10-704: Information Processing and Learning Spring 2015
Lecture 25: LDPC Codes and Belief Propagation

Lecturer: Akshay Krishnamurthy Scribe: Akshay Krishnamurthy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In channel coding, we want to send a message x over a noisy channel. Typically we add some redundancy
to the message so that a receiver can reliably decode the message even in the presence of noise. For this
lecture, we will send a message = € {0,1}* over a channel by mapping it to a codeword w € {0,1}". This
codeword is sent over a channel and the reciever observes y € {0,1}". The schematic is:

Decodin

X Emg;mg W — Channel — Y ~%™8 X

Since w € {0,1}" and z € {0, 1}*, this is a rate R = k/n code.

25.1 Coding Schemes

Here we will briefly discuss some coding schemes.

25.1.1 Random Codes

Random codes are implicit in Shannon’s proof of the Channel Capacity Theorem. We pick 2* vectors
w1, ..., wyr at random from {0,1}"™ and use these as the codewords. Encoding involves mapping = to w;,
where z is interpreted as an integer in [2¥]. Decoding is based on maximum likelihood decoding, we find the
codeword z that maximizes P[y|w = w,], which involves the channel characteristics.

The nice thing about this coding scheme is that it is known to achieve capacity. There are two downsides
however. First, there is no structure to the codebook, so both the sender and the receiver must store all 2%
words in the codebook, which is often intractable from a space perspective. Secondly, decoding is known to
be NP-hard in general, so there is also computational complexity.

25.1.2 Linear Codes

In a linear code, we pick a k-dimensional subspace of {0,1}" (Treated as a finite field) and use all of the 2*
vectors in that subspace as the codebook. Let z1,..., 2z € {0,1}" be a basis for the subspace that we chose,
then coding amounts to taking w(z) = Zle x;z; where x; is the ith bit of the input x. This is just taking
linear combinations. Decoding is again based on the maximum likelihood approach, we find the vector in
the subspace that is most likely to have generated the observation y.

Random linear codes (where the subspace is chosen at random) are also known to achieve capacity. The
advantage over random codes is that there is a lot of structure to the codebook, so rather than store all of
the 2* codewords, we can just store the basis vectors 2, ..., 2, and generate the codewords as we need to.
However the decoding procedure is still known to be NP-hard, so there is still some difficulty.

25-1

25-2 Lecture 25: LDPC Codes and Belief Propagation

25.1.3 Low-Density Parity-Check (LDPC) Codes

LDPC codes attack this problem from the other angle. Instead of building a code that tries to achieve
capacity, we instead build a code for which decoding is fairly simple.

Another way to specify a linear code is as the null space of a full row-rank matrix H € {0,1}"~%*" That is,
the codewords are all of the vectors w such that Hw = 0. This is known as a parity check code, since each
row of h is saying that the parity of some bits of w must be zero. H is known as the parity check matrix
for the code. If the ith row of h is (1,0,0,1,1) then the parity check is h;(w) = wy ® wy B w5 and the linear
system demands that this is zero for any codeword.

This is a linear code, just expressed in a different way, so encoding is the same as before. We can perform
gaussian elimination to identify a basis for the null space of H and encode z by taking the linear combination
with this basis.

For decoding, it is useful to think of a graphical representation of the parity check matrix. We form a
bipartite graph, where nodes on one side corresponds to bits in the codeword and nodes on the other side
correspond to the parity check equations h;. We place an edge between a codeword bit and a parity check
equation if that bit is involved in the check equation.

Decoding is based on a message passing algorithm on this graph. It is easiest to see what is going on in the
binary erasure channel.

25.1.3.1 Binary Erasure Channel

In the BEC, each bit in the y is erased with some probability p, and there are no other corruptions. So we
might receive y = w1, *, w3, w4, *, meaning that we lost both the second and fifth bits of the message. The
message passing algorithm is fairly straightforward here. The algorithm looks like:

1. If there are no unknown bits, we are done, and have successfully decoded.

2. If there is a parity check equation with only one unknown bit, we can correctly determine the value of
that bit. This is a just a single equation in one variable, so we it can be solved. Fill in the value for
that bit and go back to step 1.

