
10-704: Information Processing and Learning Spring 2015

Lecture 3: January 20
Lecturer: Aarti Singh Scribes: Giuseppe Vinci

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Submodularity of Entropy and Mutual information

In Lecture 2 we saw the definition of submodularity, consisting of three equivalent statements. In particular
in this lecture we will use the following:

f : 2Ω → R is submodular if ∀X ⊆ Y ⊆ Ω and ∀z /∈ Y we have

f (X ∪ {z})− f(X) ≥ f (Y ∪ {z})− f(Y) (3.1)

The intuition is that if f , for instance, is a utility function, it is submodular if the marginal utility from
adding a new element {z} to a set of goods X (this marginal utility is f (X ∪ {z}) − f(X)) is larger than
the one obtained when {z} is added to a larger set Y ⊇ X (this marginal utility is f (Y ∪ {z}) − f(Y)).
Submodularity in some way generalizes the idea of decreasing (positive) first derivative of an increasing
function. In fact, submodularity is a useful property of functions in optimization problems.

In the following examples we use the same notation as above.

3.1.1 Entropy

In this case Ω is a set of random variables. We use capital letters to denote sets of random variables (i.e.
X ⊂ Ω) and lower case letters to denote individual random variables x ∈ Ω. Note that this contrasts with
the usual notation of using capital letters for random variables and lower case letters for realizations of a
random variable.

To show that H : 2Ω → [0,∞) is submodular consider:

H(X, z)−H(X)︸ ︷︷ ︸
= H(z|X)︸ ︷︷ ︸

cond.entropy

≥ H(Y, z)−H(Y)︸ ︷︷ ︸
= H(z|Y)︸ ︷︷ ︸

cond.entropy

(3.2)

where H(z|Y) = H (z|X ∪ (Y \X)) ≤ H(z|X), since conditioning cannot increase entropy.

3.1.2 Mutual information

By Property 6 of Lecture notes 2, Section 2.3

• I(X,Ω) = H(X)−H(X|Ω) = H(X), which is therefore submodular (as function of X)

3-1

3-2 Lecture 3: January 20

• I(X,Ω \X) = H(X) +H(Ω \X)−H(Ω) is submodular (as function of X). In fact we have:

AX ≡ I(X ∪ {z},Ω \ (X ∪ {z}))− I(X,Ω \X)

= H(X ∪ {z}) +H(Ω \ (X ∪ {z}))−H(X)−H(Ω \X)

= [H(X ∪ {z})−H(X)] + [H(Ω \ (X ∪ {z}))−H(Ω \X)]

and similarly for AY . By submodularity of entropy, we have

H(X ∪ {z})−H(X) ≥ H(Y ∪ {z})−H(Y)

and
H(Ω \ Y)−H(Ω \ (Y ∪ {z})) ≥ H(Ω \X)−H(Ω \ (X ∪ {z}))

since Ω \ (Y ∪ {z}) ⊆ Ω \ (X ∪ {z}). Therefore AX ≥ AY .

3.1.3 Application to Machine Learning: Sensor placement problem

Suppose we want to monitor the temperature in a room by using k sensors. Let Ω be a set of random
variables corresponding to specific (feasible) locations in the room to place sensors We want to choose the
subset Xk ⊆ Ω with |Xk| = k that would collect information about the temperature of the room at best.
Let us consider two possible ways to do it:

1. “Maximum entropy subset selection problem”

X∗k ∈ argmax
X⊆Ω, card(X)=k

I(X,Ω) = argmax
X⊆Ω, card(X)=k

H(X) (3.3)

where we find the optimal solution (sensors locations) by maximizing the mutual information of Xk and
the total space of sensors. Thus X∗k is the subset with the largest uncertainty. Disadvantages: NP-
hard; tendency to place sensors near the boundary (walls of the room). Advantages: submodularity
of the objective function.

