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1.1 About the class

This class focuses on information theory, signal processing, machine learning, and the connections between
these fields. Both signal processing and machine learning are about how to extract useful information
from signals/data. Classically signals in signal processing involve a temporal component and are usually
transmitted over a channel while data in machine learning may be slightly more general. A more fundamental
difference between signal processing/information theory and machine learning is that signals and channels
are often designed in the former, whereas in ML, we do not have much control over the data generating
distribution.

Information theory is about how much information is available in data, how much information can possibly
be extracted from a signal, or how much information can be transmitted over a channel. Information theory
studies two main questions:

1. How much information is contained in a signal/data?

Example 1. Consider the data compression (source coding) problem.

Source → Compressor → Decompressor → Receiver.

What is the fewest number of bits needed to describe a source (or a message) while preserving all the
information, in the sense that a receiver can reconstruct the message with low probability of error?

2. How much information can be reliably transmitted through a noisy channel?

Example 2. Consider the data transmission (channel coding) problem.

Source → Compressor → Channel → Decompressor → Receiver.

What is the maximum number of bits per channel use that can be reliably sent through a channel
in the sense that the receiver can reconstruct the message with low probability of error? Since the
channel is noisy, we will have to add redundancy into the messages. A related question is: how little
redundancy do we need so that the reciever can still recover our messages?

Remark 1. Data compression or souce coding can be thought of as a noiseless version of the data trans-
mission/channel coding problem.

1-1



1-2 Lecture 1: Jan 13

Connection to Machine Learning:

1. Source coding in ML: in ML, the source can be thought of as a model (for example p(X1, . . . , Xn)) that
generates data points X1, . . . , Xn, and the least number of bits needed to encode this data reflect the
complexity of the source or model. Ideas from source coding can be used to pick a descriptive model
with low complexity, in line with the principle of Occam’s Razor.

2. Channel coding in ML: The channel specifies a distribution p(y|x) where x is the input to the channel
and y is the output. For instance, we can view the output yi = m(xi) + ε in regression as the output
of a noisy channel that takes m(xi) as input. Similarly, in density estimation, x can be a parameter
and y is a sample generated according to p(y|x).

We will return to these later in the course.

1.2 Information Content of a Random Experiment

We will define the information content of a random outcome X to be log2(1/p(X)). To see why this is a
useful definition, let’s turn to some examples.

1. We choose an integer from 0 – 63 uniformly at random. What is the smallest number of yes/no
questions needed to identify that integer? Answer: log2(64) = 6 which can be achieved by doing
binary search.

Note that all outcomes have probability p = 1/64, log2(64) = log2(1/p) = 6. This is the Shannon
Information Content.

2. Here is an experiment that does not lead to equi-probable outcomes. An enemy ship is located some-
where in a 8 × 8 grid (64 possible locations). We can launch a missile that hits one location. Since
the ship can be hidden in any of the 64 possible locations, we expect that we will still gain 6 bits of
information when we find the ship. However, each question (firing of a missile) now may not provide
the same amount of information.

The probability of hitting on first launch is p1(h) = 1/64, so the Shannon Information Content of
hitting on first launch is log2(1/p1(h)) = 6. Since this was a low probability event, we gained a lot of
information (in fact all the infomation we hoped to gain on discovering the ship). However, we will
not gain the same amount of information on more probable events. For example:

The information gained from missing on the first launch is log2(64/63) = 0.0227 bits.

The information gained from missing on the first 32 launches is:

32∑
i=1

log2(pi(m)) = log2(

32∏
i=1

pi(m))

= log2(
64

63

63

62
. . .

33

32
)

= log2(2) = 1 bit

This is intuitive, since ruling out 32 locations is equivalent to asking one question in the previous
experiment.

If we hit on the next try, we will gain log2(1/p33(h)) = log2(32) = 5 bits of information. Simple
calculation will show that, regardless of how many launches we needed, we gain a total of 6 bits of
information whenever we hit the ship.
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3. What if the questions are allowed to have more than 2 answers?

Suppose I give you 9 balls and tell you that one ball is heavier. We have a balance and we want to find
the heavier ball with the fewest number of weighings. There are now three possible outcomes of an
experiment: left side heavier, right side heavier, or equal weight. The minimum number of experiments
is then log3(number of balls) = log3(9) = 2.

