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14.1 Review: Sequential prediction | Universal coding with log-
loss

Definition 14.1 Regret

The regret of using a predictor Q instead of P for a sequence of n symbols is:

Reg(Q,P, xn1 ) =

n∑
i=1

1

log q(xi|xi−1
1 )

− 1

log p(xi|xi−1
1 )

where xi1 = {x1, . . . , xi}.

Definition 14.2 Redundancy

We define the redundancy as the expected regret

Redn(Q,P ) = Exn1∼p
[ n∑
i=1

1

log q(xi|xi−1
1 )

− 1

log p(xi|xi−1
1 )

]
= D(Pn||Qn)

where D(Pn||Qn) is the KL divergence between P and Q based on n samples.

Theorem 14.3 The minimax regret for a class {Pθ}θ∈Θ takes the following form:

Rn := inf
Q

sup
p∈{Pθ}θ∈Θ,xn1

Reg(Q,P, xn1 ) = Compn(Θ) := log

∫
sup
θ∈Θ

pθ(x
n)dµ(xn1 ) := Dn

where Compn(Θ) is a measure of the complexity of the class {Pθ}, and µ is a base measure. If Compn(Θ) <
∞, then the normalized maximum likelihood distribution is uniquely minimax optimal. This distribution is
defined as:

q(xn1 ) =
supθ∈Θ pθ(x

n
1 )∫

supθ∈Θ pθ(x
n
1 )dxn1

Remarks 14.4

• Note that the normalized likelihood distribution is not a sequential predictor, since we must know the
entire sequence to compute q(xn1 ).
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• Compn(Θ) is often infinite.

The regret framework is used to study the adversarial setting where the sequence xn1 can be adversarially
chosen. We also talked about the setting where the sequence is random Xn

1 , drawn from some unknown
distribution P . We will focus on the case when P ∈ {Pθ}θ∈Θ, though it can be shown that the mixture
strategy is quite robust to model mis-specification. For this setting, we considered mixture strategies, where
Q is a mixture over the {Pθ}θ∈Θ. In terms of densities,

qπn(xn1 ) =

∫
Θ

π(θ)pθ(x
n
1 )dθ

where π(θ) is a prior over Θ. This yields a sequential predictor via the exponential weighting approach as
follows.

Definition 14.5 Exponential weights update

Given a prior π(θ), at the ith iteration, the posterior is

π(θ|xi−1
1 ) ∝ π(θ)e

− log 1

pθ(x
i−1
1 )

which is exponentially proportional to pθ’s loss on xi−1
1 . Then we can use the sequential update for the ith

symbol:

qπi (xi|xi−1
1 ) =

∫
Θ

pθ(xi)π(θ|xi−1
1 )dθ

Theorem 14.6 Consistency theorem

Under some conditions, for Θ ⊆ Rd

KL(Pnθ ||Qπn)− d

2
log

n

2πe
→ log

1

π(θ)
+

1

2
log det(Iθ)

where Iθ is a quantity known as the Fisher information of θ (we will see this later in the course).

The following theorem tells us that the mixture strategy for the worst case prior is minimax optimal for
redundancy:

Theorem 14.7 Redundancy-Capacity Duality

sup
π

inf
Q

∫
KL(Pθ||Q)dπ(θ) = sup

π
IT∼π(T ;X) = inf

Q
sup
θ
KL(Pθ||Q)

The right-most term is the minimax redundancy. The left-most term is the Bayesian redundancy for the
worst-case prior, where the inf is achieved by the Bayes optimal predictor which is a mixture distribution with
weights π(θ). The theorem states that the minimax redundancy is same as worst-case Bayesian redundancy,
and the minimax optimal strategy for redundancy is the mixture distribution corresponding to worst-case
prior. The term in the middle is the largest mutual information between a random variable T drawn according
to prior π i.e. P (T = θ) = π(θ), and is known as the capacity of the channel with T as input and X as
output (we will talk more about channel capacity after spring break).
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14.2 Sequential prediction: Beyond log-loss

Stemming from our discussion in the prior class are two questions:

Question: Can we leverage log loss results with other loss functions?

Answer: Yes. → In particular, we can relate other loss functions to redundancy.

Question: Can we get interesting results for the adversarial case?

Answer: Yes. → We can use exponential weights to obtain low regret.

In response to these two questions, we will prove two related theorems and show examples of their application.

