10-704 Homework 4 Due: Thursday 4/23/2015

<u>Instructions:</u> Turn in your homework in class on Thursday 4/23/2015

1. Recall that the rate distortion function R(D) can be characterised via

$$R(D) = \min_{p(t|x)} I(X;T)$$
 sub. to. $\mathbb{E}d(X;T) \leq D$

- (a) Argue that R is a non-increasing in D.
- (b) Prove that R is convex in D.

Hint: If the distributions p_1 , p_2 have distortions D_1 , D_2 and mutual informations I_1 and I_2 , what can be said about the distortion and mutual information of a convex combination $\alpha p_1 + (1 - \alpha)p_2$ of p_1 and p_2 ?

- 2. You have M independent channels available with (binary) capacities C_1, \ldots, C_M . To transmit a signal you first choose a channel and then transmit your signal over that channel. The receiver can identify which channel was used i.e. you may assume that the output alphabets are disjoint.
 - (a) Show that the capacity of this channel is $\log_2 \left(\sum_i 2^{C_i} \right)$.
 - (b) How would the transmitter achieve this capacity?
- 3. In this problem we will derive lower bounds for parametric classification problems. In classification problems, the risk function is the expectation of the zero-one loss over the joint distribution. That is, if P_{XY} is the joint distribution, then the risk $R(f) = \mathbb{E}_{X,Y \sim P_{XY}} \mathbf{1}[f(X) \neq Y]$. We will establish minimax lower bounds on the excess risk, which is the risk minus the risk of the bayes optimal estimator, which is the function minimizing the risk.
 - (a) Consider a classification setting where $X \in [0, 1]$ and $Y|X = x \sim \text{Bernoulli}(\eta(x))$ and $\eta(x) = P(Y = 1|X = x)$ is the regression function. For a distribution P over X, Y with regression function η , the Bayes optimal predictor is $f_B(x) = \mathbf{1}[\eta(x) \geq 1/2]$. Let \mathcal{P} be the class of all distributions for which the Bayes optimal predictor is of the form $f_B(x) = \mathbf{1}[x \leq t]$. This means that the regression function η crosses 1/2 at most once at some point t (and it is above half on [0,t)). For such a distribution, the optimal estimator is the function $\mathbf{1}[x \leq t]$ and we say that its risk is R^* . Show that

$$\inf_{\widehat{f}_n} \sup_{P_{XY} \in \mathcal{P}} \mathbb{E}_{(X_i, Y_i) \sim P_{XY}} [R(\widehat{f}_n) - R^*] \ge C \sqrt{\frac{1}{n}}$$

You can use Le Cam's method. It is convenient to choose the two distributions to have the same marginal $P_x = \text{Uniform}[0,1]$ and only vary the conditional $P_{Y|X}$.

(b) Consider now the same set up except where the data $X \in [0,1]^d$ and the class \mathcal{P} corresponds to distributions with Bayes optimal predictors of the form $f_B(x) = \prod_{j=1}^d \mathbf{1}[x_j \leq t_j]$. Use Fano's method to show that:

$$\inf_{\widehat{f}_n} \sup_{P_{XY} \in \mathcal{P}} \mathbb{E}_{(X_i, Y_i) \sim P_{XY}} [R(\widehat{f}_n) - R^{\star}] \ge C \sqrt{\frac{d}{n}}$$