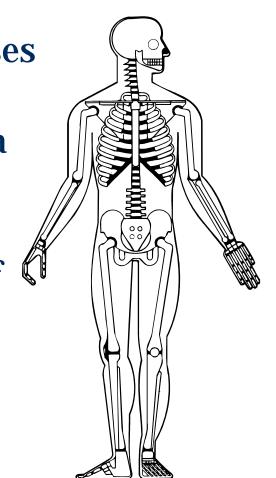


Agenda

- Musculoskeletal Disorders (MSD)
- Biomechanical Risk Factors for MSD
- My research on MSD and computer use
 - Measuring Risk Factors for Computer Users
 - Measuring Pain as an outcome measure
 - Computer Workstation Design

Occupational BiOmechanics


- "Uses laws of physics and engineering concepts to describe motion undergone by the various body segments and the forces acting on these body parts during normal activities"
 (p. 1)
- Goal Improved performance and reduced risk of mechanical trauma

Musculoskeletal Disorders of the Upper Extremity

Musculoskeletal Disorders (MSD)

"Umbrella Term" describing illnesses of the muscles, tendons, nerves, and bone that are not caused by a specific trauma, but occur gradually over time and are probably due to a combination of physical, emotional, and organizational factors

Injury mechanisms

Event

Trauma Type

Typical Medical **Outcomes**

Sudden Force | Impact Trauma | Contusions,

Lacerations, Fractures, Amputations, etc.

Injury mechanisms

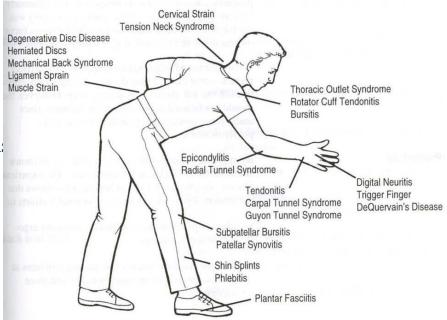
Event

Trauma Type

Typical Medical Outcomes

Volitional Activity

Overexertion Trauma

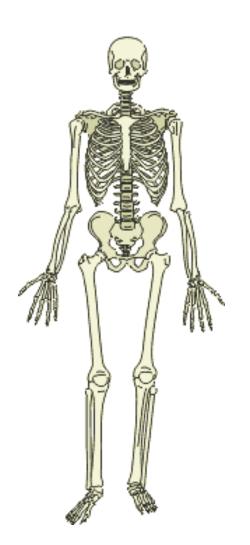

CTS, Tendonitis, Tenosynovitis, Low Back Pain, etc.

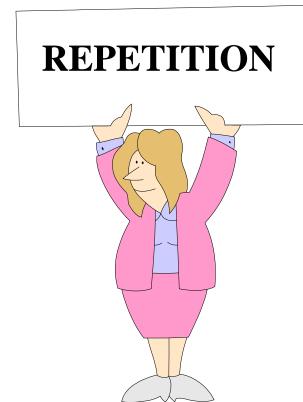


Structures affected in MSD

- Joint/joint capsule
 - osteoarthritis, bursitis, synovitis, adhesive capsulitis
- Muscles
 - focal dystonia, fibromyositis, myalgia
- Tendons
 - strains, tendonitis, tenosynovitis epicondylitis
- Peripheral nerves
 - CTS, Guyon tunnel, Sciatica
- Neurovascular/vascular
 - Raynaud's syndrome
- Disc
 - bulge, herniation

- Force
- Awkward Posture
- Repetition
- Static Posture

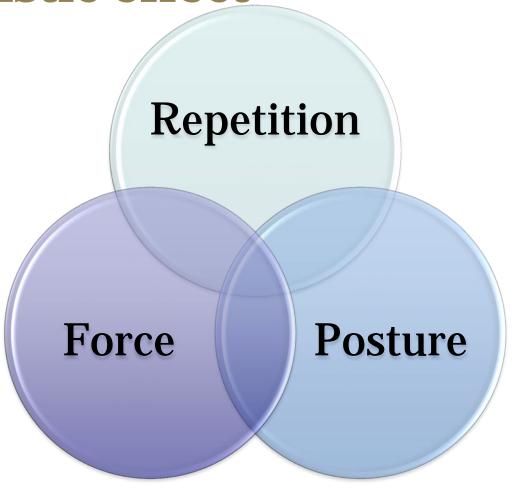

- Muscle contractions exceeding 8% of MVC
- Reduces blood supply to muscles, tendons and nerves
- Tensile stress on attachments
- Examples
 - Gripping instruments

