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Public Health Dynamics Lab

Agent-Based Models of Infectious Disease Dynamics

FRED: Framework for Reconstruction of Epidemic Dynamics
Case Studies

Validation

Active Areas of Research
= Collaborations Welcome!
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University of Pittsburgh Public Health Dynamics Lab
Computational modeling to advance the theory and practice of Public Health
www.phdl.pitt.edu

MISSION: Promote health and prevent disease

APPROACH:

* Develop interdisciplinary approaches using computational
models to advance the theory and practice of Public
Health

* Contribute to "Systems Thinking" in the training of the
next generation of Public Health professionals



and more ...

Vs
-
)
e
=
O
=
—
O
L
o




Major Projects and Partners

Models of Infectious Disease Agent Study (MIDAS)

National Center of Excellence (NIGMS/NIH)
Real time epidemic parameter estimation
Applied modeling
Effects of weather and climate on infectious diseases www.midas.pitt.edu
Viral evolution
Human behavior in epidemics

Vaccine Modeling Initiative (Bill and Melinda Gates Foundation)

Impact of new vaccine technologies w
Global open source public health data access

VACCINE MODELING INITIATIVE

Supply chain models of vaccine distribution in developing countries
www.vaccinemodeling.org

Public Health Adaptive Systems Studies (CDC)
Data and metrics for populations and public health systems

Geocoding of public health system capacities Cﬁ) PHASYS
Network analyses of public health laws and policies
Behavioral modeling for public health interventions www.phasys.pitt.edu

Modeling tools for public health decision-making

Partners:

ALLEGHENY COUNTY

’ RODS LABORATORY JOHNS HOPKINS

Home of the National Retail Data Monitor and Pennsylvania RODS MEDICINE
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Agent Based Models

* Agent-based models (ABMs) focus on how interactions
among individual agents can result in complex and
interesting patterns of population behavior

Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS.
Strategies for mitigating an influenza epidemic
Nature July 27, 2006; 442: 448-52




Agent-Based Models for Infectious Disease

I Lzl ——

Small-pox o
(Epstein et al 2002) H5N1 Thailand
5000 agents (Ferguson et al 2005)
85M agents

P

Global Scale Agent Model Model
(Parker and Epstein, 2009) (Cooley, Brown et al 2009)
6.5B agents Pandemic Planning

Influenza Pandemic US
(Ferguson et al, 2006)
273M agents

FRED: (Pitt, 2011)
Dynamic Demographics,
Health Behavior Models



2009 HIN1 Pandemic Planning

University of
Pittsburgh
Influenza Task
Force

2009 | 2010

Washington,
DC
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MIDAS Large-Scale ABMs contributed to
H1N1 Pandemic National Planning

Modeled a wide range of
hypothetical scenarios for
government decision makers

Effects of epidemic peak timing
and vaccine production
schedules

Effects of using adjuvants
Effects of school closure policies
Potential antiviral demand

Effects on healthcare operations
(e.g., ventilator demand)

Google

Possible third wave

11



Visualizing the Epidemic Peak in Washington DC
Four Scenarios

Marylaf
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C. Vaccinate a month before the peak D. Vaccinate a few months before the peak




Requirements arising from H1IN1 experience

Agent-based models with realistic U.S. population
Support for complex vaccination availability schedules
Flexible software design to allow rapid response
Support for the study of human health behaviors

Support for studies of viral evolution

Adaptive re-use of research models:

= real-time decision support
= training and educational tools

13



Outline

FRED: Framework for Reconstruction of Epidemic Dynamics
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FRED: Framework for Reconstruction of Epidemic Dynamics

It's a beautiful day in this neighborhood,
A beautiful day for a neighbor.

Would you be mine?

Could you be mine?...

Fred McFeely Rogers, “Mr. Rogers” (March 20, 1928 — February 27, 2003) was an
American educator, Presbyterian minister, songwriter, and television host. Rogers
was the host of the Pittsburgh-based television show Mister Rogers' Neighborhood, in
production from 1968 to 2001. The show won four Emmy awards.

