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17.1 Overview

In the previous lecture we defined Sufficient Statistics, which capture all information in the data relevant
to estimating a desired parameter (hopefully, in a concise way). Motivated by the fact that useful sufficient
statistics (i.e., those with dimension independent of sample size) only exist for certain (i.e., exponential
family) distributions, we defined two more general notions, the Rate Distortion Function and the Information
Bottleneck Principle.

In this lecture, we begin by introducing Channel Coding, a fundamental problem in Information Theory, and
presenting the Channel Coding Theorem. We then review the rate distortion function, including the Rate
Distortion Theorem, and the Information Bottleneck Method and relate these to Channel Coding.

17.2 Channel Coding

17.2.1 Introduction and Setup

Recall that, in the source coding problem, we had the following model of infomation flow:

Source
WM

1

−−−−−−→ Source Encoder
Xn

1

−−−−−−→ Source Decoder
ŴM

1

−−−−−−→ Receiver.

In particular, the decoder received exactly the stream emitted by the encoder, and, given an input distribution
p(Xn

1 ), we were interested in designing a conditional distribution p(Xn
1 |WM

1 ) minimizing the expected length
n of the code (or, more precisely, the limiting ratio n

m as m→∞).

In the channel coding, we are again given an input string Wn
1 which we may encode as Xn

1 we wish. This
time, however, noise in introduced into Xn

1 (according to a known noise distribution), to create a new string
Y n

′

1 , and then Y n
′

1 is given to the decoder, as shown below:

Source
WM

1

−−−−−→ Channel Encoder
Xn

1

−−−−−→ Channel
Y n
1

−−−−−→ Channel Decoder
ŴM

1

−−−−−→ Receiver.

We will focus on discrete, memoryless channels, where this noise can be encoded as a (known) conditional
distribution p(y|x) (i.e., each symbol Xi is mapped to Yi according to a fixed distribution, so n′ = n). The
goal is then to design an encoding in the form of a distribution p(x) that (asymptotically) achieves low

probability of decoding errors 1
M

∑
P
[
Ŵi 6= Wi

]
, while again minimizing the length n of the code (or, more

precisely, maximizing the rate M
n as M →∞). The main result, due to Shannon in 1948 [S48], is the Channel

Coding Theorem (also known as Shannon’s Theorem), which identifies the rates of codes that can achieve
low decoding error in terms of the mutual information I(X;Y ).
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17.2.2 The Channel Coding Theorem

Definition: The capacity C of a channel with noise distribution p(y|x) is defined as C := maxp(x) I(X;Y )

Example (Binary Symmetric Channel) The binary symmetric channel BSC(p) parametrized by p ∈
[0, 1] has the noise distribution

P (y|x) =

{
p y 6= x
1− p y = x

, for all x, y ∈ {0, 1}.

That is, BSC(p) flips the input bit with probability p, as illustrated in Figure 17.1.

Figure 17.1: A binary symmetric channel with error probability p.

For any input distribution P (x), for X ∼ P (x) and Y ∼ P (y|X),

I(X;Y ) = H ∗ Y )−H(Y |X) = H(Y )− h(p) ≤ 1− h(p). (17.1)

where h(p) = −p log p− (1− p) log(1− p) is the entropy of Bernoulli(p). Furthermore, if X ∼ Bernoulli( 1
2 ),

then by symmetry, then Y ∼ Bernoulli( 1
2 ), and so H(y) = 1. Thus, equality holds in (17.1), and so the

capacity of BSC(p) is CBSC(p) = 1− h(p). �

Definition: Consider a discrete, memoryless channel. A rate R is called achievable iff there exists a (2nR, n)-
channel code with asymptotically vanishing error, i.e.,

lim
M→∞

1

M

M∑
i=1

P
[
Ŵi 6= Wi

]
= 0.

Theorem (Channel Coding): A rate R is achievable if R < C := maxp(x) I(X;Y ), and unachievable if
R > C.

Here, we will prove only the “if” statement (i.e., achievability). Later in the course, we will prove the “only
if” statement (i.e., necessity), which will be useful for proving lower bounds in machine learning problems.