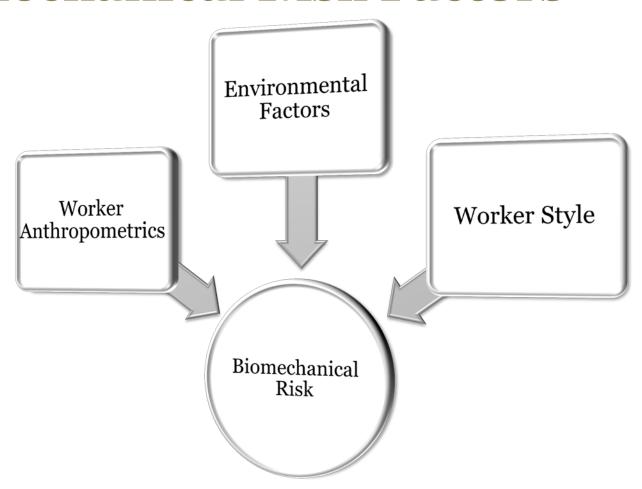


- Movements away from anatomical postures
- Decreased mechanical advantage
- Increased muscle contractions
- Stress/friction on muscles, tendons nerves, discs
- Examples
 - Bending over
 - Reaching overhead

Anatomical posture

- Eyes forward
- Arms at side
- Palms forward
- Toes forward


- Repeated movements
- Increased friction on tendons, nerve muscles and bones
- Reduced rest/healing time
- Example:
 - Wrist, hand & finger movements exceeding 30 movements per minute
 - Similar movements in different tasks



- Remaining in one posture for more than a few minutes
- Constriction of blood supply
- Decreased rest time

- Examples
 - Holding objects
 - Sitting

Synergistic effect

MEASURING RISK FACTORS FOR COMPUTER USERS

Computer Use and MSD-UE

- More than 50% of the US working population uses a computer (BLS, 2005)
- The incidence of MSD-UE related injuries in computer users is 20% (Gerr et al., 2002)

Repetition

- 16,000 keystrokes per hour in skilled typists (Hales et al., 1994)
- Duration 4 hours or more per day (Brewer, et al., 2006)

Force

- Keystrike forces are usually 2.4 to 7 times higher than necessary (Martin et al., 1996; Sommerich et al., 1996)
- ↑ force associated w/ ↑ carpal tunnel pressure (Rempel et al., 1997)
- ↑ force associated w/ ↑ discomfort (Feuerstein et al., 1997)
- Those w/ MSD-UE tend to strike keys harder (Pascarelli & Kella, 1993)

Awkward Postures

- Hypothesized to increase shear and friction, and carpal tunnel pressure (Armstrong et al., 1984; Goldstein et al., 1987)
- Risky postures
 - Neck flexion >30 degrees (McAtamney & Corlett, 1993)
 - Elbow flexion > 120 and <80 degrees (Marcus et al., 2002)
 - Forearm pronation greater than 80 degrees (Zecevic et al., 2000)
 - Wrist extension and/or wrist ulnar deviation > 20°
 (Demure et al., 2000; Hunting et al., 1981)
 - Awkward finger postures (Pascarelli & Kella, 1993)

