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15.1 Review: Prediction and Coding

So far, we have seen several connections between prediction and coding. To summarize:

e Length of prefix codes can measure complexity of models (predictors), which can be used for designing
complexity penalized ERM procedures for prediction.

e Under log-loss, i.e. for density estimation, in addition to encoding models, we can also prefix encode
data using a model (predictor) and minimize the total codelength of the two codes resulting in the
Minimum Description Length criteria.

Recall that to encode the data X' = X1, ..., X, using a predictor ¢, we can use Shannon code i.e. the
prefix code with codelengths ¢(X7) = [log(1/¢(X7"))]. We can also use Huffman code based on ¢. If
q = p, where p is the true data-generating distribution, then both Shannon and Huffman codes satisfy

HXT) ( BpldXT)]  H(XT) +1

e We also talked about how to do sequential prediction ¢(X;|X; ') and guarantee universality i.e. bound
sup,ep Redn(q,p) or sup,cp Reg(q,p,z7). This means the predictor is close to the best possible
predictor in a class P.

In this class, we will talk about a remaining question: What about sequential and universal coding?
Both Shannon and Huffman codes assume access to the true data-generating distribution beforehand. Even
we had access to an estimate, for non i.i.d. source, they require computing the (estimated) probability of all
length n sequence i.e. |X™| probability values before any coding can take place, i.e. they are not sequential.
This also means they cannot accommodate changing source distributions since the probability computations
need to be repeated all over if the distribution changes. Also, in practice we would like to design codes that
are universal i.e. the same encoder-decoder can be used for all distributions in some class e.g. gzip can
be used to compress multiple language files - English, German, French, Italian etc. - which have different
distributions of characters.

Can we use the sequential and universal predictor q(Xi\Xffl) to do coding? The answer is yes and
it can be done using arithmetic codes. Arithmetic codes are a family of streaming codes that code symbols
sequentially assuming access to a common sequential predictor q(Xi|Xi_1) at the encoder and decoder.

Before we discuss arithmetic coding, let us mention a popular universal lossless coding algorithm known as
CTW (Context Tree Weighting) which uses a specific sequential predictor to do arithmetic coding.
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15.2 Context Tree Weighting (CTW) compression

Recall we saw that a sequential and universal predictor can be constructed as a mixture of experts in a class
P = {po}oce:

4r(a}) = /@ 7(0)po (2})d0

where 7(6) is the weight of expert pg. This predictor can be implemented in a sequential form as:
n(wilal ™) = [ wOlal poes)at
(C]

where (0|} ™1) o< 7(0)pg(2i~) is the weight of expert py at iteration i. We will refer to 7(0|zi~1) as 7°(6).

The CTW method uses a specific mixture of “tree” experts as a sequential and universal predictor and
performs arithmetic coding using this predictor. Each tree expert is a D-bounded variable-order Markov
chain associated with a suffix set S (think § = S) where each suffix (also known as context) s € S is a
path from a leaf to the root in a depth D bounded |X|-ary tree. For example, three D = 2 bounded binary
tree experts are shown in Figure with suffix set (or context) S, = {00,10,01,11}, S, = {0,01,11} and
S, = {0}. Each leaf node is annotated with ps (xl\xz:}) = s), the probability of next symbol being 0/1 given
the context s. The probability of a sequence x7 under tree expert S is ps(2}) = [[1, ps(zi|zi"}) by the
chain rule. Thus, each tree-expert is a variable-order Markov chain since the order of dependency on the
past can be different depending on the context (but it is bounded by D).

(b) (c)

Figure 15.1: Example of three D = 2 bounded binary tree experts with suffix set (or context) S, =
{00,10,01,11},8, = {0,01,11} and S, = {@}. The probability of generating 23 = 100 given initial context 00
are ps, (00 100) = ps, (00; 1)ps, (01; 0)ps, (105 0) = 0.5-0.7-0.15, ps, (005 100) = ps, (0; )ps, (01; 0)ps, (03 0) =
0.75-0.35 - 0.25 and ps,(00;100) = ps_(1)ps.(0)ps.(0) = 0.75 - 0.25 - 0.25. The figure is reproduced from
Figure 1 of http://www.jmlr.org/papers/volume7 /begleiter06a/begleiter06a.pdf.

