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13.1 Universal Prediction

In the previous lecture, our results were based on the assumption that the source distribution is known. The
goal of universal prediction is to relax this assumption. In universal prediction, the source distribution is
not known.

In the homework we saw the following example: Given the data X ∼ p, instead using the true distribution
p(x), we use another distribution q(x) to encode the data, which means

l(x) = dlog
1

q(x)
e

. In the homework we proved the following bound:

H(p) +D(p||q) ≤ Epl(x) ≤ H(p) +D(p||q) + 1 (13.1)

The goal in universal prediction is to find a q that has D(p||q) small for all p ∈ P. Such a coding distribution
would be universal for P.

There are two cases in universal prediction - the adversarial case and a more average case.

13.1.1 Adversarial Case

Given a sequence xn1 ∈ Xn, we define the regret of using distribution Q over P .

Reg(Q,P, xn1 ) := log
1

q(xn1 )
− log

1

p(xn1 )
=

n∑
i=1

log
1

q(xi|xi−1
1 )

− log
1

p(xi|xi−1
1 )

(13.2)

We care about the worst-case regret with respect to a class of P:

Regn(Q,P) := sup
P∈P,xn1∈X

Reg(Q,P, xn1 ) (13.3)

13.1.2 Redundancy minimization

Here is a less adversarial case. We define the redundancy which is the expected regret under P .

Redn(Q,P ) := Exn1∼P
[

log
1

q(xn1 )
− log

1

p(xn1 )

]
= D(P ||Q) (13.4)
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The worst-case redundancy with respect to a class P is

Redn(Q,P) := sup
P∈P

Redn(Q,P ) (13.5)

13.1.3 Example

The problem in the HW2 that if we use Shannon code for Q instead of P is related to redundancy.

Let lP (x) = dlog 1
p(x)e, lq(x) = dlog 1

q(x)e. Then,

p(x) = 2−lp(x), q(x) = 2−lq(x)

Then we have the redundancy.

Redn(Q,P ) = EP
[

log
1

q(xn1 )
− log

1

p(xn1 )

]
(13.6)

=

n∑
i=1

EP lq(xi)− EP lp(xi) (13.7)

= n[EP lq(x)− EP lp(x)] (13.8)

= D(Pn||Qn) (13.9)

13.2 Minimax Strategies for Regret

There are two questions here.

• How low regret can we hope for?

• How do we achieve this low regret?

Let’s define the complexity of set Θ.

Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1 )dµ(xn1 ) (13.10)

where µ is some base measure on Xn. Note that we may have Compn(Θ) = +∞. It turns out that the
complexity equals to the minimax regret in adversarial setting.

Theorem 13.1 The minimax regret for P = {pθ}, θ ∈ Θ

inf
Q
Regn(Q,P) = Compn(θ) (13.11)

And if Compn(Θ) < +∞, then the normalized maximum likelihood estimator (as known as Shtarkov distri-
bution) Q, defined with density

q(xn1 ) =
supθ∈Θ pθ(x

n
1 )∫

supθ∈Θ pθ(x
n
1 )dxn1

(13.12)

is uniquely minimax optimal.
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Proof: Assume Compn(Θ) < +∞. The normalized maximum likelihood distribution Q has constant regret:

Regn(Q,P) = sup
xn1∈X

[
log

1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
(13.13)

= sup
xn1∈X

[
log

∫
supθ∈Θ pθ(x

n
1 )dxn1

supθ∈Θ pθ(x
n
1 )

− log
1

supθ pθ(x
n
1 )

]
(13.14)

= Compn(P) (13.15)

Moreover, for any distribution Q on Xn, we have

Regn(Q,P) =

∫ [
log

1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
q(xn1 )dµ(xn1 ) (13.16)

=

∫ [
log

q(xn1 )

q(xn1 )
+ Compn(Θ)

]
q(xn1 )dxn1 (13.17)

= D(Q||Q) + Compn(Θ) (13.18)

13.3 Mixture (Bayesian) Strategies and Redundancy

Here we move to the less adversarial case. Recall that

Redn(Q,P ) = D(Pn||Qn) (13.19)

The goal is to find distribution Q such that for any θ0 ∈ Θ

1

n
D(Pnθ0 ||Q

n)→ 0, n→ 0 (13.20)

We will use a mixture approach, which is based on choosing Q as convex combination (mixture) of all the
possible source distribution Pθ for θ ∈ Θ.