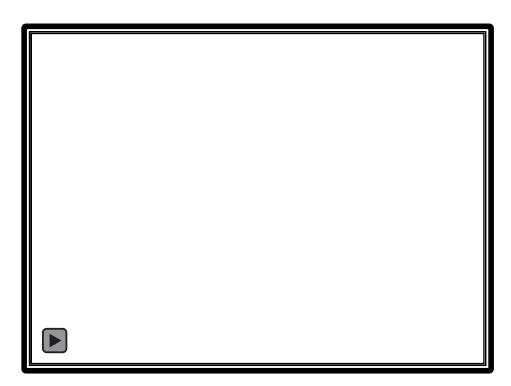
Static Postures

- Computer use causes static loading of the neck and forearm muscles (Aarás et al., 1998; Lin et al., 2004; Kleine et al., 1999)
- Static loading has been associated with pain and MSD-UE (Knardahl, 2002; Sjøgaard et al., 2000)

Personal Computer Style

- "an individual pattern of cognitions, behaviors, and psychological reactivity that co-occur while performing job tasks" (Feurestein, p. 179).
- Highly variable between individuals (Sommerich, 1996; Baker, 2006)
- Stereotypical within individuals (Ortiz, et al.1997; Baker et al., 2006)
- Association between personal workstyle and MSD-UE (Pascarelli et al., 1993; Kilbom et al., 1987; Armstrong et al., 1999; Feuerstein et al., 1992)

Personal Computer Styles



Measuring Typing Style

- Direct measurement
 - sonar device, electric goniometer, LED, electrode, force plates, video analysis systems, EMG
 - Pros Very precise, very detailed
- Observational measurement
 - Criterion based checklist
 - Pros quick, minimal equipment, clinically relevant

Measuring Risk - Lab

Measuring Risk - Workplace

- Uncontrolled environment
- Multiple jobs with multiple tasks
- Instrumentation
- Worksite culture

Measuring Risk - Workplace

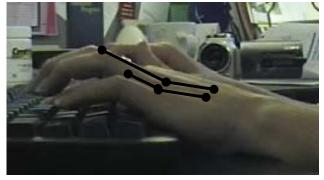
- Observational Instruments
 - RULA http://www.rula.co.uk/survey.html
 - NIOSH lifting equation http://www.ccohs.ca/oshanswers/ergonomics/niosh/calculating_rwl.html
 - Strain Index http://personal.health.usf.edu/tbernard/HollowHills/StrainIndexM12.pdf

K-PeCS

- 19-Item Criterion-Based Observation Tool
 - Three domains
 - Static body postures
 - Dynamic postures (frequency)
 - Tension and force
 - Ordinal or categorical scaling
 - "yes/no"
 - Frequency ratings (never, occasionally, frequently, constantly)
 - Ranges of postures (e.g. shoulder flexion angle = $0-20^{\circ}$; 21° - 35° ; > 35°)

Items of Static Body Posture

- Angular position
 - Torso Angle
 - Neck Flexion Angle
 - Shoulder Flexion Angle
 - Elbow Flexion Angle


Items of Dynamic Postur

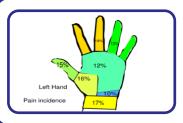
- Frequency/Presence of:
 - Wrist/Hand Displaceme:
 - Wrist Ulnar Angle
 - Wrist Extension Angle
 - Forearm Rotation

Items of Dynamic Posture

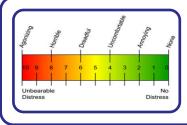
- Frequency/Presence of:
 - Isolated 1st Digit
 - Isolated 5th Digit
 - # of Digits to Type
 - Space Bar Activation
 - MCP Hyperextension
 - PIP/DIP Curve
 - DIP Hypermobility

Items of Tension and Force

- Support Use
 - Back Rest Use
 - Wrist Rest Use
 - Forearm Support
- Force


Measuring Risk Factors - Challenges

- Increasing Precision
- Reducing time to evaluate
- Associating Pain/risk factors
- Developing models of injury

