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19.1 Applications

19.1.1 Privacy

We present some channel capacity results.

Y = AX + Z, where E‖X‖2 ≤ P,Z ∼iid (0, σ2I)

where A is random m× n projection. We then have

sup
p(x)

I(X,Y ) ≤ m

2n
log(1 +

P

σ2
)→ 0 at a rate of

m

n
,C ≤ m

2
log(2πeP ) (19.1)

Example: Compressed Linear Regression. Y = AXβ + ε where β is of dimension p and s-sparse, X of
dimension n× p, If m = s2 log(np), then MSE → 0 and supp(β) = supp(β̂). This latter property is known
as sparsistency in the literature.

19.1.2 Differential Privacy

Differential privacy is a mathematical formalism for a privacy-preserving algorithm. We say an algorithm is
(ε, δ)-differentially private if for all inputs X,X ′ differing in at most one value, and for all possible outcomes
S:

Pr[A(x) ∈ S] ≤ eεPr[A(x′) ∈ S] + δ (19.2)

where A refers to the algorithm under consideration.

One can use random projections to achieve differential privacy. If we let Y = AX + Z, where X is the
original data matrix and Z has i.i.d. N (0, σ2) entries, then we can achieve (ε, δ) differential privacy as long
as:

σ2 ≥ (max
j
‖aj‖2)

√
2(log 1

2δ + ε)

ε
(19.3)

where aj are the columns of the matrix A.
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19.1.3 Rate Distortion Approach

min
Π(T |X)

I(X;T ) s.t E[R̂X(T )] ≤ γ ←→Blahut−Arimoto Π(θ|X) ∝ Π(θ)e−βR̂X(θ) (19.4)

using the exponential mechanism. Here R̂X(T ) represents the empirical loss ( 1
n

∑n
i=1 lossXi(T )). In addition

Π(θ|X) has (2β∆`1(R̂X(θ)), 0) differential privacy, where ∆`1(R̂X(θ)) = maxX∼X′ ‖R̂X(θ)− R̂X′(θ)‖1.

19.2 Converse of Channel Coding Theorem

The converse of the channel coding theorem states that any rate R ≥ C is not achievable.

Proof. We use Fano’s inequality which states that for W → Y ,

Pr(Ŵ (Y ) 6= W ) ≥ H(W |Y )− 1

log |W |
(19.5)

where W is a rate R code (i.e. W ∈ {1, 2, · · · 2nR} and W is drawn uniformly at random.). Hence we can
write for the setting where W is the message sent over a discrete memoryless channel:

W → Xn
1 → channel→ Y n1

and

P (Ŵ 6= W ) =
H(W |Y )− 1

nR
=
H(W )− I(W,Y n)− 1

nR
=
nR− I(W,Y n)− 1

nR
(19.6)

We can additionally bound:

I(W,Y n) ≤ I(Xn, Y n)

= H(Y n)−H(Y n|Xn)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Yi−1, · · ·Y1, X
n)

≤
n∑
i=1

H(Yi)−H(Yi|Xi) =≤
n∑
i=1

I(Xi;Yi) ≤ nC

Hence, we can conclude that

P (Ŵ 6= W ) ≥ nR− nC − 1

nR
(19.7)

So that one cannot achieve rates smaller than the capacity.

19.3 Minimax Theory For Testing Problems

The goal of minimax theory broadly is to understand the minimax risk

inf
T

sup
θ

Eθ
[
`(T (xn1 ), θ

]
(19.8)
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where T is an estimator, θ is some parameter and the inner term represents the risk.

Example: If the range of T is a distribution and ` is the log-loss, then this is equivalent to ”minimax
redundancy”.

What are alternative definitions: Pointwise is not useful because if θ is fixed then taking infimum over
all estimators can do extremely well. Without the supremum, there is a deterministic estimator that does
not look at the data and simple outputs argminθ̂ `(θ̂, θ). The Bayesian characterization, where we replace
the supremum with an expectation, is useful and in fact we will use it and draw connections with the
Redundancy-Capacity Theorem studied earlier this semester.