In particular, we start with a prior π over Θ and compute the marginal

qπn(xn1 ) =

∫
Θ

π(θ)pθ(x
n
1 )dθ (13.21)

Our algorithm will update the prior as we go and keep using the marginal.

qπ(xi|xi−1
1 ) =

∫
Θ

pθ(xi)π(θ|xi−1
1 )dθ (13.22)

π(θ|xi−1
1 ) =

π(θ)pθ(x
i−1
1 )∫

Θ
π(θ′)pθ′(x

i−1
1 )dθ′

(13.23)

∝ π(θ)e
− log 1

pθ(x
i−1
1 ) (13.24)

This is referred as the exponential weights update. It is a workhorse algorithm in online learning.

Theorem 13.2 Let Θ ⊆ Rd, under some regularity conditions,

D(Pnθ0 ||Q
π
n)− d

2
log

n

2πe
→ log

1

π(θ0)
+

1

2
log det(Iθ0), n→∞ (13.25)



13-4 Lecture 13: Feb 24

We do not give the rigorous proof here. The main point here is that we do get 1
nD(Pnθ0 ||Q

π
n)→ 0

Here we give an example. We have a Bernoulli distribution with Beta prior. Suppose Xi ∼ Ber(θ) and let
π be a Beta(α, β) distribution.

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (13.26)

where

Γ(a) =

∫ ∞
0

ta−1e−tdt (13.27)

We have the fact that Eπ[θ] = α
α+β . So what is the predictive distribution Q? Let Si =

∑i
j=1Xj be the

number of heads up to the i. Then,

π(θ|xi1) ∝ pθ(xi1)π(θ) ∝ θα+Si−1(1− θ)β+i−Si−1 (13.28)

π(θ|xi1) ∼ Beta(α+ Si, β + i− Si) (13.29)

=⇒ Q(xi+1 = 1|xi1) = Eπ[θ|xi1] =
Si + α

i+ α+ β
(13.30)

13.4 Bayesian Redundancy

Suppose we knew that the parameter θ was drawn from some known prior π. The data is then drawn from
Pθ. For a distribution Qn that we choose, we have the Bayesian redundancy.

Eθ∼πD(Pnθ ||Qn) (13.31)

Now let T ∼ π denote the parameter. The mutual information between T to the data is

I(T ;xn1 ) =

∫
π(θ)D(Pnθ ||Qπn)dθ = inf

Q

∫
π(θ)D(Pθ||Q)dθ (13.32)

The worst-case Bayesian redundancy is

sup
π

inf
Q

∫
π(θ)D(Pθ||Q) = sup

π
I(T ;xn1 ) (13.33)

13.5 Redundancy Capacity Duality

We want to know if the worst-case Bayesian redundancy is the same as the minimax redundancy.

sup
π

inf
Q

∫
π(θ)D(Pθ||Q)

?
= inf

Q
sup
θ
D(Pθ||Q) (13.34)

Clearly, the Bayesian redundancy ≤ minimax redundancy.

sup
π
Iπ(T ;xn1 ) ≤ inf

Q
sup
θ
D(Pn||Q) = inf

Q
Red(Q,P) (13.35)

It turns out that the other direction is also true. This is the redundancy-capacity theorem.



