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21.1 Review: Minimax Theory

We have been talking about techniques to lower bound the Minimax Risk, i.e.

inf
T

sup
θ∈Θ

Eθ[Ψ ◦ ρ(T, θ)], (21.1)

where T is an estimator for a parameter θ that belongs to some family Θ, Ψ is a non-decreasing function
with Ψ(0) = 0 and ρ is a semi-metric on Θ×Θ.

Examples:

1. Min square error in normal mean problems.

2. MISE in non-parametric problems.

3. Adaptive Compressive Sensing.

Techniques:

1. Le Cam’s method, which uses single vs single testing.

2. Fano’s method, which uses multiple hypothesis testing.

3. Assouad’s method, which uses multiple single vs single testing.

21.2 Review: Assouad’s Method

In Assouad’s Method, we want to find a packing V = {−1, 1}d, s.t.

∀θ,Φ ◦ ρ(θ, θv) ≥ 2δ

d∑
j=1

1{v̂(θ) 6= vj} (21.2)

where v̂ : Θ→ {−1, 1}d is a function mapping from the parameter space Θ to the hypercube. Through this
inequality, we are able to derive a lower bound for the original Minimax problem.
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Example: Laplace mean estimator in l1.
Suppose p(x) ∝ exp(−||x− µ||1), where x ∈ Rd. Let v ∈ {−1, 1}d and pv(x) ∝ exp(−||x− δv||1).

‖θ − θ(v)‖1 =

d∑
j=1

|θj − δvj | ≥ δ
d∑
j=1

1{sign(θj) 6= vj} (21.3)

So v̂ is sign function.

Setup: Pick v uniformly at random and let P+j be the joint distribution on v,X conditioned on vj = +1,
similarly for P−j . Then

Rn(Θ,Ψ ◦ ρ) ≥ δ
d∑
j=1

inf
ψ

[P+j(ψ(x) 6= 1) + P−j(ψ(x) 6= −1)] (21.4)

where ψ(x) is a testing function.

Example: Normal mean estimation in l22 loss.
We consider the d-dimensional normal distribution with identity covariance, i.e. the distribution family is
Pθ = N(θ, Id×d). Let θv = δv for v ∈ {−1, 1}d, then

||θ − θv||22 ≥ δ2
d∑
j=1

1{sign(θj) 6= vj} (21.5)

Thus our subset {θv}v∈{−1,+1}d satisfies the conditions to use Assouad’s method.

R(Θ, || · ||22) ≥δ
2

2

d∑
j=1

[1− ||P+j − P−j ||TV ] (21.6)

||P+j − P−j ||2TV ≤ max
v,v′

||v−v′||≤2

||Pnv − Pnv′ ||2TV ≤
1

2
max
v,v′

KL(Pnv ||Pnv′) (21.7)

(21.8)

The first inequality holds since total variance || · ||TV is convex. And for ||v − v′||1 ≤ 2, we have

1

2
KL(P 2

v ||P 2
v′) =

n

2
||θv − θv′ ||22 ≤ 2nδ2 (21.9)

Then

R(Θ|| · ||22) ≥δ
2

2

∑
(1−

√
nδ2) ≥ δ2

2
d(1−

√
nδ2) (21.10)

Set δ2 = 1
4n , we have,

R(Θ, || · ||22) ≥ c d
n

(21.11)

21.3 Strong data processing inequalities

How can we leverage these lower bound techniques to new settings that arise in modern learning problems?
One approach is to use strong data processing inequalities, as modern learning settings can be thought of as
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a classical problem with some transformation to the data, i.e.

parameter → classical data → new data (21.12)

θ → X → Z (21.13)

Example: Local Differentially private channel: Channel X → Z must be differentially private for each data
point, i.e. for each data point Xi we have distribution Q(Z|X) s.t.

sup
S

sup
x,x′∈X

Q(Zi ∈ S|Xi = x)

Q(Zi ∈ S|Xi = x′)
≤ exp(α). (21.14)

Example: Compression: Channel X → Z heavily compresses the input. For each input Xi ∈ Rd, we
pick uniformly a random subspace of m-dimension, and let Zi = (Vi, ViXi) where Vi ∈ Rm×d is a basis for
subspace.

We would like to leverage existing technology to get lower bound in these settings for learning with Z. Clearly
we can use data processing inequality, where we get I(θ,X) ≥ I(θ, Z) and indicates R(Zn, θ) ≥ R(Xn, θ).
But this bound is quite loose. Thus we are interested in strong data processing inequalities, where suppose
we have channel θ → X → Z, and Q(Z|X) is the distribution of Z|X with certain property, we want to
show that I(θ;Z) ≤ f(Q)I(θ;X), where f(Q)� 1, which yields a much tighter lower bound.

21.4 Strong data processing inequality for α-local differential pri-
vate channel

Suppose we have a α-local differential privacy channel θ → X ∈ X → Z ∈ Z and we get n samples Xn
1 . For

privacy reasons we use each Xi to create a new sample Zi via channel Q(Zi|Xi). We require a per-example
privacy, which is much more stringent than previous definition of differential privacy, that

sup
S

sup
x,x′∈X

Q(Zi ∈ S|Xi = x)

Q(Zi ∈ S|Xi = x′)
≤ exp(α) (21.15)

The high-level claim is that if θ → X → Z is a α-locally differentially private channel, then I(θ,X) ≤
α2I(θ, Z). More formally,

Theorem 21.1 Let P1, P2 be distribution of X and let Q be a channel distribution that guarantees α-
differential privacy (α ≥ 0). Define Mi(S) =

∫
Q(S|x)dPi(X), i = 1, 2 to be the marginal distribution.