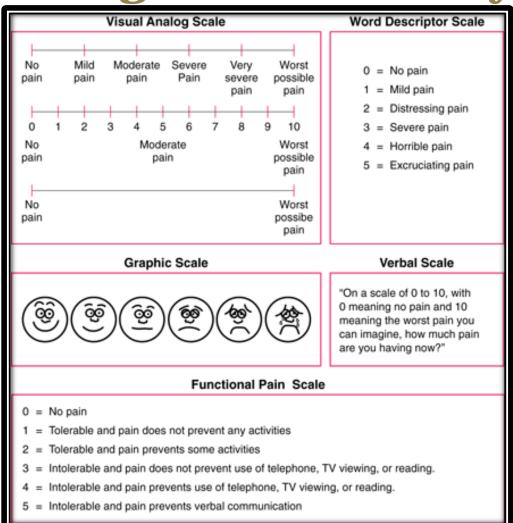


Measuring Pain

Measuring Pain

Incidence

Severity


Quality

- Type of Discomfort
- Effect on person's life

Measuring Pain - Incidence

- How often experience pain during a time period
- How long the pain lasts

Measuring Pain - Severity

Measuring Pain - Quality

What type of discomfort do you have

Pain Cold

Numbness Tingling

Aching

Burning

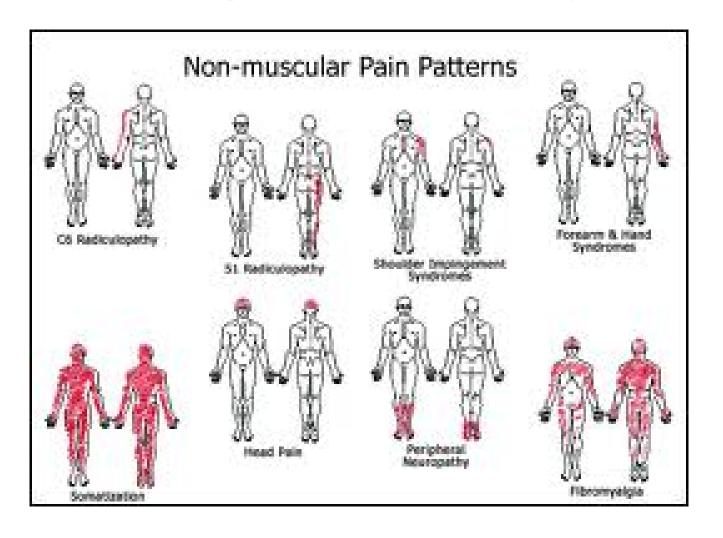
Circle the words that describe your pain.

aching sharp penetrating

throbbing tender nagging

shooting burning numb

stabbing exhausting miserable


gnawing tiring unbearable

Measuring Pain - Quality

1. Circle the one number that describes how during the past week pain has interfered with your:

a. General Activity	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
b. Mood	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
c. Normal Work	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
d. Sleep	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
e. Enjoyment of Life	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
f. Ability to Concentrate	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes
g. Relations with Other People	Does Not Interfere	0	1	2	3	4	5	6	7	8	9	10	Completely Interferes

Measuring Pain - Quality

Measuring Pain - Challenges

- Purely subjective
- Fluctuates
 - Severity/Frequency
 - Stable Baseline
- Effected by reporting
- Matching pain to action in MSD
- How much pain = MSD

COMPUTER WORKSTATION DESIGN

Ergonomics

- "Fitting the job to the person
- Ensuring the job environment (physical, cognitive, psychosocial) matches the skills of the person completing the job
- Believe to reduce work stress (physical and mental)

Workstation Set-up

- Computer operators workstations are often poorly configured to match their needs
- Research supports
 reconfiguration
 combined with
 education to improve
 musculoskeletal
 health (Goodman et al.,
 2012, Kennedy et al. 2009)

Workstation Set-up - Challenges

- Measuring the worker in the workstation
 - Dynamic rather than static
 - "Tele-ergonomics"
 - Identifying where to intervene

