
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation 10
Shell lab: Processes, Signals, IO

April 1st, 2024
Your TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

⬛ Logistics

⬛ Process Lifecycle

⬛ Signal Handling

⬛ IO and File Descriptors

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learning Objectives
⬛ Expectations:
▪ Basic understanding of signals & processes

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics
⬛ Shell Lab due April 9th (Spring Carnival Immediately after)

▪ 2 grace days
▪ There will be no OH April 11-14
▪ Last day to submit is April 12th

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Post Mid-Semester Feedback Form

⬛ Please Take 5 minutes to Fill this out:
▪ https://forms.gle/L2fVc7aNe4iATxDu7

⬛ TA Hiring for the Next Semester has started by the
Department
▪ All hiring will be done through the CSD portal, not via email.
▪ https://www.ugrad.cs.cmu.edu/ta/S24/

https://forms.gle/L2fVc7aNe4iATxDu7

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Lab
⬛ Due date: April 9th

⬛ Build a Linux-like shell

⬛ Review the write-up carefully.
▪ Review once before starting, and again when halfway through

▪ This will save you a lot of style points and a lot of grief!

⬛ Read Chapter 8 in the textbook:
▪ Process lifecycle and signal handling

▪ How race conditions occur, and how to avoid them

▪ Be careful not to use code from the textbook without
understanding it first.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs
⬛ How many different lines could be printed?
int main(void) {
 char *tgt = "child";
 sigset_t mask, old_mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigprocmask(SIG_BLOCK, &mask, &old_mask); // Block
 pid_t pid = fork();
 if (pid == 0) {
 pid = getppid(); // Get parent pid
 tgt = "parent";
 }
 kill(pid, SIGINT);
 sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
 printf("Sent SIGINT to %s:%d\n", tgt, pid);
 exit(0);

}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs
⬛ How many different lines are printed?
int main(void) {
 char *tgt = "child";
 sigset_t mask, old_mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigprocmask(SIG_SETMASK, &mask, &old_mask); // Block
 pid_t pid = fork();
 if (pid == 0) {
 pid = getppid(); // Get parent pid
 tgt = "parent";
 }
 kill(pid, SIGINT);
 sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
 printf("Sent SIGINT to %s:%d\n", tgt, pid);
 exit(0);
}

0 or 1 line. The parent and
child try to terminate each
other.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling
⬛ Signals can happen at any time

▪ Control when through blocking signals

⬛ Signals also communicate that events have occurred
▪ What event(s) correspond to each signal?

⬛ Write separate routines for receiving (i.e., signals)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals
⬛ Will this code always terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 10; i++) {
 if (fork() == 0) { exit(0); }
 }
 while (counter < 10) {
 mine_bitcoin();
 }
 return 0;
}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals (you can’t)
⬛ Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 10; i++) {
 if (fork() == 0) { exit(0); }
 }
 while (counter < 10) {
 mine_bitcoin();
 }
 return 0;
}

It might not, since
signals can coalesce.

(Don't use signal, use
Signal or sigaction
instead!)

(Don't busy-wait, use
sigsuspend instead!)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sigsuspend

int sigsuspend(const sigset_t *mask);
- Suspend current process until a signal is received, you can

specify which one using a mask

This is an atomic version of:

sigprocmask(SIG_SETMASK, &mask, &prev)
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

- This still doesn’t fix the issue of signals coalescing!

- Don’t use pause() in your own code

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling
⬛ How can we fix the previous code?

▪ Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling
⬛ How can we fix the previous code?

▪ Remember that signals will be coalesced, so the number of times a
signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

void handler(int sig) {
 pid_t pid;
 while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
 counter++;
 }
}

(This instruction isn't atomic. Why
won't there be a race condition?)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking signals
⬛ Surround blocks of code with calls to sigprocmask.

▪ Use SIG_BLOCK to block signals at the start.

▪ Use SIG_SETMASK to restore the previous signal mask at the end.

⬛ Don't use SIG_UNBLOCK.
▪ We don't want to unblock a signal if it was already blocked.

▪ This allows us to nest this procedure multiple times.

sigset_t mask, prev;
sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing signal handlers
⬛ G1. Call only async-signal-safe functions in your handlers.

▪ Do not call printf, sprintf, malloc, exit! Doing so can cause deadlocks, since these
functions may require global locks.

▪ We've provided you with sio_printf which you can use instead.

⬛ G2. Save and restore errno on entry and exit.
▪ If not, the signal handler can corrupt code that tries to read errno.

▪ The driver will print a warning if errno is corrupted.

⬛ G3. Temporarily block signals to protect shared data.
▪ This will prevent race conditions when writing to shared data.

⬛ Avoid the use of global variables in tshlab.
▪ They are a source of pernicious race conditions!

▪ You do not need to declare any global variables to complete tshlab.