15



Visualizing the Epidemic Peak in Washington DC -- Four Scenarios

FRED: Framework for Reconstruction
of Epidemic Dynamics

Gole

A. 15% serologic attack rate, no mitigation B. Vaccinate a few weeks before peak

Population
Data

Gl

C. Vaccinate a month before the peak D. Vaccinate a few months before the peak

Individual School Closures of Varied Length for the State of
Pennsylvannia During an Influenza Pandemic of RO = 1.7

180000

Increasing the length of the school
closure gives an overall reduction in the
160000 incidence of the pandemic. If schools
are no closed for long enough, the
pandemic regains a foothold in the
140000 population.
Attack Rates:
120000 No Closure 38.02%
38.12%
37.66%
g 100000 35.99%
g 32.65%
Interaction el -
—1 week
w—2 week
w— Week
o e — Week
40000 s 8 Week
0

Intervention

Data Vaccine Coverage and Timing

Attack Rates, Peak Incidence and Time to Peak for a Number of
Based inati ies and Rates of i

46832 46984 46727 47468

300% (69) (69) (69) (69)

250%

.
Behavioral
16407 ) € ey

14521 {76) 14515 15112
(@31 (69) (69)

Data 150% 11373 11471
) 14363

(62)

100%

600ays 20 0ays 120088 240 0ays

Wpriority Only W Priority with Infrastructure ® Large Employers Al Workers

Even though a majority of workers are employed by small businesses, focusing on .
vaccinating larger firms may be just as effective in epidemic mitigation as trying to )
vaccinate all employees.



FRED: Framework for Reconstruction of Epidemic Dynamics

Simulation Information FRED
Management System

c Ty (FREDSIVIS)

Request
DB

Core :
Synthetic

Population
Request (RTI)

Queue

FRED

Web

Page Pathogen/
Disease

FRED Models

Simulation
Engine

FRED FRED
Interface Web
Service
Intervention

Policies
FRED

Client -

Analysis and
Visualization

Results
DB

Behavior
Change
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GAIA
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ed to )
household U.S. Population
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Natural History, Viral Evolution

Vaccination
Antivirals
School Closure
Preventive Behaviors
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Health Belief
Model

Social Network
Influences
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Creating a Synthetic Population:
Data Inputs and Techniques

Macro/Aggregate Data
= Counties
= Census Tracts
= Block Groups [black outlines]
o census counts only
Micro/Individual Data

= 5% sample from Public Use Microdata
Areas (PUMAS) [red]

= Detailed individual and household
info
Household Locations
= Based on LandScan data
= 90m grid resoution
Iterative Proportional Fitting

= “Clone” particular records of the 5%
PUMS sample to match census counts
at block group level

Courtesy of Bill Wheaton, RTI 18



Example Households and Persons
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. Details in: Beckman, Richard J., “Creating
Synthetic Baseline Populations”,
Transportation Research, Vol 30, No.6, PR,
415-429, 1996



Schools Assignments

After creating basic

Public Middle School Allocation - King Co. WA

population, assign students
to schools

Based on nationwide
database of schools:

location; grades, capacity

Use distance to assign | .. ,
students to school byage/ |
grade and capacity g

Pierce

20

Yakir|

Chelan

Kittitas

Legend

®  Public Middle School
MS Aged Person

——— Interstate Hwy

Courtesy of Bill Wheaton, RTI
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Workplace Assignments

* Ingeneral, dataisnot " TLL T
available to assign Pakae
workers to specific Elp S e
workplaces based on T W g 8 :
occupation BT IR o
«  Workplaces are REc el (e
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size distribution and s W
placed by population 5.5
density T A e
 Workersare assigned -~ & ‘
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Courtesy of Bill Wheaton, RTI =



U.S. Synthetic Population Results

Persons
= In households: 273,624,650 generated vs. 281,421,906
o In Group Quarters: (6,115,802)
= Individual attributes: age, sex, etc.

Households
= 105,480,101 generated vs. 104,926,825 in census
= Locations matched to LandScan 90m grid data

= Household attributes: size, age of householder, race, income, etc.

Workplaces
= 8,580,092 generated work locations
= Workers assigned to match census commuting distance data

Schools
= 116343 actual school locations
= Students assigned to match enrollment by age

Built-in Social Networks: family, school, workplace
Courtesy of Bill Wheaton, RTI

22



Contact Network Interactions

* Individuals commute
to schools/workplaces

with realistic distances
based on travel data

* Disease transmission
probabilities depend on
where transmission
occurs, and who infects
whom

workplace

household

elementary school

090990
;:'.00

%% o

o"o’ 0

secondary school

market

23



Individual Disease Model

Susceptible Exposed

Infectious

[

Recovered

S By E —~

1 2 Dependent i b ew B
distributions
Days latent Days infecti . L . .
\ LRy Distributions for influenza:

1 Longini et al, Science 2005

1 2 3
Days incubating

Percent

o 88
Percent
o388

Percent
NaEa
[« NeNeNe]
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Place Model

FRED assumes that all transmission occurs in a given Place
Place types include:

Household
Community

School / Classroom
Workplace / Office
Additional types can be defined

Places can have

Contact rates

Transmission probabilities

Geo-location

Environmental conditions
o Temp, humidity

Place can be extended to include

Vectors
Fomites

Lee et al. Am J Prev Med 2010, based on

Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC,
Burke DS. Strategies for mitigating an influenza pandemic.
Nature 2006;442(7101):448 —52.

