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1.1 About the Class

This class focuses on information theory, signal processing, machine learning, and the connections between

these fields.

e signals can be audio, speech, music. data can be images, files. They overlap a lot of times.

e Both signal processing and machine learning are about how to extract useful information from sig-

nals/data.

e signals as used in the EE community can be different from data in that (1) they often have temporal
aspect, (2) they are often designed and (3) they are often transmitted through a medium (known as a

channel).

Information theory studies 2 main questions:

1. How much “information” is contained in the signal/data?

Ezample: Consider the data compression (source coding) problem.

Source — | Compressor ‘ — ’ Decompressor ‘ — Receiver

What is the fewest number of bits needed to describe the output of a source (also called message) while
preserving all the information, in the sense that a receiver can reconstruct the message from the bits

with arbitrarily low probability of error?

2. How much “information” can be reliably transmitted through a noisy channel?

Ezample: Consider the data transmission (channel coding) problem.

Source — | Encoder ‘ — ’ Channel ‘ — ’ Decoder ‘ — Receiver

What is the maximum number of bits per channel use that can be reliably sent through a noisy channel,
in the sense that the receiver can reconstruct the source message with arbitrarily low probability of

error?

Remark: The data compression or source coding problem can be thought of as a noiseless version of the data

tranmission or channel coding problem.
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Connection to Machine Learning:

1. Source Coding in ML: In ML, the source is essentially a model (e.g. p(Xi, ..., X,,)) that generates data
points X7, ..., X, and the least number of bits needed to encode these data reflect the complexity
of the source or model. Thus, source coding can be used to pick a descriptive model with the least
complexity. This is the principle of Occam’s Razor.

2. Channel Coding in ML: The channel specifies a distribution p(y | #) where z is the input to the channel
and y is the output. For instance, we can view the output y; = m(x;) + € in regression as the output
of a noisy channel that takes m(z;) as input. Similarly, in density estimation, x can be a parameter
and y is a sample generated according to p(y | x).

We will formalize these notions later in this course.

1.2 Information Content of Outcomes of Random Experiments

We will usually specify information content in bits, where a bit is defined to be of value either 0 or 1. We can
think of it as the output of a yes/no question, and the information content can be specified as the minimum
number of yes/no questions needed to lean the outcome of a random experiment.

1. We have an integer chosen randomly from 0 to 63. What is the smallest number of yes/no questions
needed to identify that integer? Answer: log,(64) = 6 bits.

Note: all integers from 0 to 63 have equal probability p = 6%1 of being the correct integer. Thus,
log,(64) = logg(%). This is the Shannon Information Content.

2. Now lets consider an experiment where questions that do not lead to equi-probable outcomes.

An enemy ship is somewhere in an 8 x 8 grid (64 possible locations). We can launch a missile that hits
one location. Since the ship can be hidden in any of the 64 possible locations, we expect that we will
still gain 6 bits of information when we find the ship. However, each question (firing of a missile) now
may not provide the same amount of information.

The probability of hitting on first launch is p; (k) = 6%1, so the Shannon Information Content of hitting

on first launch is logz(p%(h)) = 6 bits. Since this was a low probability event, we gained a lot of

information (in fact all the infomation we hoped to gain on discovering the ship). However, we will
not gain the same amount of information on more probably events. For example:

The information gained from missing on the first launch is log, (33) = 0.0227 bits

The information gained from missing on the first 32 launches is

32
10g, (p1(m)) + logy (pa(m)) + ... logy (ps2(m)) = logg(H pi(m))

~og,(H83 33
~%82\G36277 32
=log,(2) =1 bit

)

Which is what we intuitively expect, since ruling out 32 locations is equivalent to asking 1 question in
the previous experiment 1.
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If we hit on the next try, we will gain logg(m) = log,(32) = 5 bits of information. Simple calculation
will show that, regardless of how many launches we needed, we gain a total of 6 bits of information

whenever we hit the ship.

3. What if the questions are allowed to have more than 2 answers?

Suppose we have a number of identically looking balls one of which is either heavier or lighter. We
have a balance and we want to find the odd ball with fewest number of weighings. There are now three
possible outputs of an experiment: left lighter, left heavier, equal weight. The minimum number of
experiments we need is then logs(number of balls). Note that we may need more; information bounds
are often not achievable.