▪ Use the functions provided by tsh_helper.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error and signals : Recap
⬛ You can’t expect people to block signals around all error

handling logic

⬛ Hence, your signal handler shouldn’t interfere with them

⬛ Solution:
▪ Do not make any system call that could set errno

▪ Save and restore errno (store at beginning of handler and restore
after)

▪ Think about what would work for the case you are using, not one
rule

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO functions
Needed for tshlab
⬛ int open(const char *pathname, int flags, mode_t mode);

▪ Can pass bitwise-or of flags:

▪ File Creation: O_CREAT, O_TRUNC, etc.

▪ Access Modes (must include one): O_RDONLY, O_WRONLY, O_RDWR

– O_RDONLY|O_WRONLY doesn’t work! Use O_RDWR

▪ Mode: specifies who else can read/write the new file

▪ Required argument when O_CREAT is used

▪ Use 0666 unless you have a specific reason to do something else

⬛ int close(int fd);
⬛ int dup2(int oldfd, int newfd);

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Permissions for open()

⬛ These constants can be bitwise-OR’d and passed to the
third argument of open()

⬛ What does S_IRWXG | S_IXUSR | S_IXOTH mean?

⬛ How to create a file which everyone can read from but
only the user can write to it or execute it?

Read (R) Write (W) Executable (X) All (RWX)

User (USR) S_IRUSR S_IWUSR S_IXUSR S_IRWXU

Group (GRP) S_IRGRP S_IWGRP S_IXGRP S_IRWXG

Other (OTH) S_IROTH S_IWOTH S_IXOTH S_IRWXO

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

STD File Descriptors

fd

0

1

2

open file table

stdin

stdout

stderr

stdin, stdout, stderr are
opened automatically and

closed by normal termination
or exit()

STDIN_FILENO

STDOUT_FILENO

STDERR_FILENO

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File descriptors (File A != File B)

“foo.txt”

“bar.txt”

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File descriptors after dup2(4,1);

Closed
silently “foo.txt”

“bar.txt”

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Descriptors (File A == File B)

“foo.txt”

“foo.txt”

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Descriptors after a fork()

“foo.txt”

“bar.txt”

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO and Fork()
⬛ File descriptor management can be tricky.

⬛ How many file descriptors are open in the parent process at the indicated point?

⬛ How many does each child have open at the call to execve?

int main(int argc, char** argv)
{
 int i;
 for (i = 0; i < 4; i++)
 {
 int fd = open(“foo”, O_RDONLY);
 pid_t pid = fork();
 if (pid == 0)
 {
 int ofd = open(“bar”, O_RDONLY);
 execve(...);
 }
 }
 // How many file descriptors are open in the parent?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO
⬛ At the two points (A and B) in main, how many file descriptors are open?

int main(int argc, char** argv)
{
 int i, fd;
 fd = open(“foo”, O_WRONLY);
 dup2(fd, STDOUT_FILENO);
 // Point A
 close(fd);
 // Point B
 ...

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO
⬛ File descriptors can be directed to identify different open

files.
int main(int argc, char** argv) {
 int i;
 for (i = 0; i < 4; i++)
 {

 int fd = open(“foo”, O_RDONLY);
 pid_t pid = fork();
 if (pid == 0)
 {

 int ofd = open(“bar”, O_WRONLY);
 dup2(fd, STDIN_FILENO);
 dup2(ofd, STDOUT_FILENO);
 execve(...);
 }
 }
 // How many file descriptors are open in the parent?
}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File IO Activity

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity Question
What is the possible output given contents of foo.txt are “ABCDEFG”?
int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

read_and_print_one(fd2);

read_and_print_one(fd2);

close(fd2);

fd2 = dup(fd1);

read_and_print_one(fd2);

} else {

wait(NULL);

read_and_print_one(fd1);

read_and_print_one(fd2);

printf("\n");

}

close(fd1);

close(fd2);

return 0;

}

void read_and_print_one(int
fd) {

char c;

read(fd, &c, 1);

printf("%c", c);

fflush(stdout);

}

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Descriptors after open() of fd2

fd 0

fd 1

fd 2

fd 3

fd 4

“foo.txt”

File pos

refcnt = 1

...

“foo.txt”

File pos

refcnt = 1

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

...

Descriptor Tables

Open File Table

V Node Table

Pa
re

n
t

Ta
b

le

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Descriptors after fork()

“foo.txt”

File pos

refcnt = 2

...

“foo.txt”

File pos

refcnt = 2

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

...

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le
C

h
ild

 T
ab

le

What has been printed so far?

?

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Descriptors after fork()

“foo.txt”

File pos

refcnt = 2

...

“foo.txt”

File pos

refcnt = 2

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

...

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le
C

h
ild

 T
ab

le

What has been printed so far?

AA

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Output after child prints

“foo.txt”

File pos

refcnt = 3

...

“foo.txt”

File pos

refcnt = 1

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

read_and_print_one(fd2);

read_and_print_one(fd2);

close(fd2);

fd2 = dup(fd1);

read_and_print_one(fd2);

} else {

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le
C

h
ild

 T
ab

le

What has been printed so far?

?

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Output after child prints

“foo.txt”

File pos

refcnt = 3

...