-
Ik

Table 1. Model transmission and person-to-person
contact parameter values

Transmission parameters
Transmission

Contact group Infected Susceptible probability®
Household Adult Adult 0.4
Household Child Adult 0.3
Household Adult Child 0.3
Household Child Child 0.6
Elementary school Student Student 0.0435
Middle school Student  Student 0.0375
High school Student Student 0.0315
Workplace Adult Adult 0.0575
Hospital HCW HCW 0.0575
Hospital HCW Patient 0.01
Hospital Patient HCW 0.01
Community All Child 0.00255
Community All Adult 0.00480

25



FRED Agent Model

Health:
Immune Status
Exposure Status
Symptoms

Demographics:
Age
Sex

Agents can age,
give birth, die

Maintain health history over
lifetime of agents

Activity Profile:
Pre-schooler
Student
Worker
Retired

Behavior:
accine Acceptance
Social Distancing
Hand Washing

Activity Profiles can change Models of Health Behavior Change:
over lifetime of agents  Stochastic

* Social norms / influence

* Health Belief Model

 Segmented populations 2



FRED Daily Cycle

1. Update all agents
a. Demographics
b. Health
c. Health-related decisions
d. Daily schedule of places to visit

2. ldentify all places that have infectious visitors
a. Find all susceptible visitors

3. Simulate spread of infection in each infectious place:
a. Schools
b. Workplaces
c. Neighborhoods
d. Households



Pharmaceutical Interventions

Non-pharmaceutical Interventions

Intervention Models

Vaccines
Anti-viral drugs
Flexible specification of efficacy

Complex availability and delivery
schedules

School closure

o Multiple closure/reopen policies
Personal behavior changes

o Facemasks
Travel Restrictions

Environmental treatments (future)

28



Model Calibration

Communities
Workplaces

33%

37%

16% infections in schools
21% infections in workplaces

Schools

(Applies to an
epidemic RO =1.9)

Reference:
o)
Homes 30/’ Ferguson N, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke

DS. Strategies for mitigating an influenza pandemic. Nature. July
27, 2006; 442:448-452. 79



Spread of Pandemic Influenza in Allegheny County, PA
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Spread of Pandemic Influenza in PA

Pennsylvania

o Pittsburgh
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Age

Reconstruction of Detailed Epidemic Dynamics

Who is infected over time?
Who infects whom?

When/Where do infections occur?

Evaluation of individual-based intervention strategies

Average Age of Incident Infections
FRED Model of Influenza in Allegheny County

50 T T T T T T T T T T T T T T T T T
45 |
40 |- .

35
30 .

25

20 | | | | | | | | | | | | | | | | | | |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Week

Daily Infection per 1000

Who Infects Whom?
Age-Stratified Chains of Infections

T T T T T T T T T T T T T T T T T
Young-to-Young s

Young-t0-Old s _|
Old-to-YounQ s
Old-t0-Old =t

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Week
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Transmission Tree Visualization
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FRED: Software Features

Objected Oriented ABM in C++

Tested under Linux, OS X, Windows
Runs on Blacklight supercomputer (PSC)
Team software development practices
Simulation data management

Separate statistical analysis and
visualization tools

Web services interface

Blacklight
Pittsburgh Supercomputing Center

34



FRED Simulation Information Management System

Meta Data
/\ .
() * Version

* Parameters
*Log

Simulation
Engine

Results
Database

Output Data

* Raw output files

» Statistical analyses
* Visualizations

Population
+ Pathogen

Analysis
Tools

* Ensures reproducible methods and results
= Calibration exercises
= Sensitivity Analyses
= Optimization runs

