
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design and Debugging

15-213/14-513/15-513: Introduction to Computer Systems
8th Lecture, September 21, 2023

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

After this lecture
 You will be able to:
 Describe the steps to debug complex code failures
 Identify ways to manage the complexity when programming
 State guidelines for communicating the intention of the code

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline
 Debugging
 Defects and Failures
 Scientific Debugging
 Tools

 Design
 Managing complexity
 Communication
 Naming
 Comments

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atlas-Centaur
 Centaur second stage failed after entering an

uncontrolled spin
 Investigation - turbopumps relied on gas expansion and clogged

from plastic remnants of scouring pads
 Proposed Solution - Bake off plastic

 Next launch – second stage failed after entering an …
 Further investigation – a valve had been leaking for years

 Increased need for engine efficiency pushed this leak into
failure range

 What happened?
 The second time they reproduced the failure

https://www.thespacereview.com/article/1321/1

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects, Errors, & Failures
1. The programmer creates a defect (or a fault)
2. The defect (maybe) causes an error
 wrong results in data values or control signals
3. The error propagates
4. The error causes a failure
 a component or system does not produce the
intended result at an interface

Why is an error not necessarily a failure? Because errors can
be masked or detected. Example: ECC memory.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Curse of Debugging
 Not every defect causes a failure!
 A defect can be latent or active
 A defect in code that doesn’t get executed most of the time…

 Testing can only show the presence of [defects] – not
their absence. (Dijkstra 1972)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects to Failures
 Code with defects will introduce erroneous state or

control
 Correct code may

propagate this state
 Eventually an erroneous

state is observed

 Some executions will not
trigger the defect
 Others will not propagate

erroneous state

 Debugging sifts through
the code to find the defect

Error in
state

valid
state

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Debugging
 Stating the problem
 Describe the problem aloud or in writing

 A.k.a. “Rubber duck” or “teddy bear” method
 Often a comprehensive problem description is sufficient to solve

the failure

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Hypothesis

Problem
Description

Code Failing
Runs

Other
Runs

 Before debugging, you need to construct a hypothesis as
to the defect
 Propose a possible defect and why it explains the failure conditions
 Don’t have an idea? What experiments would give you useful info?

 Occam’s Razor – given several hypotheses, pick the
simplest / closest to current work

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Prediction

Experiment

Observation
& Conclusion

Hypothesis

 Make predictions based on your hypothesis
 What do you expect to happen under new conditions
 What data could confirm or refute your hypothesis

 How can I collect that data?
 What experiments?
 What collection mechanism?

 Does the data refute the hypothesis?
 Refine the hypothesis based on the new inputs

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
 This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix
 Otherwise, how do you know that it is fixed?
 In the real world, you often add a test here

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code with a Bug
int fib(int n)
{
 int f, f0 = 1, f1 = 1;
 while (n > 1) {
 n = n - 1;
 f = f0 + f1;
 f0 = f1;
 f1 = f;
 }
 return f;
}

int main(..) {
..
 for (i = 9; i > 0; i--)
 printf(“fib(%d)=%d\n”,
 i, fib(i));

$ gcc -o fib fib.c
fib(9)=55
fib(8)=34
...
fib(2)=2
fib(1)=134513905

A defect has caused a failure.

How do we know it’s a failure?
It violates the spec.
First, know what SHOULD happen.

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis
 Specification defined the first Fibonacci number as 1
 We have observed working runs (e.g., fib(2))
 We have observed a failing run
 We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis
for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
 First, compilation flags
 MUST include “-Wall”
 Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c
badfib.c: In function ‘fib’:
badfib.c:12:5: error: ‘f’ may be used uninitialized in this funct
 return f;
 ^
cc1: all warnings being treated as errors

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
 First, compilation flags: “-Wall –Werror”
 MUST include “-Wall”
 Should include “-Werror”

 Second, other optimization levels
 Try at least –O3 and –O0

prompt>gcc -O3 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=0
fib(0)=0
prompt>gcc -O2 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=0
fib(0)=0
prompt>gcc -O1 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=9
fib(0)=9
prompt>gcc -O0 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=2

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
 First, compilation flags: “-Wall –Werror”
 MUST include “-Wall”
 Should include “-Werror”

 Second, other optimization levels
 Try at least –O3 and –O0

 Valgrind (even if your program appears to be working!)
 Run on both –O3 and –O0
 Only run after all warnings are gone!

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O3 -o badfib badfib.c
prompt> valgrind badfib
==1462== Memcheck, a memory error detector
==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1462== Command: badfib
==1462==
fib(9)=55
fib(8)=34
fib(7)=21
fib(6)=13
fib(5)=8
fib(4)=5
fib(3)=3
fib(2)=2
fib(1)=0
fib(0)=0
==1462==

Valgrind is not perfect. On –O3 it finds no errors!

