10-704: Information Processing and Learning

Spring 2015

Lecture 19: March 31st

Lecturer: Aarti Singh, Akshay Krishnamurthy Scribes: Rohan Varma

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

19.1 Applications

19.1.1 Privacy

We present some channel capacity results.

$$Y = AX + Z$$
, where $\mathbb{E}||X||^2 \le P, Z \sim^{iid} (0, \sigma^2 I)$

where A is random $m \times n$ projection. We then have

$$\sup_{p(x)} I(X,Y) \le \frac{m}{2n} \log(1 + \frac{P}{\sigma^2}) \to 0 \text{ at a rate of } \frac{m}{n}, C \le \frac{m}{2} \log(2\pi eP)$$
 (19.1)

Example: Compressed Linear Regression. $Y = AX\beta + \epsilon$ where β is of dimension p and s-sparse, X of dimension $n \times p$, If $m = s^2 \log(np)$, then $MSE \to 0$ and $supp(\beta) = supp(\hat{\beta})$. This latter property is known as sparsistency in the literature.

19.1.2 Differential Privacy

Differential privacy is a mathematical formalism for a privacy-preserving algorithm. We say an algorithm is (ϵ, δ) -differentially private if for all inputs X, X' differing in at most one value, and for all possible outcomes S.

$$Pr[A(x) \in S] \le e^{\epsilon} Pr[A(x') \in S] + \delta$$
 (19.2)

where \mathcal{A} refers to the algorithm under consideration.

One can use random projections to achieve differential privacy. If we let Y = AX + Z, where X is the original data matrix and Z has i.i.d. $\mathcal{N}(0, \sigma^2)$ entries, then we can achieve (ϵ, δ) differential privacy as long as:

$$\sigma^2 \ge (\max_j \|a_j\|_2) \frac{\sqrt{2(\log \frac{1}{2\delta} + \epsilon)}}{\epsilon} \tag{19.3}$$

where a_j are the columns of the matrix A.

19-2 Lecture 19: March 31st

19.1.3 Rate Distortion Approach

$$\min_{\Pi(T|X)} I(X;T) \text{ s.t } \mathbb{E}[\hat{R}_X(T)] \le \gamma \longleftrightarrow_{Blahut-Arimoto} \Pi(\theta|X) \propto \Pi(\theta)e^{-\beta\hat{R}_X(\theta)}$$
(19.4)

using the exponential mechanism. Here $\hat{R}_X(T)$ represents the empirical loss $(\frac{1}{n}\sum_{i=1}^n loss_{X_i}(T))$. In addition $\Pi(\theta|X)$ has $(2\beta\Delta_{\ell_1}(\hat{R}_X(\theta)), 0)$ differential privacy, where $\Delta_{\ell_1}(\hat{R}_X(\theta)) = \max_{X \sim X'} \|\hat{R}_X(\theta) - \hat{R}_{X'}(\theta)\|_1$.

19.2 Converse of Channel Coding Theorem

The converse of the channel coding theorem states that any rate $R \geq C$ is not achievable.

Proof. We use Fano's inequality which states that for $W \to Y$,

$$Pr(\hat{W}(Y) \neq W) \ge \frac{H(W|Y) - 1}{\log|W|}$$
 (19.5)

where W is a rate R code (i.e. $W \in \{1, 2, \dots 2^{nR}\}$ and W is drawn uniformly at random.). Hence we can write for the setting where W is the message sent over a discrete memoryless channel:

$$W \to X_1^n \to \text{channel} \to Y_1^n$$

and

$$P(\hat{W} \neq W) = \frac{H(W|Y) - 1}{nR} = \frac{H(W) - I(W, Y^n) - 1}{nR} = \frac{nR - I(W, Y^n) - 1}{nR}$$
(19.6)

We can additionally bound:

$$\begin{split} I(W,Y^n) &\leq I(X^n,Y^n) \\ &= H(Y^n) - H(Y^n|X^n) \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|Y_{i-1},\cdots Y_1,X^n) \\ &\leq \sum_{i=1}^n H(Y_i) - H(Y_i|X_i) = \leq \sum_{i=1}^n I(X_i;Y_i) \leq nC \end{split}$$

Hence, we can conclude that

$$P(\hat{W} \neq W) \ge \frac{nR - nC - 1}{nR} \tag{19.7}$$

So that one cannot achieve rates smaller than the capacity.

19.3 Minimax Theory For Testing Problems

The goal of minimax theory broadly is to understand the minimax risk

$$\inf_{T} \sup_{\theta} \mathbb{E}_{\theta} \left[\ell(T(x_1^n), \theta) \right] \tag{19.8}$$

Lecture 19: March 31st

where T is an estimator, θ is some parameter and the inner term represents the risk.

Example: If the range of T is a distribution and ℓ is the log-loss, then this is equivalent to "minimax redundancy".

What are alternative definitions: Pointwise is not useful because if θ is fixed then taking infimum over all estimators can do extremely well. Without the supremum, there is a deterministic estimator that does not look at the data and simple outputs $\operatorname{argmin}_{\hat{\theta}} \ell(\hat{\theta}, \theta)$. The Bayesian characterization, where we replace the supremum with an expectation, is useful and in fact we will use it and draw connections with the Redundancy-Capacity Theorem studied earlier this semester.