2. “Maximum mutual information subset selection problem”

X∗k ∈ argmax
X⊆Ω, card(X)=k

I(X,Ω \X) (3.4)

Solutions to (3.4) might be better than solutions to (3.3), since we try to put sensors on locations to
be most informative about the unsensed locations (Ω \X). Disadvantages: NP-hard. Advantages:
submodularity of the objective function.

In the next section we deal with the actual maximization of submodular functions, useful to solve problems
(3.3) and (3.4).

3.2 Maximizing submodular functions

Theorem 1 (Nemhauser et al. (1978)). Let f be a function such that:

1. f is submodular over finite set Ω

2. f is monotone, i.e. ∀X ⊆ Y ⊆ Ω, we have f(Y) ≥ f(X)

Lecture 3: January 20 3-3

Algorithm 1 Greedy-Algorithm(Ω, f , k)
Input: A set Ω, A set function f : 2Ω → R, Size of subset k.
Output: A subset Ak ⊂ Ω of size k.
A0 ← ∅
For i = 1, . . . , k

1. for x ∈ Ω\Ai−1, set δx ← f(Ai−1 ∪ {x})− f(Ai−1)

2. x∗ ← argmaxx∈Ω\Ai−1
δx

3. Ai ← Ai−1 ∪ {x∗}

3. f(∅) = 0

Let Ak ⊆ Ω be the first k elements chosen by Greedy-Algorithm(Ω, f , k) (see Algorithm 1). Then

f(Ak) ≥
(

1− 1

e

)
f(Aopt)

where Aopt = argmax
A⊆Ω, card(A)=k

f(A).

Proof. We prove the theorem by induction. Define Ai = {a1, ..., ai}, with A0 ≡ ∅. We claim that ∀0 ≤ j ≤ k

f(Aopt)− f(Aj) ≤
(

1− 1

k

)j
f(Aopt) (3.5)

1. At step j = 0 we have f(Aopt)− f(A0)︸ ︷︷ ︸
=f(∅)=0

≤ f(Aopt)

2. Suppose (3.5) is true at step j = i− 1. Let δi = f(Ai)− f(Ai−1). Thus

f(Aopt)− f(Ai) = f(Aopt)− f(Ai−1)− δi (3.6)

Let Aopt \Ai−1 = {x1, ..., xm},m ≤ k. We have

f(Aopt)− f(Ai−1) ≤ f(Aopt ∪Ai−1)− f(Ai−1) [monotonicity]

= f(Ai−1 ∪ (Aopt \Ai−1))− f(Ai−1)

=

m∑
j=1

[f(Ai−1 ∪ {x1, ..., xj})− f(Ai−1 ∪ {x1, ..., xj−1})]

[submodularity] ≤
m∑
j=1

[f(Ai−1 ∪ xj)− f(Ai−1)]

≤
m∑
j=1

[f(Ai)− f(Ai−1)] = mδi ≤ kδi

3-4 Lecture 3: January 20

⇒ δi ≥ 1
k (f(Aopt)− f(Ai−1)). Hence, equation (3.6) can be completed as follows

f(Aopt)− f(Ai) = f(Aopt)− f(Ai−1)− δi

≤
(

1− 1

k

)
(f(Aopt)− f(Ai−1))

≤
(

1− 1

k

)i
f(Aopt)

Therefore (3.5) holds also at step i.

3. Finally notice that
(
1− 1

k

)k ≤ lim
k→∞

= 1
e , which completes the proof.

The following theorem works under the more general assumption of “approximate monotonicity”.

Theorem 2 (Krause et al. (2008)). If condition 2 of Theorem 1 is replaced by

2∗. ∀X ⊆ Ω s.t. card(X) ≤ 2k

f(X) ≤ f(X ∪ {z}) + ε (approximate monotonicity) (3.7)

then f(Ak) ≥
(
1− 1

e

)
(f(Aopt)− kε).

Proof. See Krause et al. (2008), Appendix.

Clearly notice that if ε = 0, then f is monotone.