Definition 14.8 Loss Function

Let l be our loss function if l : X̂ × X → R+, where X is a space of symbols and X̂ is the space of our
predictions.

Example 14.9 0-1 Loss

l0/1(x̂, x) = 1{x̂ · x ≤ 0}

Example 14.10 Squared Loss

lsq(x̂, x) = (x̂− x)2

The average case setting for general loss is analogous to redundancy (which is uses the negative log likelihood
loss), we want to minimize

n∑
i=1

EXi∼P l(X̂i, Xi)

where P is the data-generating distribution. This is the same as the risk from last few lectures, but now we
are making predictions in an online fashion. For example, Xi is whether it rains and X̂i is our prediction
of whether it rained. Another example, Xi represents whether rock, paper, or scissors was chosen and X̂i is
what we guessed would be chosen.

If we knew P , then the Bayes optimal predictor is

x∗i = argmin
x∈X̂

EXi∼P [l(x,Xi)|Xi−1
i ]

= argmin
x∈X̂

∫
X
l(x, xi)dP (xi|Xi−1

1 )

However, we usually do not know P , so we use a different distribution Q, which gives the prediction

x̂i = argmin
x∈X̂

EXi∼Q[l(x,Xi)|Xi−1
i ]

= argmin
x∈X̂

∫
X
l(x, xi)dQ(xi|Xi−1

1 )
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Given the predictor using Q, the performance of Q against P is the loss-based redundancy

Redn(Q,P, l) = EXn1 ∼P [

n∑
i=1

(l(X̂i, Xi)− l(X∗i , Xi))].

Theorem 14.11 If Redn(Q,Pθ) ≤ Rn(θ), where Rn(θ) is the log-loss based redundancy, and |l(x̂, x) −
l(x∗, x)| ≤ L ∀x, x̂, x∗, then

1

n
Redn(Q,Pθ, l) ≤ L

√
2

n
Rn(θ)

This implies that if we use exponential weighting approach based on log-loss, then we have supθ
1
nRn(Q,Pθ, l)→

0.

Note: This bound is not always tight. Under lsq, linear predictors can get logn
n instead of

√
logn
n rate.

Remarks 14.12

1. The loss assumption holds for l0/1.

2. This holds for other loss functionals, such as lsq, if x, x̂, x∗ ∈ X , where X is a compact set.

Example 14.13 (Classification with side information)

Let our loss function be the 0-1 loss, ie. l(ŷ, y) = 1{ŷ · y ≤ 0}. We want to predict y based on a vector
x ∈ Rd or side information. Each pθ specifies y:

yi = θTxi + εi, εi ∼ N (0, σ2)

We choose π with θ ∼ N (0, τ2Id). If we have seen the Yi variables in addition to the loss:

Ŷi+1 = argmin
y∈R

EQπ [l01(y, Yi+1)|Y i1 ]

= argmin
y

∫ ∞
−∞

Pθ(sign(yi+1) 6= sign(y))π(θ|Y ii )dθ

So, we need the posterior π(θ|xi1, yi1). Then,

θ|yi1, xi1 ∼ N (K−1
i

i∑
j=1

xjyj ,K
−1
i ) with Ki =

1

τ2
I +

1

σ2

i∑
j=1

xjx
T
j

Note that K−1
i

∑i
j=1 xjyj looks like ridge regression. We get

Ŷi+1 = 〈θ, xi+1〉+ εi+1 > |yi1, xi1 ∼ N (x>i+1K
−1
i

i∑
j=1

xjyj , x>i+1K
−1
i xi+1 + σ2)

So, we can use the posterior mean Ŷi+1 = 〈xi+1,K
−1
i

∑
xjyj〉.

From last class, we saw:

Redn(Qπ, Pθ0) ≤ d log n+ d log τ +
||θ0||22
τ2

+ log det(σ−2XTX)
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where XTX ∈ Rd×d, which implies det(σ−2XTX) for X ∈ Rnxd.

So, we get, by the theorem,

1

n
Redn(Qπ, Pθ0 , l01) ≤ 1√

n

√
d log n+ d log τ +

||θ0||22
τ2

+ log Iθ

Remarks 14.14

1. Consider the effect of τ . If θ0 is large, then we want τ to also be large, but we pay for it in the log τ
term. If ||θ0||2 →∞ then the bound is vacuous.

