What Can We Learn Privately?

Adam Smith
Penn State

Joint work with
Shiva Kasiviswanathan (Penn State)
Homin Lee (Columbia)
Kobbi Nissim (Ben-Gurion)
Sofya Raskhodnikova (Penn State)
Private Learning Algorithms

• **Goal:** machine learning algorithms that protect the privacy of individual examples (people, organizations,...)

• **Desiderata**
 - **Privacy:** Worst-case guarantee (differential privacy)
 - **Learning:** Distributional guarantee (PAC learning)

• **This talk**
 - Feasibility results
 - Open questions
Differential Privacy

x' is a neighbor of x if they differ in one row
Definition: A is indistinguishable if, for all neighbors \(x, x'\), for all subsets \(S\) of transcripts

\[
\Pr[A(x) \in S] \leq (1 + \epsilon)\Pr[A(x') \in S]
\]
Differential Privacy

\[\Pr[A(x) \in S] \leq (1 + \epsilon) \Pr[A(x') \in S] \]

Definition: A is indistinguishable if, for all neighbors \(x, x' \), for all subsets \(S \) of transcripts:

\[\Pr[A(x) \in S] \leq (1 + \epsilon) \Pr[A(x') \in S] \]
PAC learning

- **Z**: a random variable over domain D.
- **C**: a set of concepts $C = \{ c : D \rightarrow \{0, 1\} \}$

Examples $z_i \sim Z$

Labels $y_i = \ell(x_i)$

$\ell : D \rightarrow \{0, 1\}$
PAC learning

- Z : a random variable over domain D.
- C : a set of concepts $C = \{ c : D \rightarrow \{0, 1\} \}$

Examples $z_i \sim Z$
Labels $y_i = \ell(x_i)$
$\ell : D \rightarrow \{0, 1\}$
PAC learning

- \(Z \) : a random variable over domain \(D \).
- \(C \) : a set of concepts \(C = \{ c : D \to \{0, 1\} \} \)

Examples \(z_i \sim Z \)
Labels \(y_i = \ell(x_i) \)
\(\ell : D \to \{0, 1\} \)

Definition: A agnostically PAC-learns \(C \) on \(Z \) if, for all \(\ell \), with high prob. over \(z_1, \ldots, z_n \) i.i.d.: \(\Pr_{z \sim Z} [h(z) = \ell(z)] \leq \text{OPT} - \alpha \)

where \(\text{OPT} = \sup_{c' \in C} \Pr[c'(z) = c(z)] \)

\# examples \(n \)
running time of \(A \) \(\bigg\} \text{poly} \left(\frac{1}{\alpha}, \text{desc-length}(c') \right) \)
Private PAC learning

• Say \(A \) is a **private PAC learner** for \(C \) on \(Z \) if
 - \(A \) is a **PAC learner** for \(C \) on \(Z \) and
 - \(A \) is \(\varepsilon \)-indistinguishable for \(\varepsilon = o(1) \)
Private PAC learning

• Say A is a private PAC learner for C on Z if
 - A is a PAC learner for C on Z and
 - A is ϵ-indistinguishable for $\epsilon = o(1)$

• First attempt: Apply sample-aggregate to non-private learning algorithm

Intuition: Replace f with a less sensitive function \tilde{f}.

$\tilde{f}(x) = g(f(sample_1), f(sample_2), \ldots, x_{kt}, \ldots, x_{kt})$

aggregation function

noise calibrated to sensitivity of \tilde{f}

output
Private PAC learning

- Say \(A \) is a **private PAC learner** for \(C \) on \(Z \) if
 - \(A \) is a **PAC learner** for \(C \) on \(Z \) and
 - \(A \) is \(\varepsilon \)-indistinguishable for \(\varepsilon = o(1) \)

- **First attempt:** Apply sample-aggregate to non-private learning algorithm

- **Problem:** there may be many good hypotheses. Different samples may produce different-looking hypotheses.
Private PAC learning

• Say A is a private PAC learner for C on Z if
 - A is a PAC learner for C on Z and
 - A is ε-indistinguishable for $\varepsilon = o(1)$
Private PAC learning

• Say \(A \) is a **private PAC learner** for \(C \) on \(Z \) if
 - \(A \) is a **PAC learner** for \(C \) on \(Z \) and
 - \(A \) is \(\epsilon \)-indistinguishable for \(\epsilon = o(1) \)

• **Theorem**: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.
Private PAC learning

- Say \(A \) is a **private PAC learner** for \(C \) on \(Z \) if
 - \(A \) is a **PAC learner** for \(C \) on \(Z \) and
 - \(A \) is \(\epsilon \)-indistinguishable for \(\epsilon = o(1) \)

- **Theorem**: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.