The CTW forms a mixture of these exponentially-many D-bounded tree experts in an efficient way. The
initial weight of an expert S is
w(S) = 2~ ITs|

and the weight at iteration ¢ is ‘ _

m(S) o 271 s pg (i)
as in mixture of experts, where |T's| = number of nodes in S tree — number of leaf nodes at max depth
D. We do not discuss how this infinite mixture can be implemented efficiently, but refer to sec 4.2 in
http://alexandria.tue.nl/extra2/200213835.pdf for a nice explanation of how to implement it by recursively
updating probabilities on a full |X|-ary tree of depth D.


http://www.jmlr.org/papers/volume7/begleiter06a/begleiter06a.pdf
http://alexandria.tue.nl/extra2/200213835.pdf
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15.3 Arithmetic Coding

Arithmetic codes map streams of symbols to a real number between 0 and 1. The first observation is that
binary strings define points in [0,1). A string x1,...,, maps to the binary number 0.z1x2 ...z, which is
equal to ), x;27". Let’s define our alphabet to be {a;...a x|}

We start by dividing the interval [0,1) into |X| intervals, each with length p; = p(x; = a;) fori=1,..., X.
Then, after seeing that z1 = a;, we subdivide interval p(x; = a;) further into |X| sub-intervals so that the
lengths of the sub-intervals are proportional to the probability of the second symbol (p(ze = a; | x1 = a;) for
j=1,...,X). Note that the length of the intervals at this second stage is p(z2 = a; |21 = a;)p(x1 = ;) =
p(x2 = aj, 1 = a;).

After seeing that the second symbol z2 = a;, we subdivide the interval p(ze = aj|z1 = a;) into |X|
sub-intervals so that the lengths of the sub-intervals are proportional to p(zs = ax|z2 = aj,x1 = a;) for
k=1,...,X. Note that if ™ is generated by a Markov chain, then p(zs = ay |z2 = a;, 21 = ;) = p(xs =
ar | z2 = a;j). The length of the intervals at this third stage is p(z3 = ap |22 = aj, 21 = a;)p(x2 = aj, 21 =
a;) = p(xs = ag, 22 = a;,T; = a;).

We continue this process until we’ve consumed the entire input. At this point, we say that the interval for
a™ is [L(z™), R(z™)) where L and R are the left and right endpoints respectively. Because all the intervals
are contained in [0,1) and > . p(z™) = 1, R(z™) — L(2") = p(z™). We can also view the interval as a
cumulative distribution F'(z™) = >_ p(y™) where y,, are all the sequences that have a binary representation
smaller than z,, (3 1:27% <> 2,;27%). Using this definition, we can rewrite the interval as [L(z"), R(z")) =
[F(z") = p(a™), F(z")).

Now that we have the interval, to encode we must spit out some z inside the interval. z € [L(z™), R(z"));z =
0.212223 . ... We can pick any z in the interval we want, but our choice can affect propreties of the code.

15.3.1 Examples

See Figure [15.2] The numbers on the diagram are in binary. We’ll be dealing with a four symbol alphabet:
{a,b,c,d}. In both examples, we’ll encode the string “aab”.

15.3.1.1 Natural example

Suppose we have an iid source that is described by symbol probabilities p(a) = %, p(b) = §, p(c) = 3, and
p(d) = %. When we process the first “a”, we see that the interval of the final string must be inside the
interval [0,0.1). At this point, we could emit a 0 as the first bit as all strings that start with “a” must lie
in the first interval and have first bit 0. In general we can’t always emit early (as can be seen in the next
example). The next “a” is in [0,0.01). Again, the encoder can send out a 0 as all strings starting in “aa”
must lie in the corresponding interval and have second bit 0. Finally, the “b” is in [0.001,0.0011). We could
return any number in this interval to encode “aab”, e.g. the total codeword for “aab” could be 001 or 0010
or 001011 etc. Also, notice that in this case the decoder can decode bits as they are sent - first 0 maps to

an ‘a” and so on. In the next example, we see that this is not always possible.