2. We can also handle the situation where we only see the label of sign(Yi) instead of yi, but this is
much harder computationally as we have to do Monte Carlo simulation to compute/approximate the
posterior.

For the proof of theorem 14.11, we will need to use the Cauchy-Schwartz, Pinsker’s, and Holder’s inequalities.

Theorem 14.15 (Pinsker’s Inequality)∫
|p(x)− q(x)| − ||P −Q||TV ≤

√
1

2
D(P ||Q)

Theorem 14.16 (Hölder’s Inequality) The following holds for p, q ∈ R s.t. 1/p+1/q = 1 and p = 1, q =∞.

〈f, g〉 ≤ ‖f‖p‖g‖q

Proof: (Proof of theorem 14.11)

We will begin with redundancy and transform the equation so that we can apply Pinsker’s inequality.
Combined with Cauchy-Schwartz inequality, this will give us our bound.

Redn(Q,Pθ, l) =

n∑
i=1

Eθ[l(x̂i, xi)− l(x∗i , xi)]

=

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi
pθ(xi|xi−1

1 )[l(x̂i, xi)− l(x∗i , xi)]dxidxi−1
1

=

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi

(pθ(xi|xi−1
1 )− q(xi|xi−1

1 ))(l(x̂i, xi)− l(x∗i , xi))dxidxi−1
1

+

n∑
i=1

∫
X i−1

1

pθ(x
i−1
1 )

∫
Xi
q(xi|xi−1

1 ))(l(x̂i, xi)− l(x∗i , xi))dxidxi−1
1

Note that∫
X
q(xi|xi−1

1 )(l(x̂i, xi)− l(x∗i , xi))dxi = EQ[l(x̂i, xi)− l(x∗i , xi)], and since x̂i is the argmin,

≤ 0
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which implies that, continuing from the previous equation and Holder’s inequality,

Redn(Q,Pθ, l) ≤
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||1 sup

x
|l(x̂i, xi)− l(x∗i , xi)|

≤ L
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||1, the bound condition,

≤ L
n∑
i=1

(∫
pθ(x

i−1
1 )

) 1
2
(∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||21

) 1
2

, by Cauchy-Schwartz,

= L

n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||21

) 1
2

,

= L
√
n(

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )||pθ(·|xi−1

1 )− q(·|xi−1
1 )||2TV )

1
2 , by Cauchy-Schwartz,

= L
√
n(

1

2

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )KL(pθ(·|xi−1

1 )||q(·|xi−1
1 ))2), by Pinsker’s inequality,

= L

√
n

2

√
KL(Pnθ ||Q)

L

= L

√
nRedn(Pnθ ||Q)

2

Dividing both sides by n gives us the desired inequality.

14.2.1 Adversarial Online Learning

Now let us consider the adversarial setting, where examples or symbols are not generated according to
any distribution. We will consider the case where there are finitely many strategies. In this setting, by
Redundancy-Capacity theorem, the log-loss redundancy is constant for any n:

inf
Q

sup
θ∈Θ

Redn(Q,Pθ) = sup
π
Iπ(T ;Xn

1 )

≤ log |Θ|

Can we achieve constant regret in an adversarial case? This setting can be recast as follows. We want to
predict a sequence of variables y1, . . . , yn ∈ R given a collection of experts {1, ..., d} (you may think of the
experts as {Pθ}θ∈Θ, except that with a general loss function and adversarial setting the experts don’t need
to be probability distributions, and d = |Θ|). In round i, expert j makes a prediction xij ∈ R (again, you
may think of xij as Pθ(xi|xi−1

1 ), though the experts can now be more general). At each round, we see the
expert predictions xij and make our choice.

To make this setting concrete, consider if we used log-loss, and for example yi ∈ {0, 1} and xij ∈ [0, 1] are
Bernoulli random variables. Then when yi = 1, the loss incurred is log 1

xij
and when yi = 0, the loss incurred

is log 1
1−xij . We can write this as

l(xij , yi) = yi log
1

xij
+ (1− yi) log

1

1− xij
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and use exponential weights strategy, with π0(j) = 1
d , given as

πi(j|Y i−1
1 ) ∝ π0(j)

i∏
t=1

xyttj (1− xtj)1−yt

= π0(j)e−
∑i
t=1 l(xtj ,yt)

Such a weighted update strategy can work for general losses if the losses behave similar to log loss. To
continue with our analysis for general losses, we will need to define weakly-exponential concave losses.