3. If all remaining parity check equations have at least two unknown bits, then we cannot hope to recover
the true message, so just guess among any satisfying assignments.

Another way to think about the algorithm is the following, in the graph, each code word variable sends
its value to each parity check variable. Each parity check variable uses all of this information to figure out
assignments for unknown variables and sends these assignments back to the variables. The variables update
their assignments and repeat the process.

As a small comment on theory, you can show that with appropriate degree distributions (you want parity
checks to have low degrees), and with enough parity check equations, this algorithm will succeed with high
probability.

25.1.3.2 Binary Symmetric Channel

In the binary symmetric channel (BSC), each bit y is flipped with some probability g. Decoding is done by
a softer version of the algorithm for the BEC.

Lecture 25: LDPC Codes and Belief Propagation 25-3

Each codeword variable w; will send a message m.,, 5, to each parity check equation h; that it is involved
in. The message will be two numbers, reflecting the probability that w; is 0 or 1, conditioned on some
information from the rest of the network. Each parity check equation h; will the send a message mp,; ., to
each codeword variable w;. These messages are also two numbers, reflecting the probability that w; is 0 or
1 based on this parity check equation.

The algorithm is iterative, and we initialize the algorithm with:

0 qify; =1

mgui)ﬁhj (0) = P(w; = 0ly;) = { (1—q) ify=0
;=

0 qify; =0

mi) o, (1) = Plw; = 1ly,) = { Q- ifgm1

These are just the probabilities that w; is one or zero based on the channel distribution and the observation
Yi-

So these messages are passed to the parity check variables and used to compute messages to send back to
the variables. Computing these messages involves a short calculation. Assuming x; and x5 are independent
random variables, we can compute the distribution of the random variable x1 ® x2 by:

9Py By =0] —1=2Pw; = 1 Awy = 1]+ 2P =0A 20 = 0] — 1
= 2Pz, = 1Py = 1] + 2P[xy = 0]Pzs = 0] — 1
= 2Py = 1|Plwsy = 1]+ 2(1 — Plzy = 1])(1 — Plza = 1)] — 1
= 4P[w; = 1)Plwy = 1] — 2P[x; = 1] — 2P[zp = 1] + 1

= (2Plz; =1] - 1) (2P[z2 = 1] — 1)

And a similar calculation shows that:

m

2Pz @ @@y =0 — 1 =[] (2P[z; = 1] - 1)

1=1
Now if a parity check equation h; involves a set S C [n] of bits, we can compute the probability that this
equation is satisfied. If w; is a variable in that parity check equation, then the probability that w; is zero
is the same as the probability that @©;eg\ ;3w is zero. In words, if all of the other bits sum (modulo 2) to
zero, then it is should be the case that w; is zero. Therefore the message that h; sends to w; is:

i), (0) = Pl@res\ywr = 0] = 5 1+ I (Moyl 1)*1)
les\{i}

And m(t)

hy—w; 1)=1- mﬁf)_m (0) because these are probabilities.

For a codeword wj;, each of these messages is independent information about the assignment to w;, so we
update its probability as:

Plw; = a] = P(w; = aly;) H mh le
FEN (w;)

where A/ (w;) are the parity check equations that involve w;. The messages for the next round of the algorithm
are updated as:

1
m{, 0) =P =0ly) [mi..,. 0.
leN (wi)\h;

25-4 Lecture 25: LDPC Codes and Belief Propagation

That is LDPC codes decoding algorithm. We iteratively updated the probabilities for the w; random variables
for a set number of iterations or until the probabilities become highly assymetric (close to zero or one), and
then we decode based on these probabilities. Some remarks:

1. The entire algorithm can be implemented instead by using the log-likelihoods instead of the raw
probabilities. The log-likelihood variant was discussed in the lecture and is more common in practice
because working in the log domain avoids numerical underflow issues.

2. There is some theory for this algorithm for LDPC decoding but the arguments are fairly technical.
The idea is that if the graph is randomly generated with low-degree then it looks locally tree-like, and
the message passing algorithm is known to be exact for trees.

