10601 Machine Learning

September 21, 2011
Mladen Kolar

Announcements

- Fill in a survey at
http://www.surveymonkey.com/s/J7Q5JHL
- Recitations
- Wed 6-7pm (this time) or
- Fri 4-5 pm
- Homework 1 is due on Monday, noon

Outline

- Probability overview
- Maximum likelihood estimation

Probability review

X is discrete random variable (e.g. 6 -sided die)

Probability mass function (pmf)

Cumulative distribution function (cdf)

$$
P[X \leq a]=\sum_{x \leq a} P[X=x]
$$

Example

Role two fair 5 -sided dice with labels $\{-2,-1,0,1,2\}$

- What is the pmf for the product of the two dice?
- What is the cdf for the product of the two dice?
- Let Y be 1 for a positive product, -1 for negative product and 0 for a zero product. What is the pmf for Y ?

Law of total probability

Given two discrete random variables X and Y
X takes values in $\left\{x_{1}, \ldots, x_{m}\right\}$
Y takes values in $\left\{y_{1}, \ldots, y_{n}\right\}$

$$
\begin{aligned}
& P\left(X=x_{i}\right) \\
& \quad P\left(Y \neq y_{j}\right)=\sum_{j} P\left(X=x_{i}, Y=y_{j}\right) \\
& \quad P\left(Y-y_{j}\right)=\sum_{j} P\left(X=x_{i} \mid Y=y_{j}\right) P\left(Y=y_{j}\right) \\
& \quad P\left(X=x_{i}\right)
\end{aligned}
$$

Law of total probability

Given two discrete random variables X and Y
X takes values in $\left\{x_{1}, \ldots, x_{m}\right\}$
Y takes values in $\left\{y_{1}, \ldots, y_{n}\right\}$
$P\left(X=x_{i}\right)=\sum_{j} P\left(X=x_{i}, Y=y_{j}\right)$
$P\left(X=x_{i}\right)=\sum_{j} P\left(X=x_{i} \mid Y=y_{j}\right) P\left(Y=y_{j}\right)$

Law of total probability

Given two discrete random variables X and Y

Marginal probability

Conditional
$=\sum_{j} \frac{P\left(X=x_{i} \mid Y=y_{j}\right)}{\downarrow}$ Conditional
Marginal probability

Defining a probability distribution

Two discrete random variables X and Y take binary values

- How do we specify a probability distribution?

Joint probabilities

$$
\begin{aligned}
& P(X=0, Y=1)=0 / 2 \text { should sum up to } 1 \\
& P(X=0, Y=0)=0.2 \\
& P(X=1, Y=0)=0.5 \\
& P(X=1, Y=1)=0.5
\end{aligned}
$$

Defining a probability distribution

Two discrete random variables X and Y take binary values

- How do we specify a probability distribution?

Joint probabilities
$P(X=0, Y=1)=0.2$
$P(X=0, Y=0)=0.2$
$P(X=1, Y=0)=0.3$
$P(X=1, Y=1)=0.3$

Defining a probability distribution

Two discrete random variables X and Y take binary values

- How do we specify a marginal distribution?

Joint probabilities
$P(X=0, Y=1)=0.2$
$P(X=0, Y=0)=0.2$
$P(X=1, Y=0)=0.3$
$P(X=1, Y=1)=0.3$

Marginal probabilities

$$
\begin{aligned}
& P(X=0)=0.2 \\
& P(X=1)=0.8
\end{aligned}
$$

$$
\begin{aligned}
& P(Y=0)=0.5 \\
& P(Y=1)=0.5
\end{aligned}
$$

Defining a probability distribution

Two discrete random variables X and Y take binary values

- How do we specify a marginal distribution?

Joint probabilities
$P(X=0, Y=1)=0.2$
$P(X=0, Y=0)=0.2$
$P(X=1, Y=0)=0.3$
$P(X=1, Y=1)=0.3$

Marginal probabilities

$$
\begin{aligned}
& P(X=0)=0.4 \\
& P(X=1)=0.6
\end{aligned}
$$

$$
P(Y=0)=0.5
$$

$$
P(Y=1)=0.5
$$

Conditional probabilities

What is the complementary event of $P(X=0 \mid Y=1)$?

$$
P(X=1 \mid Y=1) \quad O R \quad P(X=0 \mid Y=0)
$$

Expectation

X is a discrete random variable

$$
E[X]=\sum_{x} x P[X=x]
$$

Expectation of a function

$$
E[f(X)]=\sum_{x} f(x) P[X=x]
$$

Linearity of expectation

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

Expectation (examples)

$Y=$ flip of a fair coin ($1=$ heads, $0=$ tails $)$
$\mathrm{E}[\mathrm{Y}]=1 * \mathrm{P}[\mathrm{Y}=$ heads $]+0$ * $\mathrm{P}[\mathrm{Y}=$ tails $]=0.5$
$Z=$ outcome of a roll of a die
$E[Z]=\sum_{z=1}^{6} z P[Z=z]=\sum_{z=1}^{6} \frac{z}{6}=3.5$