For testing problems, we will let Θ be finite and let ℓ be the indicator function. Hence we define:

$$R(\Theta) = \inf_{T} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} \left[\mathbb{1}[T(X^{n} \neq \theta)] \right] = \inf_{T} \sup_{\theta} \mathbb{P}_{\theta}[T \neq \theta]$$
(19.9)

19.3.1 Examples

- Normal Means Testing: Let $\Theta = \{-\mu, \mu\}$ and consider the probability of error. The goal now is to derive a test for determining the mean of the Gaussian. This is a simple-vs-simple hypothesis test.
- Simple vs. Composite Normal Means: The null hypothesis $H_0: X_1^n \sim \mathcal{N}(0,I), x_i \in \mathbb{R}^d$, and the alternative is $H_1: \mathcal{N}(\mu v, 1), \|v\| \geq 1, v \in \mathbb{R}^d$. This is a simple vs composite normal means problem and we will see how to get bounds here as well.
- Multiple Hypothesis Test $H_v: \mathcal{N}(\mu v, 1), v \in \{-1, 1\}^d$, so that there are 2^d hypotheses. We will see how to derive lower bounds for this type of testing problem as well.

19.4 Simple vs Simple

We first study simple versus simple testing problems. Let P_0 and P_1 be the two measures corresponding to the null and alternative hypotheses. We first have :

$$\inf_{T} \sup_{\theta \in 0.1} \mathbb{P}_{\theta}[T \neq \theta] \ge \inf_{T} \frac{1}{2} \mathbb{P}_{0}[T \neq 0] + \frac{1}{2} \mathbb{P}_{1}[T \neq 1]$$
(19.10)

We have replaced the supremum with an expectation. This is a general technique that we shall see over and over.

Lemma 1 (Neyman-Pearson). For any distributions P_0 and P_1 over a space \mathcal{X} .

$$\inf_{T} \{ \mathbb{P}_0(T \neq 0) + \mathbb{P}_1(T \neq 1) \} = 1 - \| P_0 - P_1 \|_{TV}$$
(19.11)

where the infimum is over all deterministic mappings T.

Definition 2 (Total Variation Distance). The total variation distance between two measures is defined as:

$$||P_0 - P_1||_{TV} = \sup_{A \subset \mathcal{X}} (P_1(A) - P_2(A)) = \frac{1}{2} \int |\frac{\partial P_0(x)}{\partial \mu(x)} - \frac{\partial P_1(x)}{\partial \mu(x)}| d\mu(x) = \frac{1}{2} \int |p_1(x) - p_0(x)| dx$$
 (19.12)

19-4 Lecture 19: March 31st

Proof. Any deterministic test $T: \mathcal{X} \to \{0,1\}$ has an acceptance region $A = \{x \in \mathcal{X}: T(x) = 1\}$. Then

$$\mathbb{P}_0(T \neq 0) + \mathbb{P}_1(T \neq 1) = \mathbb{P}_0(A) + \mathbb{P}_1(A^c) = 1 - \mathbb{P}_1(A) + \mathbb{P}_0(A)$$
(19.13)

SO

$$\inf_{T}\{\mathbb{P}_{0}(T\neq 0)+\mathbb{P}_{1}(T\neq 1)\}=\inf_{A}\{1-\mathbb{P}_{1}(A)+\mathbb{P}_{0}(A)\}=1-\sup_{A}(\mathbb{P}_{0}(A)-\mathbb{P}_{1}(A))=1-\|P_{1}-P_{0}\|_{TV} \ \ (19.14)$$

For us this means that

$$\inf_{T} \sup_{\theta \in \{0,1\}} \mathbb{P}_{X_1^n \sim \theta} [T(X^n) \neq \theta] \ge \frac{1}{2} - \frac{1}{2} \|P_0^n - P_1^n\|_{TV}$$
(19.15)

Before turning to the first example, we need one more result which we have actually seen before:

Lemma 3 (Pinsker's Inequality). For any distributions P,Q:

$$||P - Q||_{TV}^2 \le \frac{1}{2}KL(P, Q) \tag{19.16}$$

Fact: $KL(P^n,Q^n)=nKL(P;Q)$ where P^n is the n-fold product measure of P

Theorem 4 (KL-form of simple vs simple testing lower bound).

$$\inf_{T} \sup_{\theta \in \{0,1\}} \mathbb{P}_{X_1^n \sim \theta}[T(X^n) \neq \theta] \ge \frac{1}{2} - \frac{1}{2} \sqrt{\frac{n}{2} K L(P_0 || P_1)}$$
(19.17)

Example 1 (Normal Means Testing). $P_0 = \mathcal{N}(-\mu, 1)$, $P_1 = \mathcal{N}(\mu, 1)$ and $\theta = \{0, 1\}$ with $X_1^n \sim^{iid} P_\theta$ then $KL(P_0||P_1) = 2\mu^2$. This follows from the following

$$KL(\mathcal{N}(\mu_0, \Sigma_0), \mathcal{N}(\mu_1, \Sigma_1)) = \frac{1}{2} \left[tr(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \frac{det \Sigma_1}{det \Sigma_0} \right]$$
(19.18)

Hence we have

$$\inf_{T} \sup_{\theta} \mathbb{P}[T(X^n) \neq \theta] \ge \frac{1}{2} - \frac{1}{2}\sqrt{n\mu^2}$$
(19.19)

Thus, the probability of error is bounded from below by a constant $\frac{1}{2} - c$ if $\frac{1}{2}\sqrt{n\mu^2} \le c$, i.e $\mu \le \frac{2c}{n}$

As a sanity check, we know that thresholding the sample mean at 0 would give the same rate:

$$\mathbb{P}[|\bar{X} - \mu| \ge \epsilon] \le 2e^{-\frac{n\epsilon^2}{2}} \le \delta \tag{19.20}$$

This implies $\epsilon = \sqrt{\frac{2}{n} \log(\frac{1}{\delta})}$ so if $\mu \ge \epsilon$ we will succeed with probability of $1 - \delta$.