Like the proof of achievability for the source coding theorem, the proof here uses a simple (albeit, impractical)
coding scheme based on the notion of typicality. Rather than just typicality of the input stream Xn

1 , however,
we require a stronger condition: joint typicality of the joint input and output stream (Xn

1 , Y
n
1 ).
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Definition: Given a joint probability density p : X ×Y → R with marginal densities pX and pY , the jointly

typical set A
(n)
ε ⊆ (X × Y)

n
is the set of sequences {(xi, yi)}ni=1 ∈ (X × Y)

n
such that

1.
∣∣− 1

n

∑n
i=1 log pX(xi)−H(pX)

∣∣ < ε,

2.
∣∣− 1

n

∑n
i=1 log pY (yi)−H(pY )

∣∣ < ε,

3.
∣∣− 1

n

∑n
i=1 log p(xi, yi)−H(p)

∣∣ < ε.

Theorem (Joint AEP): The jointly typical set A
(n)
ε satisfies

1) For {(xi, yi)}ni=1 drawn i.i.d. from p,

lim
n→∞

P[{(xi, yi)}ni=1 ∈ A(n)
ε ]→ 1.

2) |A(n)
ε | ≤ 2n(H(X,Y )+ε)

3) for sequences x̃1, . . . , x̃n ∼ pX and ỹ1, . . . , ỹn ∼ pY drawn independently,

P
[
{(x̃i, ỹi)}ni=1 ∈ A(n)

ε

]
≤ 2−n(I(X;Y )−3ε.

Proof: Property 1) follows from the Weak Law of Large Numbers and a union bound. Property 2) follows
from the basic AEP (which we proved with the source coding theorem). Property 3) follows from property

2) and parts 1. and 2. of the definition of A
(n)
ε because

P
[
{(x̃i, ỹi)}ni=1 ∈ A(n)

ε

]
=

∑
{(xi,yi)}ni=1∈A

(n)
ε

n∏
i=1

pX(xi)pY (yi)

≤ 2n(H(X;Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε) = 2−n(I(X;Y )−3ε,

Proof (Achievability of Channel Coding): Suppose R < C. Coding Scheme: The encoder and decoder operate
as follows:

1. Generate 2nR i.i.d. codewords of length n according to the distribution

p(xn1 ) =

n∏
i=1

p(xi).

These strings form the (ordered) codebook C, which is known to both the encoder and the decoder.
For W ∈ {1, . . . , 2nR}, we write Xn

1 (W ) to denote the W th codeword in C.

2. A length nR binary message W is generated uniformly at random (so each P [W = w] = 2−nR).

3. The encoder transmits the codeword Xn
1 (W ).

4. The decoder receives a noisy codeword Y n1 from the channel.

5. The decoder outputs an estimated message Ŵ ∈ {1, . . . , 2nR} if Ŵ is the unique message with

(Xn
1 (Ŵ ), Y n1 ) ∈ A(n)

ε . If (Xn
1 (Ŵ ), Y n1 ) 6∈ A(n)

ε or another Ŵ ′ ∈ {1, . . . , 2nR} also satisfies (Xn
1 (Ŵ ′), Y n1 ) ∈

A
(n)
ε , the decoder outputs Ŵ = 0 (i.e., it reports failure).
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Analysis: If we send M messages independently as described above, then

1

nR

nR∑
i=1

P
[
Wi 6= Ŵi

]
= P

[
W 6= Ŵ

]
= P

[
(Xn

1 (W ), Y n1 ) /∈ A(n)
ε

]
+P

[
∃Ŵ ′ 6= Ŵ with (Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
.

Part 1) of the joint AEP implies that that the first probability vanishes as n → ∞. For Ŵ ′ 6= Ŵ , Xn
1 (Ŵ ′)

was generated independently of Xn
1 (Ŵ ) from p (and hence independently of Y n1 ). Thus, applying a union

bound, part 3) of the joint AEP implies, for ε = I(X;Y )−R
6 > 0,

P
[
∃Ŵ ′ 6= Ŵ with (Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
≤

∑
Ŵ ′ 6=Ŵ

P
[
(Xn

1 (Ŵ ′), Y n1 ) ∈ A(n)
ε

]
≤ 2nR2−n(I(X;Y )−3ε) → 0,

as n→∞, proving the theorem.

