
10-601 Recitation 
Wednesday, September 28th, 2011

Will Bishop



Announcements

• The recitation time has been permanently 
set  6 - 7 PM on Wednesdays in Wean 7500 
(this room)

• HW2 should be out soon.



Topics for Today

• Conjugate Priors 

• MAP Estimators - Example Derivation

• Naïve Bayes Decoders

Motivated through a real-world example from 
brain-computer interface (BCI). 



How would you design 
a decoder for this? 

Time

Classi!cation of 
User Intent

Acquisition of 
Neural Signals

Feature Extraction

Visual 
Feedback

High Level Signal to Interface Device



Decoders we know 
about so far:

• Decision Trees 

• Naïve Bayes 



Notation

yi will be label for trial i.

xi,j will be observed count for neuron j for trial i.

Assume we have U neurons.



Review of Naïve Bayes
In general, we would like: P (Yi|Xi,1, . . . Xi,U ).
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In general, we would like: P (Yi|Xi,1, . . . Xi,U ).

Let assume we know:

1. P (Xi,1 . . . Xi,U |Yi) for Yi = 0 and Yi = 1.

2. P (Yi) for Yi = 0 and Yi = 1.



Review of Naïve Bayes
In general, we would like: P (Yi|Xi,1, . . . Xi,U ).

Let assume we know:

1. P (Xi,1 . . . Xi,U |Yi) for Yi = 0 and Yi = 1.

2. P (Yi) for Yi = 0 and Yi = 1.

How do we get P (Yi|Xi,1 . . . Xi,U )?

Probability of target Given observed data.



Review of Naïve Bayes: 
Bayes’ Rule!

P (Yi|Xi,1 . . . Xi,U ) =
P (Xi,1 . . . Xi,U |Yi)P (Yi)

P (Xi,1 . . . Xi,U )

Likelihood Term - We assume we know this.



Review of Naïve Bayes: 
Bayes’ Rule!

P (Yi|Xi,1 . . . Xi,U ) =
P (Xi,1 . . . Xi,U |Yi)P (Yi)

P (Xi,1 . . . Xi,U )

Prior Term - We assume we know this too.



Review of Naïve Bayes: 
Bayes’ Rule!

P (Yi|Xi,1 . . . Xi,U ) =
P (Xi,1 . . . Xi,U |Yi)P (Yi)

P (Xi,1 . . . Xi,U )

Normalizing Term - Can calculate this, though in 
practice we often don’t if all we care about is finding

the class with the highest posterior probability.



Review of Naïve Bayes: 
Bayes’ Rule!

So if we know P (Xi,1 . . . Xi,U |Yi) and P (Yi) we can easily

calculate the probabilities we need to decode with.

But how do we learn P (Xi,1 . . . Xi,U |Yi)?

Let’s assume that each Xi value can take 10 di↵erent

values. If U = 10, and we try to learn this using the truth

table approach, how many parameters must we fit?

(10^10) - 1 Parameters!



Review of Naïve Bayes

With naïve Bayes we assume:

P (Xi,1, . . . , Xi,U |Yi) =
QU

u=1 P (Xi,u|Yi).

This means we can fit U separate truth tables,

so how many parameters do we need now?



Review of Naïve Bayes

With naïve Bayes we assume:

P (Xi,1, . . . , Xi,U |Yi) =
QU

u=1 P (Xi,u|Yi).

This means we can fit U separate truth tables,

so how many parameters do we need now?

(10-1)*10 = 90 Parameters

Of course, we have to do this for both possible values of Yi,
so actually need to 180 parameters to fit P (Xi,1 . . . Xi,U |Yi = 0)
and P (Xi,1 . . . Xi,U |Yi = 1).



Motivating Example
In practice, we don’t use a truth table for P (Xi|Yi)

but instead assume it is a Poisson distribution.

P (X) =
e���X

X!



Motivating Example
So given a set of N observed counts for neuron j

X1,j . . . XN,j when the subject was reaching for target Yi = 1,

how can we learn the appropriate � value for P (Xi,j |Yi = 1)?