1.3 Information Content of Random Variables

A random variable is simply an assignment of probability to outcomes of a random experiment. We then
define the information content of a random variable as just the average Shannon Information Content. We
can also think of it as a measure of the uncertainty of the random variable.

Definition 1.1 The entropy of a random variable X with probability distribution p(x) is

H(X) =" p(x)log,

reX

]ﬁ — _E,[logp(z)]

Where X is set of all possible values of the random wvariable X. We often also write H(X) as H(p) since
entropy is a property of the distribution.

Example
For a Bernoulli random variable with distribution Ber(p). The entropy H(p) = —plog, p— (1 —p) logs (1 —p)

Definition 1.2 Suppose we have random variables X,Y , then the Joint Entropy between them is

H(X,Y)==> p(z,y)log,p(z,y)

z,y

This is a measure of the total uncertainty of X, Y.

Note: If XY are independent, then it is easy to show that H(X,Y) = H(X)+H(Y). If X,Y are dependent,
then H(X,Y) < H(X) + H(Y) in general.

Definition 1.3 Suppose we have random variables X,Y , then the Conditional Entropy of Y conditioned
on X is defined as

HY|X)=> p)H(Y|X =)
== p@))_ py|z)log, p(y|x)
=33 " p(a,y)log, p(y | x)

= loe
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The conditional entropy is the average uncertainty in Y after we had observed X.

Theorem 1.4 (Chain Rule)

H(X,Y) = H(Y | X) + H(X)
The proof of the chain rule will be covered in recitation on in the homework.

Definition 1.5 Given two distributions p,q for a random variable X. The Relative Entropy between p
and q is defined as

D(p||q) = Ep[log 1] — Ep[log %]

The relative entropy is also known as Information divergence or KL (Kullback-Leibler) divergence.
The relative entropy is the cost incurred if we used distribution ¢ to encode X when the true underlying
distribution is p. We will make this intuition more precise later in the course. We note that relative entropy
has some important properties:

e D(pllq) >0, and equals 0 iff p=g¢g

e Relative entropy is often not symmetric, i.e., D(p|| q) # D(¢|| p)

Definition 1.6 Let X,Y be two random variables. The Mutual Information between X and Y is the
following:

I(X,Y) = D(p(z,y) [| p(x)p(y))
where p(x,y) is the actual joint distribution of X,Y and p(x) and p(y) are the corresponding marginal
distributions. Thus, p(x)p(y) denotes the joint distribution that would result if X,Y were independent.

Note: we can give a preview of the answers of the two fundamental questions of information theory stated
before.

1. How much can we compress data? If the data is generated as a random variable X, then the answer
is H(X).

2. How much data can we transmit over a noisy channel? If X is the input and Y is the output, then the
answer is max,(x) [(X,Y).

We will prove these later.
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1.4 Connection to Maximum Likelihood Estimation

Suppose X = (X4, ..., X,,) are data generated from a distribution p(X). In maximum likelihood estimation,
we want to find a distribution ¢ in some family of distributions Q such that the likelihood ¢(X') is maximized:

max ¢(X) = min — log ¢(X
max ¢(X) = min —log ¢(X)
In machine learning, we often define a loss function. In this case, the loss function is the negative log loss:
loss(g, X) = —log ¢(X). The expected value of this loss function is the risk: Risk(q) = E,[log ﬁ] We want
to find a distribution ¢ that minimizes the risk. However, notice that minimizing the risk with respect to a
distribution ¢ is exactly minimizing the relative entropy between p and ¢. This is because

p()

Risk(q) = Ep[log ﬁ] = Ep[log @} + Ep[log ﬁ] = D(pllq) + Risk(p)

Because we know that relative entropy is always non-negative, we know here that the risk is minimized by
setting ¢ equal to p. Thus the minimum risk R* = Risk(p) = H(p), the entropy of distribution p. The
excess risk, Risk(q) — R* is precisely the relative entropy between p and q.