35



Outline

Public Health Dynamics Lab

Agent-Based Models of Infectious Disease Dynamics

FRED: Framework for Reconstruction of Epidemic Dynamics
Case Studies

Validation

Active Areas of Research
= Collaborations Welcome!
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 Leeetal (2010). Simulating school closure strategies to
mitigate an influenza epidemic. J Public Health Manag Pract.
2010 May-Jun;16(3):252-61. PubMed PMID: 20035236

* Brownetal.(2011). Would school closure for the 2009 HIN1
influenza epidemic have been worth the cost?: a
computational simulation of Pennsylvania. BMC Public Health.
2011 May 20;11(1):353. [Epub ahead of print] PubMed PMID:
21599920

e Potter et al (in press). Preparedness for Pandemics: Does
Variation Among States Affect the Nation as a Whole? J Public
Health Manag Pract. (2012).
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Pennsylvania Schools

PA Schools
Number of Students

Schools

0 - 199
200 - 349
350 - 549
550 - 999
> 1000

L N ECNORO,
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Incidence

180000

160000

140000

120000

100000

80000

60000

40000

20000

Individual School Closures of Varied Length for the State of
Pennsylvannia During an Influenza Pandemic of RO = 1.7

e N o Closure

e week

) Week

a4 week
e Week

a8 week

Increasing the length of the school
closure gives an overall reduction in the
incidence of the pandemic. If schools
are no closed for long enough, the
pandemic regains a foothold in the
population.

Attack Rates:

No Closure 38.02%
1 Week 38.12%
22 s > S%
4 Weeks 35.99%
6 Weeks 32.65%
8 Weeks 26.60%

== ==

Must close schools for 6-8
weeks to have significant
effect on attack rate

50 100 150

Days

200 250
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Incidence

180000 -

160000 -

140000 -

120000 -

100000 -

80000 -

60000 -

40000 -

20000 -

Individual School Closures of Varied Symptomatic Case Thresholds for
the State of Pennsylvannia During an Influenza Pandemic of RO = 1.7

It is difficult to select the
No optimal time for school

Closure closure.

In general, by the time an
outbreak is detected in a
school, it is too late

e===No Closure
e Case
e 3 Cases
e’ Cases
e 10 Cases
e 15 Cases

s 2 (0 Cases

0 20 40 60 80 100 120 140 160 180 200
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Employee Vaccination Coverage

A Computer Simulation of Employee
Vaccination to Mitigate an
Influenza Epidemic

Bruce Y. Lee, MD, MBA, Shawn T. Brown, PhD, Philip C. Cooley, MS,

e
AMERICAN JOURNAL OF 2

Preventive Medicine

o e e e e

e

Richard K. Zimmerman, MD, MPH, William D. Wheaton, MA, Shanta M. Zimmer, MD,

John J. Grefenstette, PhD, Tina-Marie Assi, MPH, Timothy J. Furphy, MPH,
Diane K. Wagener, PhD, Donald S. Burke, MD

Background: Better understanding the possible effects of vaccinating employees is important and
can help policymakers and businesses plan vaccine distribution and administration logistics, espe-
cially with the current HIN1 influenza vaccine in short supply.

Purpose: This article aims to determine the effects of varying vaccine coverage, compliance,
administration rates, prioritization, and timing among employees during an influenza pandemic.

Methods: As part of the HIN1 influenza planning efforts of the Models of Infectious Disease Agent
Study network, an agent-based computer simulation model was developed for the Washington DC
metropolitan region, encompassing five metropolitan statistical areas. Each simulation run involved
introducing 100 infectious individuals to initiate a 1.3 reproductive-rate (R,) epidemic, consistent
with HIN1 parameters to date. Another set of scenarios represented a R,=1.6 epidemic.

41




DC Metro Region Workplaces
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Vaccine Coverage and Timing

Attack Rates, Peak Incidence and Time to Peak for a Number of
Workplace Based Vaccination Strategies and Rates of Vaccination
46832 46984 46727 47464
10.0% (69) (69) (69) (69)
25.0%
24756
20.0% 19609 2361: 7 (69) 23780
16407 (69) (6% (69)
14521 (76) 14515 15112
(83 (69)  (89)
15.0% 11373 11471
83) (83)
10.0%
5.0%
Rate: 60 days 90 days 120 days 240 days
W Priority Only ™ Priority with Infrastructure ¥ Large Employers ™ All Workers

Even though a majority of workers are employed by small businesses, focusing on
vaccinating larger firms (green bars) may be just as effective in epidemic mitigation

as trying to vaccinate all employees (purple bars).
43



Vaccine Prioritization

Vaccine 28 (2010) 4875-4879

Contents lists available at ScienceDirect

Vaccine

FLSEVIER journal homepage: www.elsevier.com/locate/vaccine

Short communication

A computer simulation of vaccine prioritization, allocation,
and rationing during the 2009 H1N1 influenza pandemic

Bruce Y. Lee?*, Shawn T. Brown2-?, George W. Korch¢, Philip C. Cooley9, Richard K. Zimmerman?,
William D. Wheaton ¢, Shanta M. Zimmer?, John J. Grefenstette 2, Rachel R. Bailey?,
Tina-Marie Assi?, Donald S. Burke?