Motivating Example
So given a set of N observed counts for neuron j

X1,j . . . XN,j when the subject was reaching for target Yi = 1,

how can we learn the appropriate � value for P (Xi,j |Yi = 1)?

1) Maximum Likelihood Estimator (Covered last recitation)
2) Maximum A Posteriori Estimator (Covered today)



MAP Estimators

P (�|X1, . . . XN ) =
P (X1, . . . , XN |�)P (�)

P (X1, . . . XN )

Likelihood term Prior 

Given a set of N observations X1, . . . , XN , we are after:



MAP Estimators

P (�|X1, . . . XN ) =
P (X1, . . . , XN |�)P (�)
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MAP Estimators

P (�|X1, . . . XN ) =
P (X1, . . . , XN |�)P (�)

P (X1, . . . XN )

Prior 

Given a set of N observations X1, . . . , XN , we are after:

How do we choose the prior? 



MAP Estimators

• Considerations when selecting the prior: 

•  The prior encodes your initial beliefs 
(before you’ve seen any data)  about 
parameter values.  

• Often, we select the prior so things work 
out nicely mathematically. 



Conjugate Priors
• Conjugate priors

• A prior is conjugate to the distribution 
we are using for our likelihood term if: 

When we multiply the the prior by the 
likelihood term and divide by the 
normalizing constant in Bayes’ equation the 
resulting probability distribution is in the 
same family as the prior.



Conjugate Priors
• Conjugate priors

• A prior is conjugate to the distribution 
we are using for our likelihood term if: 

When we multiply the the prior by the 
likelihood term and divide by the 
normalizing constant in Bayes’ equation the 
resulting probability distribution is in the 
same family as the prior.

It makes the math easy :)



MAP Estimator: An 
Example

Assume we have X1, . . . XN observations from a

Poisson distribution. With unknown �.

Let’s find a MAP estimator for lambda.



MAP Estimator: An 
Example

Assume we have X1, . . . XN observations from a

Poisson distribution. With unknown �.

Assume our prior belief on � is given by

a Gamma distribution.

In other words: � ⇠ Gamma(↵,�)



MAP Estimator: An 
Example

P (�) ⇠ Gamma(↵,�)

The pdf for a Gamma(↵,�) distribution is:

P (�) =
1

�(↵)�↵
�↵�1e��/�

=
1

C
�↵�1e��/�



MAP Estimator: An 
Example

P (�) ⇠ Gamma(↵,�)

The pdf for a Gamma(↵,�) distribution is:

P (�) =
1

�(↵)�↵
�↵�1e��/�

=
1

C
�↵�1e��/�

Just a normalizing 
constant.



MAP Estimator: An 
Example

P (�) ⇠ Gamma(↵,�)

The pdf for a Gamma(↵,�) distribution is:

P (�) =
1

�(↵)�↵
�↵�1e��/�

=
1

C
�↵�1e��/�



MAP Estimator: An 
Example

Let’s write out the likelihood for our data.
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Example
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Example
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WHAT!! I thought 
this was suppose to 
make the math nice?

Don’t worry - we 
don’t actually have 
to compute this :)
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Example

This is just a normalizing constant
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MAP Estimator: An 
Example

In fact, let’s group every term that does not depend 
on lambda with the normalizing constant. 
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Now,  let’s group terms together:
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P (�|x1, . . . , xn
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Compare this to the form of a Gamma distribution.
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Example
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) =
1

D

e

��/( �
N�+1 )

�

(
PN

n=1 xn)+↵�1

Compare this to the form of a Gamma distribution.

We have a Gamma

⇣
↵+

PN
n=1 xn,

�
N�+1

⌘
for the posterior.



MAP Estimator: An 
Example

�|x1, . . . xn ⇠ Gamma
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Fact: the mode of

a Gamma(↵,�) distribution
is located at (↵� 1)�.



MAP Estimator: An 
Example

Fact: the mode of a Gamma(↵,�) distribution
is located at (↵� 1)�.

�|x1, . . . xn ⇠ Gamma
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MAP Estimator: An 
Example

Fact: the mode of a Gamma(↵,�) distribution
is located at (↵� 1)�.