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O0 -o badfib badfib.c
prompt> valgrind badfib
==1561== Memcheck, a memory error detector
==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1561== Command: badfib
==1561==
fib(9)=55
fib(8)=34
fib(7)=21
fib(6)=13
fib(5)=8
fib(4)=5
fib(3)=3
fib(2)=2
==1561== Conditional jump or move depends on uninitialise
==1561== at 0x4E988DA: vfprintf (vfprintf.c:1642)
==1561== by 0x4EA0F25: printf (printf c:33)

Valgrind is not perfect, but pretty darn good.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis
 Specification defined the first Fibonacci number as 1
 We have observed working runs (e.g., fib(2))
 We have observed a failing run
 We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis
for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prediction
 Propose a new condition or conditions
 What will logically happen if your hypothesis is correct?
 What data can be

 fib(1) failed // Hypothesis
 // Result depends on order of calls

 If fib(1) is called first, it will return correctly.
 // Loop check is incorrect

 Change to n >= 1 and run again.
 // f is uninitialized

 Change to int f = 1;

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experiment
 Identical to the conditions of a prior run
 Except with one condition changed

 Conditions
 Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis
 If fib(1) is called first, it will return correctly.

 Fails.
 Change to n >= 1

 fib(1)=2
 fib(0)=...

 Change to int f = 1;
 Works. Sometimes a prediction can be a fix.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Observation
 What is the observed result?
 Factual observation, such as “Calling fib(1) will return 1.”
 The conclusion will interpret the observation(s)

 Don’t interfere.
 printf() can interfere for some kinds of bugs!
 Like quantum physics, sometimes observations are part of the

experiment

 Proceed systematically.
 Update the conditions incrementally so each observation relates to

a specific change

 Do NOT ever proceed past first bug.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Tools
 Observing program state can require a variety of tools
 Debugger (e.g., gdb)

 What state is in local / global variables (if known)
 What path through the program was taken

 Valgrind
 Does execution depend on uninitialized variables
 Are memory accesses ever out-of-bounds

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Diagnosis
 A scientific hypothesis that explains current observations

and makes future predictions becomes a theory
 We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect
 Avoid post hoc, ergo propter hoc fallacy
 Or correlation does not imply causation

 Understand why the defect and fix relate

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fix and Confirm
 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the
failure?
 Be systematic

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learn
 Common failures and insights
 Why did the code fail?
 What are my common defects?

 Assertions and invariants
 Add checks for expected behavior

 N.b., Assertions must not have side effects
 Extend checks to detect the fixed failure

 Testing
 Every successful set of conditions is added to the test suite

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quick and Dirty
 Not every problem needs scientific debugging
 Set a time limit: (for example)

 0 minutes – -Wall, valgrind
 1 – 10 minutes – Informal Debugging
 10 – 60 minutes – Scientific Debugging
 > 60 minutes – Take a break / Ask for help

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Smells
 Use of uninitialized variables
 Unused values
 Unreachable code
 Memory leaks
 Interface misuse
 Null pointers

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/37116/quizzes/109920

https://canvas.cmu.edu/courses/37116/quizzes/109920

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline
 Debugging
 Defects and Failures
 Scientific Debugging
 Tools

 Design
 Managing complexity
 Communication
 Naming
 Comments

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design
 A good design needs to achieve many things:
 Performance
 Availability
 Modifiability, portability
 Scalability
 Security
 Testability
 Usability
 Cost to build, cost to operate

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design
 A good design needs to achieve many things:
 Performance
 Availability
 Modifiability, portability
 Scalability
 Security
 Testability
 Usability
 Cost to build, cost to operate

But above all else: it must be readable

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

Good Design does:
 Complexity Management &
 Communication

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity
 There are well known limits to how much complexity a

human can manage easily.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management
 However, patterns can be very helpful...

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management
Many techniques have been developed to help manage
complexity:
 Separation of concerns
 Modularity
 Reusability
 Extensibility
 DRY
 Abstraction
 Information Hiding
 ...

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Complexity
 Given the many ways to manage complexity
 Design code to be testable
 Try to reuse testable chunks

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example
 Split a cache access into three+ testable components
 State all of the steps that a cache access requires
 Convert address into tag, set index, block offset
 Look up the set using the set index
 Check if the tag matches any line in the set
 If so, hit
 If not a match, miss, then
 Find the LRU block
 Evict the LRU block
 Read in the new line from memory
 Update LRU
 Update dirty if the access was a store

 Which steps depend on the operation being a load or a store?