2 University of Pittsburgh, Pittsburgh, PA, USA

b pittsburgh Supercomputing Center, Pittsburgh, PA, USA

¢ Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
4 RTI International, Research Triangle Park, NC, USA

ARTICLE INFO ABSTRACT

Article history: In the fall 2009, the University of Pittsburgh Models of Infectious Disease Agent Study (MIDAS)
Received 22 November 2009 team employed an agent-based computer simulation model (ABM) of the greater Washington, DC,
Received in revised form 28 April 2010 metropolitan region to assist the Office of the Assistant Secretary of Public Preparedness and Response,
Accepted 3 May 2010

Department of Health and Human Services, to address several key questions regarding vaccine
allocation during the 2009 H1N1 influenza pandemic, including comparing a vaccinating children
(i.e., highest transmitters)—first policy versus the Advisory Committee on Immunization Practices

Available online 16 May 2010

m{mj (ACIP)—recommended vaccinating at-risk individuals-first policy. Our study supported adherence to the
Pandemic ACIP (instead of a children-first policy) prioritization recommendations for the HIN1 influenza vaccine
Vaccines whenvaccineis in limited supply and that within the ACIP groups, children should receive highest priority.

© 2010 Elsevier Ltd. All rights reserved.
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ACIP Recommendation

Adults over 65

Pregnant Women

Family with Newborns

Children under 24

Priority HIN1 Vaccination

45



ACIP Recommendation

Priority HIN1 Vaccination

Greater
Hospitalization

46



ACIP Modeling Results

Percent of Influenza Cases in the DC Metro Population for an
R0=1.4 with Vaccination of Different Priority Groups

31.0% -
30.0% -
29.0% -

28.0% -

Attack
Rate

27.0% -

26.0% -

B Attack Rate

25.0% -

24.0% -

23.0% -

22.0% -

21.0% -

None ACIP 0-24 At Risk First ACIP-Children



Economic Costs

Table 3
Effects of different vaccination scenarios (Ro =1.3).
Scenario Serologic DC metro area United States
attack rate
Total At-risk Hospitalizations Costs ($US Billion) Hospitalizations Costs ($US Billion)
Total At-risk Third party Productivity Societal Total At-risk Third party  Productivity Societal
payer payer
No mitigation 30.1% 25.1% 6518 1330 0.06 1.52 1.58 267,312 54,541 245 62.39 64.84
Vaccinating ACIP priority 22.5% 17.9% 4187 3002 0.04 1.14 1.18 171,686 123,126 1.73 46.72 48.46
Allowing varying percentages of non-ACIP priority into queue
25% non-ACIP priority 22.9% 18.6% 4299 3076 0.04 1.16 1.20 176,295 126,144 1.77 47.63 49.40
50% non-ACIP priority 233% 19.1% 4414 3183 0.04 1.18 1.22 181,026 130,520 1.81 48.33 50.14
75% non-ACIP priority 23.6% 19.5% 4483 3237 0.04 1.20 1.24 183,827 132,759 1.83 49.09 50.93
100% non-ACIP priority 24.1% 20.0% 4642 3380 0.05 1.22 1.27 190,357 138,611 1.88 50.04 51.92
ACIP priority with 18 year old cut-off instead of 24 year old
18 year old cut-off 22.7% 17.9% 4167 2981 0.04 1.22 1.26 170,880 122,242 1.57 50.00 51.57
Prioritizing different age groups over ACIP-priority groups
0-24 year olds 21.5% 18.3% 4223 3105 0.04 1.19 1.23 173,181 127,323 1.52 49.00 50.52
5-11 year olds 21.3% 18.0% 4095 2979 0.04 1.19 1.22 167,915 122,154 1.50 48.68 50.18
25-49 year olds 22.7% 18.8% 4308 3120 0.04 1.26 1.31 176,677 127,946 1.77 51.80 53.57
50 years and above 24.5% 19.7% 4538 3260 0.05 1.36 1.41 186,092 133,673 2.02 55.97 57.99
Vaccinating ACIP priority with varying coverage
20% vaccine coverage 21.7% 17.5% 4076 2923 0.04 1.10 1.14 167,155 119,849 1.68 45.09 46.77
60% vaccine coverage 233% 17.7% 4155 2971 0.04 1.18 1.22 170,388 121,834 1.77 48.41 50.18
80% vaccine coverage 23.9% 19.1% 4427 3152 0.04 1.21 1.26 181,538 129,259 1.84 49.64 51.48
Prioritizing within ACIP priority
At-risk patients first 23.2% 17.1% 4050 2799 0.04 1.17 1.22 166,074 114,799 1.75 48.18 4993
Age groups first 21.3% 18.0% 4180 3056 0.04 1.08 1.12 171,419 125330 1.67 4424 45.92
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ACIP Modeling Results