The strategy is to split the balls into three groups of three and weigh one group against another. If
these two are equal, you split the last group into three and repeat. If the first group is heavier, you
split it and repeat and vice versa for the second group.

Note that to gain a lot of information, you want to design experiments so that each outcome is equally
probable.

Suppose now that the odd ball is either heavier or lighter, but I don’t tell you which. How many weigh-
ings do we need? There are 18 possible outcomes so information theory tells us log3(18) experiments
would be necessary, and this number is between 2 and 3. Note that we may need more; information
theoretic bounds are often not achievable.

1.3 Information Content of Random Variables

A random variable is an assignment of probability to outcomes of a random experiment. We then define the
information content of a random variable as the average Shannon Information Content of the outcomes. We
can also think of it as a measure of uncertainty about the random variable.

Definition 2. The entropy of a random variable X with probability distribution p(x) is:

H(X) =
∑
x∈X

p(x) log2(1/p(x)) = −EX∼p[log2 p(X)], (1.1)

where X is the set of all possible values of X. We often write H(X) = H(p) since entropy is a property of
the distribution.

Here are some examples:

• If X ∼ Uniform(X ), then H(X) =
∑

x∈X
1
|X | log2(|X |) = log2(|X |).

• If X ∼ Bernoulli(p) then H(X) = H(p) = −p log2 p− (1− p) log2(1− p)

Below are several definitions that will appear throughout the course.

Definition 3. The joint entropy of two random variables X,Y with joint distribution p(x, y) is:

H(X,Y ) =
∑

x∈X ,y∈Y
p(x, y) log2

(
1

p(x, y)

)
(1.2)

Definition 4. The conditional entropy of Y conditioned on X is the average uncertainty about Y after
observing X. Formally:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2

(
1

p(y|x)

)
(1.3)



1-4 Lecture 1: Jan 13

Definition 5. Given two distributions p, q for a random variable X, the relative entropy between p and q
is:

D(p||q) = EX∼p[log 1/q(X)]− EX∼p[log 1/p(X)] = Ep[log p/q] =
∑
x

p(x) log
p(x)

q(x)
(1.4)

The relative entropy is also known as the Information divergence or the Kullback-Leibler (KL) di-
vergence.

The relative entropy is the cost incurred if we used distribution q to encode X when the true underlying
distribution is p.

Definition 6. Let X,Y be two random variables. The Mutual Information between X and Y is the
KL-divergence between the joint distribution and the product of the marginals. Formally:

I(X;Y ) = D(p(x, y)||p(x)p(y)), (1.5)

where p(x, y) is the joint distribution of X,Y and p(x), p(y) are the corresponding marginal distributions.
Thus, p(x)p(y) denotes the joint distribution that would result if X,Y were independent.

The mutual information quantifies how much dependence there is between two random variables. If X ⊥ Y
then p(x, y) = p(x)p(y) and I(X;Y ) = 0.

1.4 Connection to Maximum Likelihood Estimation

Suppose X = (X1, . . . , Xn) are generated from a distribution p (for example Xi ∼ p i.i.d.). In maximum
likelihood estimation we want to find a distribution q from some family Q such that the likelihood of the
data is maximized.

max
q∈Q

q(X) = min
q∈Q
− log q(X)

In machine learning, we often define a loss function. In this case, the loss function is the negative log loss:
loss(q,X) = log q(X). The expected value of this loss function is the risk: Risk(q) = Ep[log 1/q(x)]. We
want to find a distribution q that minimizes the risk. However, notice that minimizing the risk with respect
to a distribution q is exactly minimizing the relative entropy between p and q. This is because:

Risk(q) = Ep[log 1/q(x)] = Ep

[
log

p(x)

q(x)

]
+ Ep

[
log

1

p(x)

]
= D(p||q) + Risk(p)

Because we know that relative entropy is always non-negative, we know here that the risk is minimized by
setting q equal to p. Thus the minimum risk R? = Risk(p) = H(p), the entropy of distribution p. The excess
risk, Risk(q)−R? is precisely the relative entropy between p and q.