Definition 14.17 Weakly-Exponential Concave

A loss function is weakly-exponential concave if ∃c, η such that for any π ∈ Rd+,
∑
j π(j) = 1, then there is

some way to chose ŷi using xij such that ∀yi

l(ŷi, yi) ≤ −c log(
∑
j

π(j)e(−ηl(xij ,yi))),

which is equivalent to

e(− 1
c l(ŷ,y)) ≥

∑
j

π(j)e(−ηl(xj ,y)).

Then we say that l is (c, η)-realizable.

Intuitively, weakly-exponential concave tells us that we are only suffering as much loss as the worst expert.
Such losses behave enough like the log loss that a Bayesian updating of the experts (playing a mixture of
experts) works.

Example 14.18

Log-loss is (1, 1)-realizable, with ŷi =
∑
j π(j)xij.

Now we can state a version of the exponential weights strategy for general losses. We initialize wj = 1 ∀j ∈ [d].
Over each turn t = 1, . . . , n, we update our weights

wtj = e−η
∑t
i=1 l(xij ,yi)

W t =
∑
j

wtj

πtj =
wtj
W t

Then choose ŷt satisfying definition 14.17, with π = πt and expert values {xtj}dj=1. That is, we choose ŷt
and suffer loss l(ŷt, yt), which can be used to update the weights again.

That brings us to our second goal of obtaining low regret.

Theorem 14.19 [HKW 98] Consider any weakly-exponentially concave loss that is (c, η)-realizable. For any
j ∈ [d] and any sequence yn1 ∈ Rn,

n∑
i=1

l(ŷi, yi) ≤ c log d+ cη

n∑
i=1

l(xij , yi).

That is, our total loss is logarithmic in d, and as the number of rounds goes to infinity, our per round loss
goes to zero.
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Before we prove the theorem, let us go through two examples:

Example 14.20 log-loss

Let y ∈ {0, 1}, xij ∈ [0, 1], ŷi =
∑
j π(j)xij, then the theorem holds for c = η = 1, so the regret

∑n
i=1 l(ŷi, yi)−∑n

i=1 l(xij , yi) w.r.t all experts is ≤ log d.

Thus, even in the adversarial setting, using exponential weighting yields a constant in n and logarithmic in
d regret for log loss (recall this is similar to the redundancy which was constant in n and logarithmic in d for
log loss in the random setting). Recall that this is achieved using a sequential strategy while the normalized
likelihood approach which was minimax optimal was not sequential.

Example 14.21 0-1 loss

0-1 loss is (c, η)-realizable with any c such that c−1 ≤ log 2
1+e−η with

ŷ =

d∑
j=1

π(j)sign(xj)

i.e. we take a majority vote of the expert predictions under distribution π. See suggested reading for a proof.

Notice that log 2
1+e−η ≈

η
2 −

η2

8 , and we can set c−1 = log 2
1+e−η and η ≈

√
log d
n to find a bound on our

regret. From the theorem, for any sequence and for any set of experts,

Regret = max
j

[

n∑
i=1

l(ŷi, yi)−
n∑
i=1

l(xij , yi)] =

n∑
i=1

l(ŷi, yi)−min
j

n∑
i=1

l(xij , yi)

≤ log d

log 2
1+e−η

+
η

log 2
1+e−η

n∑
i=1

l(xij , yi)

= O(
√
n log d)

where the last step follows since the loss l ≤ 1.

For 0−1 loss, we have a per round regret of O(
√

(log d)/n) in the adversarial setting using a purely sequential
strategy. Thus, exponential weighting is a good strategy.

Proof: Proof of theorem 14.19. By definition of weakly-exponentially concave loss, l(ŷt, yt) ≤ −c log(
∑
j π(j)e(−ηl(xtj ,yt))) =

−c log(W t+1/W t).

Summing over t = 1 to n and using the fact that W 1 = d, we have

n∑
t=1

l(ŷt, yt) ≤ −c log(
Wn+1

W 1
)

= c log d− c log(

d∑
j=1

e−η
∑n
t=1 l(xtj ,yt))

≤ c log d− c log e−η
∑n
t=1 l(xtj ,yt)

= c log d+ cη

n∑
t=1

l(xtj , yt)

The second inequality follows since we are just lower bounding sum over j with one of the terms (all terms
are positive).