“foo.txt”

File pos

refcnt = 1

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

read_and_print_one(fd2);

read_and_print_one(fd2);

close(fd2);

fd2 = dup(fd1);

read_and_print_one(fd2);

} else {

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le
C

h
ild

 T
ab

le

What has been printed so far?

AABCB

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Output after parent prints

“foo.txt”

File pos

refcnt = 1

...

“foo.txt”

File pos

refcnt = 1

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

read_and_print_one(fd2);

read_and_print_one(fd2);

close(fd2);

fd2 = dup(fd1);

read_and_print_one(fd2);

} else {

wait(NULL);

read_and_print_one(fd1);

read_and_print_one(fd2);

printf("\n");

}

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le

What has been printed so far?

?

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Output after parent prints

“foo.txt”

File pos

refcnt = 1

...

“foo.txt”

File pos

refcnt = 1

...

File access

File size

File type

...

int main(int argc, char *argv[]) {

int fd1 = open("foo.txt", O_RDONLY);

int fd2 = open("foo.txt", O_RDONLY);

read_and_print_one(fd1);

read_and_print_one(fd2);

if(!fork()) {

read_and_print_one(fd2);

read_and_print_one(fd2);

close(fd2);

fd2 = dup(fd1);

read_and_print_one(fd2);

} else {

wait(NULL);

read_and_print_one(fd1);

read_and_print_one(fd2);

printf("\n");

}

Descriptor Tables Open File Table

V Node Table

fd 0

fd 1

fd 2

fd 3

fd 4

Pa
re

n
t

Ta
b

le

What has been printed so far?

AABCBCD

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck on tshlab
⬛ Read the writeup!

⬛ Do manual unit testing before runtrace and sdriver!

⬛ Post private questions on piazza!

⬛ Read the man pages on the syscalls.
▪ Especially the error conditions

▪ What errors should terminate the shell?

▪ What errors should be reported?

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

man 2 wait
Taken from http://man7.org/linux/man-pages/man2/wait.2.html
WAIT(2) Linux Programmer's Manual WAIT(2)

NAME

 wait, waitpid, waitid - wait for process to change state

SYNOPSIS

 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *wstatus);

 pid_t waitpid(pid_t pid, int *wstatus, int options);

 int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
 /* This is the glibc and POSIX interface; see
 NOTES for information on the raw system call. */

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

man pages (probably) cover all you need
⬛ What arguments does the function take?

▪ read SYNOPSIS

⬛ What does the function do?

▪ read DESCRIPTION

⬛ What does the function return?

▪ read RETURN VALUE

⬛ What errors can the function fail with?

▪ read ERRORS

⬛ Is there anything I should watch out for?

▪ read NOTES

⬛ Different categories for man page entries with the same name

⬛ Looking up man pages online is not an academic integrity violation

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function arguments
⬛ Should I do dup2(old, new) or dup2(new, old)?

⬛ Read the man page:

$ man dup2

SYNOPSIS

 #include <unistd.h>

 int dup(int oldfd);

 int dup2(int oldfd, int newfd);

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function behavior
⬛ How should I write my format string when I need to print

a long double in octals with precision 5 and zero-padded?

⬛ Read the man page
$ man printf

DESCRIPTION

Flag characters

 The character % is followed by zero or more of the following flags:

 # The value should be converted...

 0 The value should be zero padded...

 - The converted value is to be left adjusted...

 ' ' (a space) A blank should be left before...

 + A sign (+ or -) should always ...

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function return
⬛ What does waitpid() return with and without WNOHANG?

⬛ Read the man page:

$ man waitpid

RETURN VALUE

 waitpid(): on success, returns the process ID of the child whose

 state has changed; if WNOHANG was specified and one or more

 child(ren) specified by pid exist, but have not yet changed state,

 then 0 is returned. On error, -1 is returned.

 Each of these calls sets errno to an appropriate value in the case of

 an error.

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Potential errors
⬛ How should I check waitpid for errors?

⬛ Read the man page:
$ man waitpid

ERRORS

 ECHILD (for waitpid() or waitid()) The process specified by pid

 (waitpid()) or idtype and id (waitid()) does not exist or is

 not a child of the calling process. (This can happen for

 one's own child if the action for SIGCHLD is set to SIG_IGN.

 See also the Linux Notes section about threads.)

 EINTR WNOHANG was not set and an unblocked signal or a SIGCHLD was

 caught; see signal(7).

 EINVAL The options argument was invalid.

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Get advice from the developers

⬛ I sprintf from a string into itself, is this okay?

⬛ Read the man page:
$ man sprintf

NOTES

 Some programs imprudently rely on code such as the following

 sprintf(buf, "%s some further text", buf);

 to append text to buf. However, the standards explicitly note that

 the results are undefined if source and destination buffers overlap

 when calling sprintf(), snprintf(), vsprintf(), and vsnprintf().

 Depending on the version of gcc(1) used, and the compiler options

 employed, calls such as the above will not produce the expected

 results.

 The glibc implementation of the functions snprintf() and vsnprintf()

 conforms to the C99 standard, that is, behaves as described above,

 since glibc version 2.1. Until glibc 2.0.6, they would return -1

 when the output was truncated.