Societal Costs in the United States for an R0=1.4 with
Vaccination of Different Priority Groups

65 1
63
61 -

59 -

Cost
SB 57

>3 ] H Cost (Billions)
53 1
51 -

49 -

47 -

45 -

| None ACIP 0-24 At Risk First ACIP-Children
49



Effects of Equal Vaccine Distribution

AT THE INTERSECTION OF HEALTH, HEALTH CARE, AND POLICY
ISSUES FOR THE UNITED STATES | | lth f F E o

By Bruce Y. Lee, Shawn T. Brown, Rachel R. Bailey, Richard K. Zimmerman, Margaret A. Potter,
Sarah M. McGlone, Philip C. Cooley, John J. Grefenstette, Shanta M. Zimmer, William D. Wheaton, June 2011 Vol.30 No.6 healthaffairs.org
Sandra Crouse Quinn, Ronald E. Voorhees, and Donald S. Burke

The BEﬂEﬁtS TO Au Of Ensuring Strategies For The ‘Decade Of Vaccines’
Equal And Timely. Access * H1N1 vaccines were not
To Influenza Vaccines always distributed equally
In Poor Communities in 2009

e Used a detailed model of

ABsTRACT When influenza vaccines are in short supply, allocating vaccines 1 1
equitably among different jurisdictions can be challenging. But justice is Wa S h In gto n DC reg on

not the only reason to ensure that poorer counties have the same access . .

to influenza vaccines as do wealthier ones. Using a detailed computer CO n Cl usions:

simulation model of the Washington, D.C., metropolitan region, we . . . .

found that limiting or delaying vaccination of residents of poorer e Limitin g or de I aying
counties could raise the total number of influenza infections and the . .

number of new infections per day at the peak of an epidemic throughout vVaccine access In pOO rer
the region—even in the wealthier counties that had received more timely . .

and abundant vaccine access. Among other underlying reasons, poorer cou ntl es Cou Id raise tOta I
counties tend to have high-density populations and more children and H .

other higher-risk people per household, resulting in more interactions num be r Of I nfe Ctl ons

and both increased transmission of influenza and greater risk for worse H

influenza outcomes. Thus, policy makers across the country, in poor and t h rou g h O Ut reg Ion

wealthy areas alike, have an incentive to ensure that poorer residents
have equal access to vaccines. 50
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Validation Methods (1)

Internal Validity

* Validate the individual mechanisms
or assumptions within the model

* Trace the behavior of specific entities
in the model to determine if they
behave as in the real system

* Does the model produce expected
results when some inputs are set to
extreme values?

Face Validity

 Does the model produce the
expected sequence or distribution of
events?

* Does the model produce expected
results for input values for which the
results are known or easily computed

* Do experts agree that the behavior of
the model is reasonable?

Sargent, 1999
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Validation Methods (2)

SenSitiVity analysis errors Resolution levels siodal strictites
* How does the uncertainty in a given M) g
parameter affect the model outcome? ﬂ ncerainty o]

 Determine if the more sensitive
parameters have been estimated with m%

enough accuracy to support the
model outcomes

|sensitivity analysisl
,

}feedbacks on input data and model factors| J

Multi-Model Comparison

 Compare the model to other models
that employ different assumptions
and data sources

* Differences may suggest model
refinements or new data collection
needs

53




Historical Data Validation

* Compare the model against historical
data, using parameter estimates
derived from the historical situation

160000

140000

120000

100000

80000

60000

40000

20000

0

Validation Methods (3)