25.2 Belief Propagation and Inference in Graphical Models

The message passing decoding algorithm for LDPC codes is an instantiation of a more general algorithm,
known as belief propagation, that is used for inference in graphical models. In this section we describe the
inference problem and describe the belief propagation (BP) algorithm.

Definition 1. A factor graph is a collection of random variables X1, ..., X4 along with factors f1,..., fm
and associated subsets Si,...,Sy C [d]. Each factor f; associates a real number with each assignment to
the subset S; of random variables, which we denote by xs,. We use lower case x to denote realizations of
the random vector X, so that xs; is the realization of the random variables indexed by S;. The factor graph
specifies a probability distribution as:

plar,... za) = [[filzs,) (25.1)
j=1
An example of a factor graph is the ising model for binary random variables:
pa1,...,wq) cxexp B1 > miwi+ oy

(3.9)eE i

This distribution can be decomposed into a set of unary and binary factors, along with a factor encoding
the normalizing constant.

Important inference questions in a factor graph are:
1. How do we compute the marginal distributions p(x;) for a random variable x;?

2. How do we compute conditional distributions p(z;|Xs = zg), conditioned on a set of variables Xg
taking a particular value zg?

3. How do we compute the most likely assignment (conditionally and unconditionally)?

It turns out that variants of the Belief Propagation (BP) algorithm can be used to answer these questions.

There are two types of messages in BP: x, .y, (-) is the unnormalized belief about X; that is relevant to f;

Lecture 25: LDPC Codes and Belief Propagation 25-5

and g5, s x,(+) is the information that factor f; has about assignment to X;. The recursive updates are:

px; 5, (T) = H tre—x, () Multiply probabilities from incoming factors
FeeN(X\{f5}

prox (@)= > fi(Xi =, Xs0\ 1y = T5,\(1}) 11 wx,— (1)
Tsi\{i} XZEN(fJ)\{XJ}

The first expression is fairly straightforward: we multiply the incoming messages from all of the factors
except for the outgoing one f;, evaluated at our choice for X;, which is = in the expression. The second one
is more complicated: we are marginalizing out all neighboring variables in the factor f;. So we sum over all
possible assignments to all other neighboring variables X \(;; and we evaluate the factor for the assignment
(with X; = x) and then take into account the incoming probabilities from the neighboring variables in the
factor.

This is the general BP algorithm. We initialize by having variable nodes send p1x_, ¢(-) = 1. The marginals are
computed by multiplying all incoming factors for any individual variable p(X; = z) =[] FEN(X,) 1= X, (x).
In a tree, if we start from the leaves, work inward and then work back outward, it is known that this algorithm
is exact. In a general graph, it is more difficult to say what happens. Inference in discrete graphical models
is NP-hard in general.

To condition on a random variable, say X; = z; we fix it’s value in all messages sent by that node, i.e. we
always set x;r(z;) = 1 and px, (o) = 0 for all 2 # z;. Alternatively you can condition by folding
the assignment into the factors.

Some remarks:

1. This algorithm is also known as the sum-product algorithm. It is used to compute marginal and
conditional distributions. A related algorithm known as the maz-product algorithm can be used to
compute the most-likely assignment, marginally or conditionally. To do this, replace the sum in the
update equation from factors to variables with a max. This algorithm is a generalization of the Viterbi
algorithm used for Hidden Markov Models.

2. In general graphs, we don’t have convergence guarantees for this algorithm. One option is to make
your graph look more like a tree, and this is known as the Junction-Tree approach. The high-level idea
is to cluster the random variables in the graph so that graph induced on the clusters is a tree. Then
treat each cluster as a single random variable and run BP on this new tree.

The issue with this approach is that the clusters could be quite large, and the running time depends
exponentially on the size of the largest cluster. This is because we have to sum over all possible
assignments to all nodes in that cluster to marginalize in the factor update equation. The size of this
largest cluster is known as the tree-width of the graph and so we can do inference efficiently on graphs
with low tree-width.

3. The theory for LDPC codes is based on the fact that random, sparse, bipartite graphs are locally
tree-like so we can exploit the fact that the algorithm is exact on trees.