Then

KL(M1||M2) +KL(M2||M1) ≤ min{4, e2α}(eα − 1)2‖P1 − P2‖2TV . (21.16)

Note for α small, where eα − 1 ≤ 2α so we can write the rhs like

≤ cα2||P1 − P2||2TV (21.17)

The above theorem gives us an α2 contraction in KL divergence, which means the effective sample size goes
from n to nα2. This means that if we had n samples in the differentially private setting, it is as if we only
had nα2 samples in the classical setting. So we need more samples in the new setting to learn well.
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Proof: Let m1(z) be the density function of M1, and similarly for m2. We know

KL(M1||M2) +KL(M2||M1) =

∫
m1(z) log

m1(z)

m2(z)
dµ(z) +

∫
m2(z) log

m2(z)

m1(z)
dµ(z) (21.18)

=

∫
(m1(z)−m2(z)) log

m1(z)

m2(z)
dµ(z) (21.19)

Claim 1: For α differentially private channel Q with conditional density q(·|x):

|m1(z)−m2(z)| ≤ cα inf
x
q(z|x)(eα − 1)||D1 −D2||TV , cα = min{2, eα}. (21.20)

Claim 2:

a, b ∈ R, | log
a

b
| ≤ |a− b|

min{a, b}
(21.21)

If Claim 1 and Claim 2 are true, we have

| log
m1(z)

m2(z)
| ≤ |m1(z)−m2(z)|

min{m1(z),m2(z)}
≤ cα(eα − 1)‖P1 − P2‖TV infX q(z|x)

min{m1(z),m2(z)}
≤ cα(eα − 1)‖P1 − P2‖TV

(21.22)

Similarly

|m1(z)−m2(z)| ≤ cα(eα − 1)‖P1 − P2‖TV inf
x
q(z|x) (21.23)

Thus

KL(M1||M2) +KL(M2||M1) ≤ c2α(eα − 1)2||P1 − P2||2TV
∫

inf
x
q(z|x)dµ(z) (21.24)

And the integral is bounded by infx
∫
q(z|x)dµ(z) = 1.

Proof of Claim 1:

m1(z)−m2(z) =

∫
X
q(z|x)(p1(x)− p2(x))dµ(x) (21.25)

=

∫
X
q(z|x)1{P1(x) ≥ P2(x)}(P1(x)− P2(x))dµ(x) (21.26)

+

∫
X
q(z|x)1{P1(x) < P2(x)}(P1(x)− P2(x))dµ(x) (21.27)

≤ sup
x∈X

q(z|x)

∫
X+

(P1(x)− P2(x)) + inf
x∈X

q(z|x)

∫
X−

(P1(x)− P2(x)) (21.28)

=(sup
x
q(z|x)− inf

x
q(z|x))

∫
X+

P1(x)− P2(x) (21.29)
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We know the second term is smaller than the total variance ‖P1 − P2‖TV by definition. And for the first
term

sup
x
q(z|x)− inf

x
q(z|x) (21.30)

≤ sup
x,x′
|q(z|x)− q(z|x′)| (21.31)

= inf
x̂

sup
x,x′
|q(z|x)− q(z|x̂) + q(z|x̂)− q(z|x′)| (21.32)

≤2 inf
x̂

sup
x
|q(z|x)− q(z|x̂)| (21.33)

=2 inf
x̂
q(z|x̂) sup

x
|q(z|x)

q(z|x̂)
− 1| (21.34)

this gives

≤2|eα − 1| inf
x
q(z|x) (21.35)

Since from α differentially privacy property q(z|x)
q(z|x̂) ∈ [e−α, eα] and |eα − 1| ≥ |e−α − 1|

(21.36)

Proof of Claim 2: Since log(x) ≤ x− 1:

log
a

b
≤ a

b
− 1 =

a− b
b

If a > b (21.37)

log
b

a
≤ b

a
− 1 =

b− a
a

If a ≤ b (21.38)

Then we get | log a
b | ≤

|a−b|
min{a,b} .

21.5 Strong data processing inequality for compressive sensing

Suppose we have X1, . . . , Xn ∼ N(0,Σ) ∈ Rd, and Z = (UTX,U), where U ∈ Rd×m is an orthonormal basis
for a random m-dimensional subspace, forms a channel as:

Σ→ X → Z (21.39)

Now instead of seeing {Xi}ni=1, we get {Zi} = {(UTi Xi, Ui)}ni=1. We are interested in estimating Σ and how
much information can we reveal about Σ.

Theorem 21.2 Let D0 be a distribution of (Z,U) where X ∼ N(0, ηI), U ∼ unif and Z = UTX. Let D1

be the same distribution but X ∼ N(0, ηI + γvvT ), for ||v||2 = 1. Then:

KL(Dn
1 ||Dn

0 ) ≤ 3

2

γ2

η2

nm2

d2
≈ m2

d2
KL(Nn(0, ηI + γvvT )||Nn(0, ηI)) (21.40)

Similar to local differential privacy case, compression induces a contraction in KL divergence for Gaussian
distributions, which can be used for lower bounds in covariance estimation problems, and the effective sample

size is nm2

d2 rather than nm
d . But this result is far more specific than the previous one.
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From the above theorem, we can show that:

inf supE[||Σ̂− Σ||2] ∼
√

d3

nm2
log(d) (21.41)

while the uncompressed rate for covariance estimation in spectral norm is
√

d log(d)
n .


