
AB + d2

BC . (Recall, however, that information divergence is not symmetric.)

Figure 7.1: Triangle depicts the simplex of all probability distributions. The angle between segments qq∗

and qp is necessarily obtuse if Q is convex. If we think of D(q||p) as distance squared, then Pythagoras
Theorem states that, in a triangle with an obtuse angle, the square of the distance of the side opposite to the
obtuse angle is greater than the sum of the squared-distance of the other two sides.

Example 7.6 n tosses of a fair coin

What is the probability that the average of n fair coin tosses is greater than 3
4? Let us consider the set of all

distributions that have the same empirical distribution as the sequence we observe:

P = {p : pH ≥
3

4
n}

then we can show that if our distribution is a fair coin, p = ( 1
2 ,

1
2 ), then

Pr(xn : empirical distribution of xn is in P ) ≈ 2
−nargmax

p∈P
D(p||p0)

≈ 2−nD(( 3
4 ,

1
4 )||( 1

2 ,
1
2 ))

7.2 Maximum Entropy Duality

Maximum likelihood estimate is in the exponential family given empirical constraints. Given

exp pλ(x) =
p0(x) exp

∑
i λiri(x)

Zλ
= P,
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then

P ∗ML(x) = argmax
p∈λ

n∏
i=1

pλ(xi)

= argmin
p∈λ

n∑
i=1

log
1

pλ(xi)

= argmin
p∈λ

D(p̂||pλ) +H(p̂)

= argmin
p∈λ

D(p̂||pλ),

since the solution is equivalent without H(p̂). Note that the final solution is not the same as the projection.

The following theorem relates maximum likelihood parameter estimation in exponential family to information
projection:

Theorem 7.7 Duality Theorem

Let αi = Ep̂[ri(x)], then

p∗ML(x) = argmin
p∈λ

D(p̂||pλ)

= argmin
p∈P

Ep[ri(x)]=αi

D(p||p0)

= p∗IP (x)

The theorem states that the distribution belonging to the exponential family (with sufficient statistics ri(x)
and base distribution p0(x)) whose parameters maximize the likelihood of data, is the same as the information
projection of p0(x) on to a set of distributions with linear equality constraints (specified by ri(x)) that are
given by data.

Proof: We must show that the λ’s come from the distribution and satisfy linear constraints. Let ri(x) be
sufficient statistics, p0(x) the base distribution as above, and

Zλ =
∑
λ

p0(x) exp[
∑
i

λiri(x)] and

λ∗∗ = argmax
λ

n∏
i=1

pλ(xi)

= argmax
λ

n∑
i=1

[log p0(x) +
∑
i

λiri(x)− logZλ] .
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Taking derivative with respect to λ1, · · · , λm, of the log likelihood function, we get that

∂

∂λj
λ∗∗ =

n∑
i=1

rj(xi)− n
∂

∂λj
logZλ

=

n∑
i=1

ri(xi)−
n

Zλ

∂Zλ
∂λj

=

n∑
i=1

ri(xi)−
n

Zλ

∑
λ

p(x)rj(x) exp[
∑
i

λiri(x)]

=

n∑
i=1

ri(xi)− n
∑
x

[
p(x)rj(x) exp[

∑
i λiri(x)]

Zλ
]ri(x)

=

n∑
i=1

ri(xi)− n
∑
x

[pλ(x)]ri(x)

|λ=λ∗∗ML
= 0

taking λ∗∗ML for λ, then we find the expectation to be equal:

=⇒
∑
x

pλ∗∗ML(x)ri(x) =
1

n

n∑
i=1

rj(xi)

=⇒ Epλ∗∗ML [rj(x)] = Ep̂[ri(x)]

We can also use Lagrange duality to show the above.

7.2.1 Maximum Entropy Generalization

Given the mutual information estimator

min
p∈∆
D(p||p0) s.t. Ep[r] = Ep̂[r],

then the primal is
min
p∈∆
D(p||p0) + U(Ep[r]),

where U(Ep[r]) is a regularizer. Any U(p) can be used, but to obtain linear constraints, we use the regularizer
with respect to expectation. Here are three example regularizers:

Example 7.8 Regularizer

U(p) = 1(Ep[r] = Ep̂[r])

Example 7.9 L1 Norm Regularizer

U(p) = 1(|Ep[rj ]− Ep̂[rj ]| ≤ βj) ∀j
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Example 7.10 L2 Norm Regularizer

U(p) =
||Ep[rj ]− Ep̂[rj ]||

2α
∀j

Returning to the generalized maximum entropy problem, the dual is

ψ(p) =

{
D(p||p0) p ∈ ∆
∞ p 6∈ ∆

}
,

which is closed, convex, and proper. A function is proper if it is not always infinity. Then we have the
conjugate, which can be thought of as a gradient function

ψ∗(λ) = sup
p

[λp− ψ(p)].

Definition 7.11 Fenchel’s Duality

Let ψ, ϕ be closed, proper, and convex, and A is any matrix. We define Fenchel’s Duality as

inf
p
ψ(p) + ϕ(Ap) = sup

λ
−ψ∗(Atλ)− ϕ∗(−λ)

This definition is useful when the function is convex, but not differentiable. For example, at a corner in a
function, we can consider all tangent lines at that point.

Returning to the previous maximum entropy generalization problem. Let R be a matrix, p the density as a
vector. Within ML we can consider p(x) ≡ px, which may be an infinity object. Then, we have the primal

min
p∈∆
D(p||p0) + U(Rp)

and U is closed, convex, and proper. We can think of Rjx as rj(x). Let ψ(p) = D(p||p0). If there is a convex
divergence, then ψ∗(λ) = ln(

∑
x p0(x)eλx). So,

sup
λ

[−ψ∗(Atλ)− U∗(−λ)] = sup
λ

[− ln
∑
λ

p0(x)e(Rtλ)x]− U∗(−λ)

= sup
λ

[− lnZλ − U∗(−λ)]

7.2.2 Shifts

With respect to any data, let us choose

Ut[U ] = U(Et[r]− U),

where Et[r]− U is the difference of moments of t and p. Then the dual of the shift from the mean is

U∗t (λ) = U∗(−λ) + λt[r]

Example 7.12 Ut[U ] = 1(U = t[r]− π̃[r])
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Let Q(λ) = − lnZλ − U∗(−λ), then

Q(λ) = − lnZλ − U∗(−λ)

= − lnZλ − U∗t (λ) + λt[r]

= −Et[ln p0] + Et[ln p0 + λt[r]− lnZλ]− U∗t (λ)

= −Lt(0)− Lt(λ)− U∗t (λ),

where Lt(λ) := −Et[ln pλ], which, if t is with respect to the empirical data, is just the log likelihood of the
data, t = p̂. t can also be L1 or L2, for example.

Then the dual is
sup
λ
Q = min

λ
Lt(λ) + U∗t (λ).

p∗λ corresponds to the minimizer at the end.

Example 7.13 t[r] = Et[r]

Then the dual is

U∗t (λ) = U∗(−λ) + λEt[r].