Effects of School Closure

Predictive Validation

e Use the model to predict the system
behavior, and then compare with the
system's observed behavior

e No Closure
o week
w—2 week
— 4 week
—F week

w8 week
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Survey and Synthetic Population

Nationwide Difference between American Community

Category
1 2 3 4 5 6 7
% Age 15-24 25-34 35-44 45-54 55-64 65-74 >74
'g S10K- S15K- S25K- S35K- S50K-
2| Income| <S$10K $15K $25K $35K S50K $100K >$100K
Size 1 2 3 4 5 6 7+
Race White |Black/AA| Asian other 2+ N/A N/A
Percentage difference from ACS:
Category
1 2 3 4 5 6 7
% Age 0.151 0.054 0.049 -0.125 -0.048 0.089 -0.004
| Income 0.016 0.139 0.166 0.200 0.202) -0.175 -0.112
= Size 0.065 -0.131 0.059 -0.038 0.206 0.272 0.227
Race -0.042 0.075 0.330 0.159 0.340 N/A N/A

Courtesy W. Wheaton, RTI International




Counties

Population Differences by County

 Example of differences in ‘Age of Head of Householder’ by

county:

% Difference by County
HH Age Variable

900

800

700

600

500

400

300

200 I

100

>

Percent Difference from ACS

Courtesy of W. Wheaton, RTI International

m15-24
m25-34
®35-44
m 4554
m 5564
¥ 65-74

>74

Min

Max

-66.67* 200.00**

-40.48
-66.67
-22.08
-50.00
-27.27
-60.00

* Broadwater, MT: Population 5,612
** Camas County, ID: Population 991

47.83
33.33
25.00
29.41
34.78
33.33

% Difference

Mean

0.08
0.06
0.06
-0.04
-0.11
0.05
-0.08

St Dev.

9.05
4.49
3.84
2.88
3.31
4.04
4.43
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Sample Comparison between American
Community Survey and Synthetic Population

Category: 7+ persons

Graphs for a single Public .~ Actual Slope
Use Microdata Area e
(PUMA) i
Each dot represents one 22.54
block group 28.24

2. 23.51
18.81
14.14

9.4+

4.7 4

Courtesy of W. Wheaton, RTI International
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Collecting School Contact Data

e Social Mixing and
Respiratory Transmission
(SMART) Schools

= 2011-2013 Pitt Study
= CDC Funded

= Measure child-child contact
rates in Pittsburgh school

= Correlate with Flu and stay-
at-home behavior
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Comparing Effect of NPl Compliance across models
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States of America, 105(12), 4639-4644



Attack Rate (%)

Sensitivity to Intervention Thresholds across Models

<
)
<

W Imperial College Model
@ University of Washington
B Virginia Bioinformatics Institute Model

40

<
o)
(92}

35

29.3

30

20.3
20.3

®
ol

2

2
.32
.05
02
01

2225282 222280 X2323%23%5% 232520282 R 232323220 29%9%5%5%8% R
Orr™rrr Orrrr~r- Orrrrr Orrr™rrr~ Orrrr~r- Orrrrr O™ T Orrrr
- 000 - SO0O0 - S000 - SO00 v S000 = SO00 v co0o =~ oo
°seg T °gesg °sSs °seg T “°gesg °segs © °s9g 7 ©°s9o
o o< o< o o< o o< o
o o o o o o o
Imp uw Imp uw VBl Imp Uw VBI
Halloran, M. E., Ferguson, N. M., Eubank, S., Jr, I. M., Cummings, D. A., Lewis, B. et al. (2008). Modeling targeted layered
containment of an influenza pandemic in the United States. Proceedings of the National Academy of Sciences of the United

States of America, 105(12), 4639-4644

0.0001%



Comparing Alternative Interventions across models
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: M Imperial College Model
@ University of Washington

40 M Virginia Bioinformatics Institute Model
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Halloran, M. E., Ferguson, N. M., Eubank, S., Jr, I. M., Cummings, D. A., Lewis, B. et al. (2008). Modeling targeted layered
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States of America, 105(12), 4639-4644



Data Needs for Model Validation

Transmission data based on place of infection for known
pathogens

= Household, Schools, Workplaces
= Health Care Facilities, Group quarters
= Playgrounds, stores, subways, etc

Periodic biological surveys

= Spatial distribution of viral strains
= [nfection rates pre- and post-epidemic

Periodic health behavior surveys
= Spatial distribution of vaccine coverage and behavior patterns
= Measure behaviors pre-, intra- and post-epidemic
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Active Areas of Development in FRED