Lecture 13: Feb 24 13-5

Theorem 13.3 Let X be a random variable, taking finite number of values. Let Θ be a measurable space.
Then,

sup
π

inf
Q

∫
D(Pθ||Q)dπ(θ) = sup

π
Iπ(T ;xn1 ) = inf

Q
sup
θ
D(Pθ||Q) (13.36)

Moreover, the infimum on the right is uniquely achieved by some distribution Q∗ and if π∗ achieves the
supremum on the left, then Q∗ =

∫
Pθdπ

∗

Proof: Recall the definitions:

Red(Q, θ) = KL(Pθ||Q) = EPθ [− log
1

Q(x)
− log

1

Pθ(x)
] (13.37)

Red(Q, π) =

∫
D(Pθ, Q)dπ(θ) (13.38)

Our goal is to show:
(1) supπ Iπ(T ;X) = supπ infQRed(Q, π)
(2) supπ infQRed(Q, π) = infQ supθKL(Pθ||Q)

(1) is straight forward:

Iπ(T ;X) =

∫
π(T )p(X|T ) log

π(T )p(X|T )

π(T )p(X)
=

∫
π(T )D(PT ;P ) (13.39)

where P =
∫
Pθdπ(θ) Need to show that∫

π(T )D(PT ;P ) ≤ inf
Q

∫
π(T )D(PT ||Q) (13.40)

∫
π(T )D(PT ;P ) =

∫
θ

∫
x

π(θ)PT (x) log
PT (x)

P (x)
(13.41)

=

∫
θ

∫
x

Pθ(x)[log
Pθ(x)

Q(x)
+ log

Q(x)

P (x)
]π(θ) (13.42)

=

∫
θ

π(θ)D(Pθ||Q) +

∫
x

[

∫
θ

π(θ)Pθ(x)] log
q(x)

p(x)
(13.43)

=

∫
π(θ)D(Pθ||Q)−D(P ||Q) ≤

∫
π(θ)D(Pθ||Q) (13.44)

So we have (1)

sup
π
Iπ(T ;X) = sup

π
inf
Q

∫
π(θ)D(Pθ||Q) = sup

π
inf
Q
Red(Q, π) (13.45)

For (2), by (1) we already have one direction. i.e. we know that

inf
Q

sup
θ
Red(Q, θ) = inf

Q
sup
π
Red(Q, π) ≥ sup

π
inf
Q
Red(Q, π) = sup

π
Iθ(θ;X) (13.46)

So we need to show just
inf
Q

sup
θ
Red(Q, θ) ≤ C = sup

π
Iπ(θ;X) (13.47)

We will exhibit a Q, Q =
∫
Pθdπ(θ) where π achieves supremum in definition of C. Now we will show that∑

x

Pθ(x) log
Pθ(x)

Q(x)
≤ C,∀θ ∈ Θ (13.48)
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By contradiction: assume ∃θ such that this fails, call it θ∗. Define

πλ = (1− λ)π + λδθ∗ , Q
π,λ = (1− λ)Qπ + λPθ∗ (13.49)

We have
H(X|T ) = (1− λ)H(X|T ) + λH(x|T = θ∗) (13.50)

Iπλ(T ;X) = Hπλ(X)−Hπλ(X|T ) (13.51)

= H((1− λ)Qπ + λPθ∗)− (1− λ)Hπ(X|T )− λH(X|T = θ∗) (13.52)

at λ = 0, both side are equal to capacity C, since Hπ(X|T ) = Hπ(X)− Iπ(T ;X).
Now take the derivative with respect to λ

∂

∂λ
H((1− λ)Qπ + λPθ∗) = −

∑
(Pθ∗(x)−Qπ(x)) log((1− λ)Qπ(x) + λPθ∗(x)) (13.53)

∂

∂λ
Iπ,λ(T ;X)

∣∣∣∣
λ=0

= −
∑

(Pθ∗ −Qπ(x)) log(Qπ(x)) +Hπ(x)− Iπ(T ;X) +
∑
x

Pθ(x) logPθ(x)(13.54)

= D(Pθ||Q)− C (13.55)

So if inequality is violated, the π does not achieve the capacity since we can mix in some of θ∗ to do better.