For testing problems, we will let Θ be finite and let ` be the indicator function. Hence we define:

R(Θ) = inf
T

sup
θ∈Θ

Eθ
[
1[T (Xn 6= θ]

]
= inf

T
sup
θ

Pθ[T 6= θ] (19.9)

19.3.1 Examples

• Normal Means Testing: Let Θ = {−µ, µ} and consider the probability of error. The goal now is to
derive a test for determining the mean of the Gaussian. This is a simple-vs-simple hypothesis test.

• Simple vs. Composite Normal Means: The null hypothesis H0 : Xn
1 ∼ N (0, I), xi ∈ Rd, and the

alternative is H1 : N (µv, 1), ‖v‖ ≥ 1, v ∈ Rd. This is a simple vs composite normal means problem
and we will see how to get bounds here as well.

• Multiple Hypothesis Test Hv : N (µv, 1), v ∈ {−1, 1}d, so that there are 2d hypotheses. We will see
how to derive lower bounds for this type of testing problem as well.

19.4 Simple vs Simple

We first study simple versus simple testing problems. Let P0 and P1 be the two measures corresponding to
the null and alternative hypotheses. We first have :

inf
T

sup
θ∈0,1

Pθ[T 6= θ] ≥ inf
T

1

2
P0[T 6= 0] +

1

2
P1[T 6= 1] (19.10)

We have replaced the supremum with an expectation. This is a general technique that we shall see over and
over.

Lemma 1 (Neyman-Pearson). For any distributions P0 and P1 over a space X .

inf
T
{P0(T 6= 0) + P1(T 6= 1)} = 1− ‖P0 − P1‖TV (19.11)

where the infimum is over all deterministic mappings T .

Definition 2 (Total Variation Distance). The total variation distance between two measures is defined as:

‖P0 − P1‖TV = sup
A⊆X

(P1(A)− P2(A)) =
1

2

∫
|∂P0(x)

∂µ(x)
− ∂P1(x)

∂µ(x)
|dµ(x) =

1

2

∫
|p1(x)− p0(x)|dx (19.12)
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Proof. Any deterministic test T : X → {0, 1} has an acceptance region A = {x ∈ X : T (x) = 1}. Then

P0(T 6= 0) + P1(T 6= 1) = P0(A) + P1(Ac) = 1− P1(A) + P0(A) (19.13)

so

inf
T
{P0(T 6= 0)+P1(T 6= 1)} = inf

A
{1−P1(A)+P0(A)} = 1− sup

A
(P0(A)−P1(A)) = 1−‖P1−P0‖TV (19.14)

For us this means that

inf
T

sup
θ∈{0,1}

PXn1 ∼θ[T (Xn) 6= θ] ≥ 1

2
− 1

2
‖Pn0 − Pn1 ‖TV (19.15)

Before turning to the first example, we need one more result which we have actually seen before:

Lemma 3 (Pinsker’s Inequality). For any distributions P,Q:

‖P −Q‖2TV ≤
1

2
KL(P,Q) (19.16)

Fact: KL(Pn, Qn) = nKL(P ;Q) where Pn is the n-fold product measure of P

Theorem 4 (KL-form of simple vs simple testing lower bound).

inf
T

sup
θ∈{0,1}

PXn1 ∼θ[T (Xn) 6= θ] ≥ 1

2
− 1

2

√
n

2
KL(P0||P1) (19.17)

Example 1 (Normal Means Testing). P0 = N (−µ, 1), P1 = N (µ, 1) and θ = {0, 1} with Xn
1 ∼iid Pθ then

KL(P0||P1) = 2µ2. This follows from the following

KL(N (µ0,Σ0),N (µ1,Σ1)) =
1

2

[
tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)− k + log

detΣ1

detΣ0

]
(19.18)

Hence we have

inf
T

sup
θ

P[T (Xn) 6= θ] ≥ 1

2
− 1

2

√
nµ2 (19.19)

Thus, the probability of error is bounded from below by a constant 1
2 − c if 1

2

√
nµ2 ≤ c, i.e µ ≤ 2c

n

As a sanity check, we know that thresholding the sample mean at 0 would give the same rate:

P[|X̄ − µ| ≥ ε] ≤ 2e−
nε2

2 ≤ δ (19.20)

This implies ε =
√

2
n log( 1

δ ) so if µ ≥ ε we will succeed with probability of 1− δ.