17.3 The Rate-Distortion Theorem

Recall that the Rate Distortion function is

R(D) := inf
p(t|x)

I(X;T ) subject to E [d(X,T )] ≤ D. (17.2)

In practice, while we can’t typically compute the rate distortion function R(D), we can approximate it via
the Blahut-Arimoto algorithm ([A72] and [B72]). This doesn’t, however, give the optimal code.

Definition: A rate-distortion pair (R,D) is achievable if and only if there exists a (2nR, n) code with

lim
n→∞

E
[
d(Xn

1 , X̂
n
1 )
]
≤ D.

Theorem (Rate-Distortion): The rate-distortion function R(D) defined in (17.2) gives the maximum
achievable rate at distortion level D.

The proof of the rate-distortion theorem is similar to the proof of the channel coding theorem. The main
addition is that the typical set needs one addtional property: distortion typicality. In particular, we add the

condition |d(xn1 , x̂
n
1 )− E

[
d(Xn

1 , X̂
n
1 )
]
≤ ε in order for (xn1 , x̂

n
1 ) to be in A

(n)
ε .

Example (Compressing Gaussians): Suppose X ∼ N (0, σ2) (where σ is known) and d(x, t) = (x− t)2.
Then, the rate distortion function is

R(D) =

{
1
2 log

(
σ2

D

)
if D ∈ (0, σ2)

0 else
.

When D ∈ (0, σ2), we can solve for the distortion in terms of the rate: D(R) = σ22−2R. Suppose, we use a
simple statistic

T =

{
E[X|X ≥ 0] if X ≥ 0
E[X|X < 0] else

.

A straightforward computation gives E[X|X ≥ 0] =
√

2
πσ, and, symmetrically, E[X|X < 0] = −

√
2
πσ, so

T = sign(X)
√

2
πσ. T can be transmitted using a single bit, and so, according to the rate-distortion theorem,
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the optimal distortion is σ2

4 . On the other hand, while T appears to be an optimal 1-bit compression of X,

E[(X − T )2] = 2

∫ ∞
0

(
x−

√
2

π
σ

)2

φ(x) dx = 2

∫ ∞
0

(
x2 − 2x

√
2

π
σ +

2

π
σ2

)
φ(x) dx

= σ2 +
2σ2

π
− 4σ2

π
= σ2

(
π − 2

π

)
≈ 0.36σ2 > 0.25σ2.

Thus, the distortion is significantly (44% per symbol) higher than optimal. The intuition is that the rate-
distorition theorem is an asymptotic result; by transmitting T once per input X, we waste fractional bits
that could be used to reduce the average distortion if we encoded long input sequences with a block code.

17.4 Information Bottleneck Method

The information bottleneck method tries to find a statistic T that shares minimal information with the data
X, while still conveying information about a parameter Y . It does so by finding a distribution over T ,
depending on X, which minimizes the following criterion:

min
p(t|x)

I(X;T )− βI(T ;Y ),

where β > 0 is a Lagrange multiplier. It can be shown that the rate-distortion problem is a special case of
the information bottleneck problem. This provides an intuitive link between the problems of channel coding
and of finding sufficient statistics.

17.5 Continuous Channels

We now briefly consider the case of a channel operating over an uncountable alphabet. Suppose the channel
takes input X outputs Y = X + ε, where ε ∼ N (0, σ2) is independent of X. In general, by choosing the
distribution of X appropriately, we can make I(X;Y ) arbitrarily large. For example, if X ∼ N (0, η2), then

I(X;Y ) = H(Y )−H(Y |X) =
1

2
log
(
2πe(σ2 + η2)

)
− 1

2
log
(
2πe(σ2)

)
=

1

2
log

(
σ2 + η2

σ2

)
→∞

as η →∞. Thus, the usual definition of channel capacity is meaningless. A practical solution is to introduce a
power constraint of the form E[X2] ≤ P . From the maximum entropy property of the Gaussian distribution,

it is easy to see that the capacity of the above channel is then 1
2 log

(
σ2+P
σ2

)
.

Next time, we will discuss continuous channels further, including applications to areas such as privacy.
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