�|x1, . . . xn ⇠ Gamma
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Brief Aside: Naïve Bayes’ (and a 
whole lot of work....) might get 

you a Nature Paper!

© 2006 Nature Publishing Group 

 

A high-performance brain–computer interface
Gopal Santhanam1*, Stephen I. Ryu1,2*, Byron M. Yu1, Afsheen Afshar1,3 & Krishna V. Shenoy1,4

Recent studies have demonstrated that monkeys1–4 and humans5–9

can use signals from the brain to guide computer cursors. Brain–
computer interfaces (BCIs) may one day assist patients suffering
from neurological injury or disease, but relatively low system
performance remains a major obstacle. In fact, the speed and
accuracy with which keys can be selected using BCIs is still far
lower than for systems relying on eye movements. This is true
whether BCIs use recordings from populations of individual
neurons using invasive electrode techniques1–5,7,8 or electro-
encephalogram recordings using less-6 or non-invasive9 tech-
niques. Here we present the design and demonstration, using
electrode arrays implanted inmonkey dorsal premotor cortex, of a
manyfold higher performance BCI than previously reported9,10.
These results indicate that a fast and accurate key selection system,
capable of operating with a range of keyboard sizes, is possible (up
to 6.5 bits per second, or ,15words perminute, with 96 electro-
des). The highest information throughput is achieved with unpre-
cedentedly brief neural recordings, even as recording quality
degrades over time. These performance results and their impli-
cations for system design should substantially increase the clinical
viability of BCIs in humans.

Most BCIs translate neural activity into a continuous movement
command, which guides a computer cursor to a desired visual
target1–3,5–9. If the cursor is used to select targets representing discrete
actions, the BCI serves as a communication prosthesis. Examples
include typing keys on a keyboard, turning on room lights, and
moving a wheelchair in specific directions. Human-operated BCIs
are currently capable of communicating only a few letters per minute
(,1 bits per second (bps) sustained rate9) and monkey-operated
systems can only accurately select one target every 1–3 s (,1.6 bps
sustained rate10), despite using invasive electrodes.
An alternative, potentially higher-performance approach is to

translate neural activity into a prediction of the intended target
and immediately place the cursor directly on that location. This type
of control is appropriate for communication prostheses and benefits
from not having to estimate unnecessary parameters such as con-
tinuous trajectory4,11. We conducted a series of experiments to
investigate how quickly and accurately a BCI could operate under
direct end-point control.
We used a standard instructed-delay behavioural task12 to assess

neural activity in the arm representation of monkey premotor cortex
(PMd), as shown in Fig. 1a and described in Methods. As previously

LETTERS

Figure 1 | Instructed-delay (real reach) and BCI (prosthetic
cursor) tasks, with accompanying neural data. Large
numbered ellipses draw attention to the increase in neural
activity related to the peripheral reach target.
a, Standard instructed-delay reach trial. Data from selected
neural units are shown (grey shaded region); each row
corresponds to one unit and black tickmarks indicate spike
times. Units are ordered by angular tuning direction
(preferred direction) during the delay period. For hand (H)
and eye (E) traces, blue and red lines show the horizontal
and vertical coordinates, respectively. The full range of
scale for these data is ^15 cm from the centre touch cue.
b, Chain of three prosthetic cursor trials followed by a
standard instructed-delay reach trial. Tskip is denoted by
the orange parts of the time line. Neural activity was
integrated (T int) during the purple shaded interval and
used to predict the reach target location. After a short
processing time (Tdecþrend < 40ms), a prosthetic cursor
was briefly rendered and a new target was displayed. The
dotted circles represent the reach target and prosthetic
cursor from the previous trial, both of which were rapidly
extinguished before the start of the trial indicated. Trials
shown here are from experiment H20041106.1 with
monkey H.

1Department of Electrical Engineering, Stanford University, 330 Serra Mall, 319 Paul G. Allen Center for Integrated Systems Annex, Stanford, California 94305-4075, USA.
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*To be totally fair: Only one of two monkeys 
used Naïve Bayes decoder, but still.... :)