Let’s check if the assumptions of Theorem 1 are satisfied by entropy H(X) and mutual information I(X,Ω \
X). We have

1. submodularity: H(X) and I(X,Ω \X) are submodular

2. monotonicity: H(X) ≤ H(Y), but I(X,Ω \X) 6≤ I(Y,Ω \ Y)

3. H(∅) = I(∅,Ω \ ∅) = 0

Thus for the mutual information I(X,Ω \ X) Theorem 1 cannot be directly applied. However Theorem 2
can be used because

I(X,Ω \X) ≤ I(X ∪ {z},Ω \ (X ∪ {z})) + ε (3.8)

for card(X) small enough.

3.3 Differential Entropy

Definition 3 (Differential Entropy). Let X be a continuous random variable with pdf f . Then the differential
entropy of X is defined as

H(X) = −
∫
f(x) ln f(x)dx

Lecture 3: January 20 3-5

Notice that:

1. The differential entropy is based on the natural logarithm ln = loge, instead of log2 as for entropy

2. The differential entropy can be negative!

Example 1. X ∼ Uniform[0, a). Then H(X) = −
∫ a

0
1
a ln 1

adx = ln a such that H(X) < 0,∀a ∈ (0, 1).

Example 2. X ∼ N(0, σ2). Then the pdf is f(x) = 1√
2πσ

e−
x2

2σ2 and

H(X) = −
∫
R
f(x) ln f(x)dx

= −
∫
R

1√
2πσ

e−
x2

2σ2 ln

(
1√
2πσ

e−
x2

2σ2

)
dx

=

∫
R

1√
2πσ

e−
x2

2σ2

(
x2

2σ2
+ ln(

√
2πσ)

)
dx

=
1

2
+ ln(

√
2πσ)

=
1

2
ln(2πeσ2)

such that H(X) < 0 for σ <
√

1
2πe .

3.3.1 Application to Machine Learning: Clustering

Let X = {X1, ..., Xn} be a set of random variables Xi ∈ Rd. Let C : X → {1, ..., k} define a cluster
assignment which put each Xi into one of k classes. Denote with Ci the class assigned to Xi. An entropy-
based clustering is performed by solving:

max
C

I(X,C) = max
C

H(X|C) (3.9)

Connection to k-means clustering

We might wonder if criterion (3.9) differs from k-means clustering. Suppose X|C = j ∼ N(µj , σ
2
j I), where

I is the d× d identity matrix. Thus, the differential entropy of X|C = j is

H(X|C = j) =
d

2
ln(2πeσ2

j) (3.10)

An estimator of H(X|C = j) (when µj , σj are unknown) is the plug-in estimator

Ĥ(X|C = j) =
d

2
ln

2πe
1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

 (3.11)

obtained by replacing σ2
j with σ̂2

j = 1
nj

∑
i:Ci=j

‖Xi−µ̂j‖2, where µ̂j = 1
nj

∑
i:Ci=j

Xi and nj = card({i : Ci = j}).

Thus, an estimate of the conditional (differential) entropy H(X|C) is

Ĥ(X|C) =

k∑
j=1

Ĥ(X|C = j) P̂ (C = j)︸ ︷︷ ︸
nj/n

=

k∑
j=1

d

2
ln

2πe
1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

 nj
n

(3.12)

3-6 Lecture 3: January 20

Therefore the entropy-based clustering (3.9) is implemented by solving

min
C

Ĥ(X|C) = min
C

k∑
j=1

ln

 1

nj

∑
i:Ci=j

‖Xi − µ̂j‖22

nj (3.13)

The k-means clustering is performed by

min
C

k∑
j=1

∑
i:Ci=j

‖Xi − µ̂j‖22 (3.14)

We can easily see that the optimization problem of the entropy-based clustering (3.13) differs from the
k-means clustering optimization problem (3.14) just because of the logarithm. In fact if ln is replaced by
the identity function, (3.13) and (3.14) are equivalent. However, the logarithm makes the entropy-based
clustering more robust than k-means.

References

Krause, Andreas, Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research, 9, 235-284.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing
submodular set functionsI. Mathematical Programming, 14.1, 265-294.