Transmission Models
= Respiratory, Oral/fecal, Sexual, Vector

Viral evolution

= Resistance
= Emerging diseases

Health behavior and decisions
= Risk Assessment
= Social Influences

Models of Human Movement

= Urban mobility, Short-term Travel, Migration

Environmental conditions
= Climate effects, Seasonality
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Work in Progress:
Human Behavior Modeling

Models of Behavior Change
= Health Belief Model
= Game Theory

Steve Albert

—

Health Behaviors being modeled:
= Vaccine Refusal
= Personal Hygiene (Face Masks)
= Social Distancing (Staying home from work)

Eunha Shim

Impact of Anti-vaccine Clusters on Measles
Outbreak

Effect of Sick Leave Policies

Supriya Kumar
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Individual Behaviors and Epidemic Dynamics

* Hypothesis: Individual behaviors and epidemic state
form a mutual feedback loop

Decision to
take action

Vaccination
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Persons

Assuming constant vaccine compliance
underestimates the attack rate and delays the pealk,
compared to a Health Belief Model

Prevalence Dynamics: HBM vs Static Compliance
Influenza in Allegheny County

70000 T T T T T
60000 ]
50000 (- _— Baseline, AR =322 i
0% Vaccinated
40000 | 7
HBM, AR =18.4
30000 | 57% Vaccinated ]
Static, AR =15.4
20000 |- 57% Vaccinated N
10000
0

0 20 40 60 80 100 120
Days
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Work in Progress:
Viral Evolution

FRED supports multiple circulating pathogens/
strains

Pathogens can be described in varying levels of
details

= Phenotype, genotype

= Cross immunogeneticity

Strain evolution models
= Mutation rates
= Evolution of resistance

Pathogen can be tracked geographically

Roni Rosenfeld
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Work in Progress:
Vector-Borne Disease

Dengue

Mulitple serotypes

Complete agent-based mosquito life cycle
= Aedes Egypti

Human Biting Behavior, Mobility

Human-mosquito population interactions
Mitigations being Modeled

Environmental treatments
Vector control

Wolbachia

Vaccination

Nathan Stone
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* Daily mortality

* Wait eclose time -
< T Vector Life Cycle

Mat Hatch Time
ate
Seeking maIeS . .

Eclose T|me Lay eggs

/ females

A

Host
Seeking

Gonotrophlc J

A\

\ cyCIe |ength
* Follow Ovisite
2EEE e Digesting volatiles (density-

complete dep)

* Follow host volatiles
* Bite (daytime only) * Rest
* Multi-bite per blood meal Nathan Stone - CLARA | * Endophilic




Work in Progress:
Network Analysis of Disease Dynamics

Multiyear Epidemics
= Who gets infected repeatedly / rarely ?
= What affects epidemic seasonality?

Population Network Structure

= Who infects whom?

= Superspreaders and possible vaccination
targets
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Agent Models with Births/Deaths/Aging

* Each agent is PRE-SCHOOL
assigned a birth date
i . CHILD
consistent with age * School
in synthetic attendance data
population STUDENT e Mortality

rates

o

* Local age-specific
maternity rates

WEEKEND
WORKER

m ° Emp|0yment/

retirement data

NON-EMPLOYED




Other Potential Health Modeling Applications

Chronic Conditions and Behaviors
= Smoking
= QObesity
Health Care Systems
= Supply Chain Analysis
= Spread of Innovations

= Health Care Facility Operation

Preparedness and Response
= Emergency Services Response
= Evacuation Behavior

Collaborations Welcome!
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FRED Development Team

John Grefenstette, PhD
Public Health Dynamics Lab
University of Pittsburgh

Don Burke, MD
MIDAS PI

University of Pittsburgh PSC
Public Health Dynamics Lab School of Computer Science .
C . . . Chad Vizino
PSC arnegie Mellon University
PSC
Bruce Lee, MD Alona Fyshe, MS '
- School of Computer Science
School of Medicine, GSPH Carnegie Mellon Universit Bill Wheaton
University of Pittsburgh &l Iersity RTI

David Galloway, MS
Public Health Dynamics Lab
University of Pittsburgh

Jiawei Huang

Phil CooIey, MS PHDL

RTI

Not pictured: Anuroop Sriram, Christopher Tischuk, Jay De Passe, Yu-Ting Weng,

Nathan Stone
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Thank You!
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