15.3.1.2 Out of order example

Now let’s keep the probabilities the same (the same iid source), but put them in a different order. We’ll
divide the interval into d, b, a,c instead of a,b,c,d. The final intervals are different, as illustrated in the
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a ' b , C , d
T T T
0.1 0.11 0.111
a b c d
L L L
T T T
0.01
a b
0.001 |
0.0011
d . b . a . o
T T T
0.001 0.011 0.111
d , b , a , C
T T T
0.1001 0.1101
b a
0.10011 |
0.10101

Figure 15.2: Two examples for arithmetic coding of sequence “aab” for the same iid source.

figure.

Notice that after observing the first “a”, the encoder cannot yet transmit a bit as any string that begins
with “a” lies in the corresponding interval [0.011,0.111) and can have its first bit as 0 or 1. This s because in
this second example the bits in the final number don’t necessarily correspond to the different subintervals.
This is in constrast to Huffman codes where each bit in the encoded symbols represent a branch in the tree.
However, arithmetic codes can accomdate for context-sensitive distributions e.g. instead of an iid source,
any other conditional distribution of second symbol given the first can be used in the second stage.

While spitting out bits as soon as the current intervals lower and upper ends agree in some bits is efficient,
the resulting codeword may not correspond to a prefix code, so the decoder may not know when to stop
(when the block length n ends). There is a more principled way to pick z such that the resulting code is
prefix free as described next.

15.3.2 Shannon-Fano-Elias Encoding: picking z

We can pick z so that the resulting code is prefix free. Once we find the interval [L(2™), R(z™)), we can
simply take the decimal part of the midpoint: w = F(z").

The midpoint could have a very long expansion, so we are going to round it off after /m bits.

We know that the midpoint is: W = F(2") =0.2123 ... % . ... We define our rounding as F(z")
p(") _
L

0.2123 ... zy where i = [—logp(z™)] + 1. By the way we set 7, we have F(z") — F(z") < 27 <
F(z™) — L(z™). This implies L(z") < F(z") < F(z,) < R(z"™), which means that F is in the interval.

Theorem 15.1 Shannon-Fano-Elias encoding is prefiz-free.

Proof: Our code is a prefix code if and only if no other sequence of length n can have F (z,,) as the prefix
of its binary encoding.



Lecture 15: Marchl7 15-5

We can write any number with prefix F(m") = ZT 2277 say w, as w = ZT 227 + szﬂ 2;27%. The
series Zim+l 2270 < Z;’im_ﬂ 27 = 27™ (since all 2;s can’t be 1, otherwise the binary representation is

same as flipping the 77 bit and in that case w won’t have as F(z™) prefix). Hence, we have

It is obvious that w > F(z™) > L(z™). Hence, w € [L(z"), R(z")). Therefore, all such ws can only represent
the sequence z". [ |

15.3.3 Encoding Length

Let’s find the expected length using our method of picking z. E[L(z™)] = > p(z™)l(z™). The length of z”

will be m, which depends on z™. Using definition of m, E[L(z™)] < > p(a™) log ﬁ +2< H(z2")+ 2.

Thus, the expected length per symbol E[L(z™)/n] < H(z™)/n + 2/n, approaches the entropy rate.

15.3.4 Comparison with Shannon and Huffman codes

Notice that while all huffman, shannon and arithmetic codes can achieve per symbol expected length close
to entropy, arithmetic codes are much more efficient as they can accomdate varying source distributions
while only requiring computation of n|X| conditional probabilities (probaility of each of the n observed
symbols given past). On the other hand, for a non-iid source, huffman and shannon codes require computing
probabilities of all length n sequences, i.e. |X|™ probability values. And the computations need to be
repeated all over if the source distribution changes.
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