Equipment - Challenges

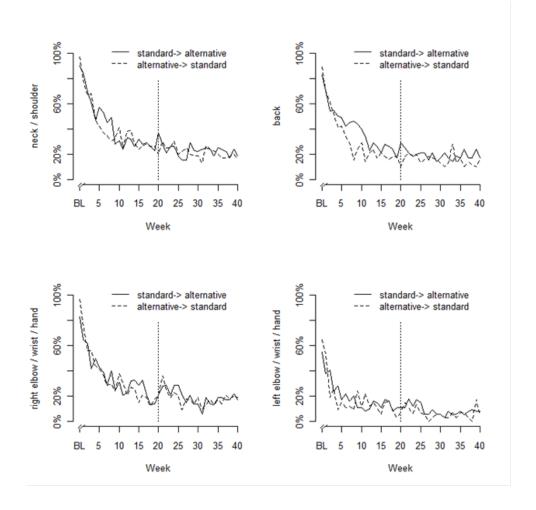
- Education
 - Educate workers on how to adjust workstation
 - Educate workers about available equipment
 - Educate workers how to adjust their existing equipment
- Developing intuitive adjustable designs

Input Devices

- "Ergonomic" keyboards and "mice"
 - Research suggests that they reduce "risky"
 postures" (Baker and Cidboy, 2006)
 - Research questionable whether they reduce discomfort (Brewer et al., 2006; Kennedy et al., 2010)

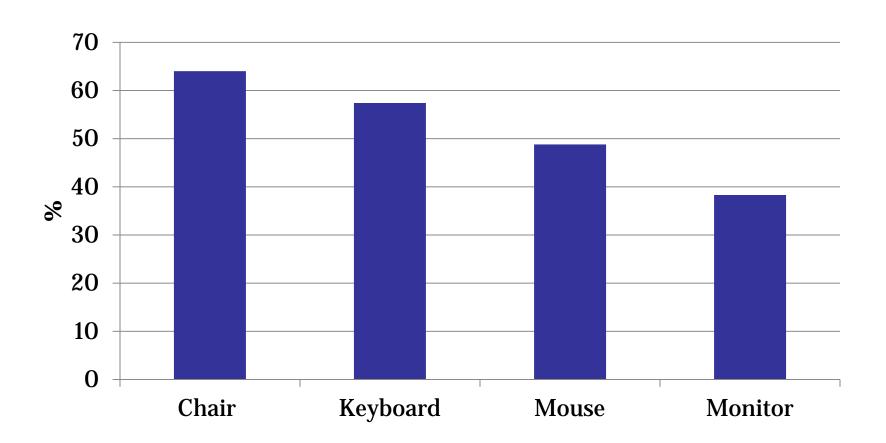
Alternative Keyboards

Input Devices

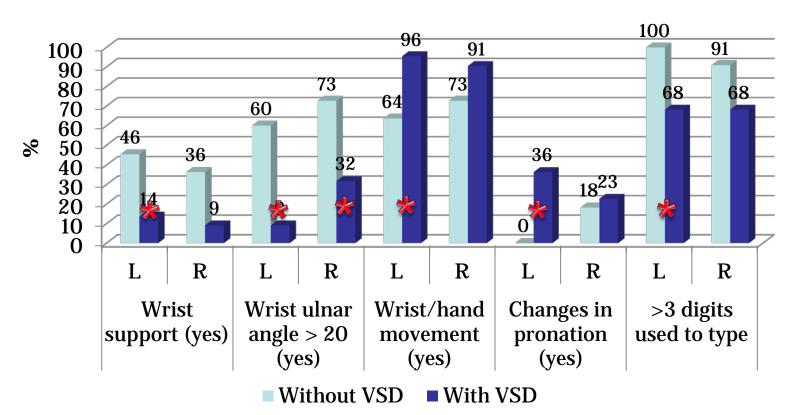

Alternate Keyboard

- RCT cross-over design
- 85 subjects with MSS received both alternate keyboard and standard keyboard for 5 months (random order)
- 77 subjects remained in study after 1 year

Results



Input Devices - Challenges


- Determine which (if any) reduce discomfort/MSD
- Which design is most usable
- Design other input methods

RA and Computer Use

Effect of structural changes on typing style

Users with Impairments - Challenges

- Which design is most usable and under what conditions
- What are alternate methods to input data?
- What are the best methods to measure performance?

OTHER IDEAS?