- **Proof**: Use McSherry-Talwar exponential sampling
 - “Score” \(q(x, h) = - \#(\text{misclassified examples}) \)
 - Roughly need \(n \geq \text{desc-length}(c') \times \max\left(\frac{1}{\alpha \epsilon}, \frac{1}{\alpha^2}\right) \)
Private PAC learning

- Say A is a **private PAC learner** for C on Z if
 - A is a **PAC learner** for C on Z and
 - A is ε-indistinguishable for $\varepsilon = o(1)$

Theorem: Any PAC learnable concept can be learned privately, using polynomially-many samples but possibly exponential running time.

Proof: Use McSherry-Talwar exponential sampling

- “Score” $q(x, h) = - \#$(misclassified examples)
- Roughly need $n \geq \text{desc-length}(c') \times \max\left(\frac{1}{\alpha \varepsilon}, \frac{1}{\alpha^2}\right)$

Questions:
- Can we get a VC-dimension bound?
- Can we preserve polynomial running time?
What is learnable privately & efficiently?

- **Parity-like Problems**

 - Domain $D = \mathbb{Z}_p^n$
 - Concepts $c(z) = \begin{cases}
 0 & \text{if } z \odot v = 0 \pmod{p} \\
 1 & \text{if } z \odot v \neq 0 \pmod{p}
\end{cases}$

 - Need to assume that labels are consistent with some concept
 - (Without assumption, this becomes parity with noise)
What is learnable privately & efficiently?

- **Parity-like Problems**
 - Domain $D = \mathbb{Z}_p^n$
 - Concepts $c(z) = \begin{cases} 0 & \text{if } z \odot v = 0 \mod p \\ 1 & \text{if } z \odot v \neq 0 \mod p \end{cases}$
 - Need to assume that labels are consistent with some concept
 - (Without assumption, this becomes parity with noise)

- **Statistical Query algorithms**
 - Statistical Query: ask question of distribution Z
 - **Query**: predicate $g : D \times \{0, 1\} \rightarrow \{0, 1\}$
 - **Answer** $\approx \Pr_z[g(z, c(z)) = 0]$
 - Many common learning algorithms are SQ algorithms
What is learnable privately & efficiently?

• Parity-like Problems
 - Domain $D = \mathbb{Z}_p^n$
 - Concepts $c(z) = \begin{cases} 0 & \text{if } z \circ v = 0 \mod p \\ 1 & \text{if } z \circ v \neq 0 \mod p \end{cases}$
 - Need to assume that labels are consistent with some concept
 - (Without assumption, this becomes parity with noise)

• Statistical Query algorithms
 - Statistical Query: ask question of distribution Z
 - Query: predicate $g : D \times \{0, 1\} \rightarrow \{0, 1\}$
 - Answer $\approx \Pr_z [g(z, c(z)) = 0]$
 - Many common learning algorithms are SQ algorithms
What can be learned privately?

\[\text{PAC}^* = \text{PAC learnable with poly. samples but arbitrary computation} \]

\[\text{PAC}^* = \text{Private-PAC}^* \]

\[\text{P} \text{ARITY with noise} \]

\[\text{P} \text{ARITY} \]

\[\text{SQ} = \text{Local-p-PAC} \]
Statistical Query Learning

- **Statistical Query**: ask question of distribution Z
 - **Query**: predicate $g : D \times \{0, 1\} \rightarrow \{0, 1\}$
 - **Answer**: $\approx Pr_z[g(z, c(z)) = 0]$

- If n is large, then use sum query on data + noise [BDMN]

- Alternative: “local”, decentralized protocol
 - For each i, compute bit $b_i = \begin{cases} g(x_i) & \text{w.p. } \frac{1}{2} + \epsilon \\ 1 - g(x_i) & \text{w.p. } \frac{1}{2} - \epsilon \end{cases}$
 - Sum of bits allows approximation to answer

- Local protocols studied extensively in data mining lit.

- **Theorem**: Local-private-PAC = SQ.
What can be learned privately?

\[\text{PAC}^* = \text{PAC learnable with poly. samples but arbitrary computation} \]

- \[\text{PAC}^* = \text{Private-PAC}^* \]
- \[\text{P} \text{ARITY with noise} \]
- \[\text{SQ} = \text{Local-p-PAC} \]

- \[\text{P} \text{ARITY} \]
Privacy has other interesting connections to learning

D.P. algorithms are useful as sub-algorithms, to break dependencies

- “Follow the perturbed leader” algorithm for online decision
 \[\text{Kalai-Vempala}\]
- Fixing an issue in \[\text{Vempala-Wang 02}\] for learning Gaussian mixtures

Privacy investigation lead to separations between “adaptive” and “non-adaptive” SQ algorithms.

- Corresponds to interaction in private mechanisms

Good “sensitivity” properties of error lead to good generalization error
Thank you