Variance

X is a discrete random variable

$$
\operatorname{Var}[\mathrm{X}]=\mathrm{E}[\mathrm{X}-\mathrm{E}[\mathrm{X}]]^{2}=E\left[X^{2}\right]-E[X]^{2}
$$

$\mathrm{X}=$ flip of a fair coin ($1=$ heads, $0=$ tails)
$\operatorname{Var}[\mathrm{X}]=E\left[X^{2}\right]-\mathrm{E}[\mathrm{X}]^{2}=\sum_{x \in\{0,1\}} x^{2} P[X=x]-0.5^{2}=0.25$

Independence

Two random variables X and Y are independent if and only if

$$
P[X=x, Y=y]=P[X=x] P[Y=y], \forall x, y .
$$

Knowledge of one variable does not help us to make inference about the other variable.

Independence (cont.)
X and Y are independent.

Show that

$$
\begin{aligned}
& -P[X \mid Y]=P[X] \\
& -P[-X \mid Y]=P[-X] \\
& -P[Y \mid X]=P[Y]
\end{aligned}
$$

Independence (cont.)

$P[$ slept $]=0.5$

Liked movie	Slept	raining	P
1	1	1	0.05
1	0	1	0.1
0	0	1	0.025
0	1	1	0.075
1	1	0	0.15
1	0	0	0.3
0	0	0	0.075
0	1	0	0.225

$P[$ slept \mid rain $=1]=0.125 / 0.25=0.5$

Slept and rain are independent

Conditional independence

Two random variables may become independent when conditioned on the third variable.

$$
P[X, Y \mid Z]=P[X \mid Z] P[Y \mid Z]
$$

X and Y are conditionally independent given Z

Number of parameters

Assume X and Y take Boolean values $\{0,1\}$
How many independent parameters do you need to fully specify:

- marginal probability of X ?

$$
P(X=0) \quad 1 \text { parameter only [because } P(X=1)+P(X=0)=1 \text {] }
$$

- the joint probability of $\mathrm{P}(\mathrm{X}, \mathrm{Y})$?

$$
P(X=0, Y=0), P(X=0, Y=1), P(X=1, Y=1) \quad 3 \text { parameters }
$$

- the conditional probability of $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$?

$$
P(X=0 \mid Y=0), P(X=0 \mid Y=1) \quad 2 \text { parameters }
$$

- the joint probability of $\mathrm{P}(\mathrm{X}, \mathrm{Y}), \mathrm{X}$ and Y are independent

$$
P(X=0), P(Y=0) \quad 2 \text { parameters }
$$

KL divergence

The Kullback-Leibler (KL) divergence is a measure of distance between two probability distributions.

Let $p(x)$ and $q(x)$ be two $p m f s$.

$$
K L(p, q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

KL divergence (cont.)

Relationship to the mutual information

$$
I[X ; Y]=K L(P[X, Y], P[X] P[Y])
$$

Can be used to measure independence of variables.

Maximum likelihood estimation

$\hat{\theta}=\arg \max \quad P(D \mid \theta)$
$\hat{\theta}=\arg \max \quad \ln P(D \mid \theta)$

Poisson distribution

$$
P[X=x \mid \theta]=\frac{\theta^{x} e^{-\theta}}{x!}, \quad x=0,1,2, \ldots
$$

Maximum likelihood estimation (cont.)

$X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with the Poisson distribution.

$$
\begin{aligned}
& P[D \mid \theta]=\frac{\theta^{x_{1}} e^{-\theta}}{x_{1}!} \times \cdots \times \frac{\theta^{x_{n}} e^{-\theta}}{x_{n}!} \\
& P[D \mid \theta]=\frac{\theta^{\sum_{i} x_{i}} e^{-n \theta}}{x_{1}!x_{2}!\ldots x_{n}!}=\text { Joint distribution function (as a function of } \mathrm{D} \text {) } \\
& \text { Likelihood function (as a function of } \theta \text {) }
\end{aligned}
$$

$$
\ln P[D \mid \theta]=\left(\sum x_{i}\right) \log \theta-n \theta-\sum\left(\log x_{i}!\right)
$$

Maximum likelihood estimation (cont.)

Log-likelihood function

$$
\begin{aligned}
& l(\theta ; D)=\ln P[D \mid \theta]=\left(\sum x_{i}\right) \log \theta-n \theta-\sum\left(\log x_{i}!\right) \\
& \frac{d l}{d \theta}=\theta^{-1} \sum x_{i}-n=0 \\
& \hat{\theta}=\frac{\sum x_{i}}{n}=\bar{x}-\text { Maximum likelihood estimate }
\end{aligned}
$$

$$
\frac{d^{2} l}{d \theta^{2}}=-\frac{\sum x_{i}}{\theta^{2}}<0 \quad \text { Stationary point is the maximum }
$$

Questions?