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example
 Split a cache access into three+ testable components
 State all of the steps that a cache access requires
 Convert address into tag, set index, block offset
 Look up the set using the set index
 Check if the tag matches any line in the set
 If so, hit
 If not a match, miss, then
 Find the LRU block
 Evict the LRU block
 Read in the new line from memory
 Update LRU
 Update dirty if the access was a store

 Which steps depend on the operation being a load or a store?

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable
 Testable design
 Testing versus Contracts
 These are complementary techniques

 Testing and Contracts are
 Acts of design more than verification
 Acts of documentation

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable
 Testable design
 Testing versus Contracts
 These are complementary techniques

 Testing and Contracts are
 Acts of design more than verification
 Acts of documentation: executable documentation!

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Example
 For your cache simulator, you can write your own traces
 Write a trace to test for a cache hit
 L 50, 1
 L 50, 1

 Write a trace to test dirty bytes in cache
 S 100, 1

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testable design is modular
 Modular code has: separation of concerns, encapsulation,

abstraction
 Leads to: reusability, extensibility, readability, testability

 Separation of concerns
 Create helper functions so each function does “one thing”
 Functions should neither do too much nor too little
 Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
 Each module is responsible for its own internals
 No outside code “intrudes” on the inner workings of another module

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trust the Compiler!
 Use plenty of temporary variables
 Use plenty of functions
 Let compiler do the math

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication
When writing code, the author is communicating with:
 The machine
 Other developers of the system
 Code reviewers
 Their future self

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication
There are many techniques that have been developed
around code communication:
 Tests
 Naming
 Comments
 Commit Messages
 Code Review
 Design Patterns
 ...

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid deliberately meaningless names:

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.
If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Better naming practices
1. Start with meaning and intention
2. Use words with precise meanings (avoid “data”, “info”,

“perform”)
3. Prefer fewer words in names
4. Avoid abbreviations in names
5. Use code review to improve names
6. Read the code out loud to check that it sounds okay
7. Actually rename things

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming guidelines – Use dictionary words
 Only use dictionary words and abbreviations that appear

in a dictionary.
 For example: FileCpy -> FileCopy
 Avoid vague abbreviations such as acc, mod, auth, etc..

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid using single-letter names
 Single letters are unsearchable
 Give no hints as to the variable’s usage

 Exceptions are loop counters
 Especially if you know why i, j, etc were originally used
 C/unix systems have a few other common conventions, such as ‘fd’

for “file descriptor” and “str” for a string argument to a function.
Following existing style is fine & good.

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name character length
“Good naming limits individual name length, and reduces
the need for specialized vocabulary” – Philip Relf

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name word count
 Keep names to a four word maximum
 Limit names to the number of words that people can read

at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning
 Use descriptive names.
 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use a large vocabulary
 Be more specific when possible:
 Person -> Employee

 What is size in this binaryTree?
struct binaryTree {
 int size;
 …
};

height
numChildren
subTreeNumNodes
keyLength

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use problem domain terms
 Use the correct term in the problem domain’s language.
 Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:
line

element

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use opposites precisely
 Consistently use opposites in standard pairs
 first/end -> first/last

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comments

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Don’t Comments
 Don’t say what the code does
 because the code already says that

 Don’t explain awkward logic
 improve the code to make it clear

 Don’t add too many comments
 it’s messy, and they get out of date

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Awkward Code
 Imagine someone (TA, employer, etc) has to read your

code
 Would you rather rewrite or comment the following?

 How about?

 Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Do Comments
 Answer the question: why the code exists

 When should I use this code?
 When shouldn’t I use it?
 What are the alternatives to this code?

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why does this exist?
 Explain why a magic number is what it is.

 When should this code be used? Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters
const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){
 unsigned i;
 unsigned result = 1;
 for(i=0;i<expo;i++){
 result+=result;
 }
 return result;
}

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments
1. Code by commenting!

Write short comment
1. Helps you think about design & overcome blank-page problem
2. Single line comments
3. Example: Write four one-line comments for quick sort

// Initialize locals
// Pick a pivot value
// Reorder array around the pivot
// Recurse

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments
1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and revised comments

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commit Messages
 Committing code to a source repository is a vital part of

development
 Protects against system failures and typos:

 cat foo.c versus cat > foo.c
 The commit messages are your record of your work

 Communicating to your future self
 Describe in one line what you did

“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is …”

 Use branches

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Programs have defects
 Be systematic about finding them

 Programs are more complex than humans can manage
 Write code to be manageable

 Programming is not solitary, even if you are
communicating with a grader or a future self
 Be understandable in your communication

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Acknowledgements
 Some debugging content derived from:
 http://www.whyprogramsfail.com/slides.php

 Some code examples for design are based on:
 “The Art of Readable Code”. Boswell and Foucher. 2011.

 Lecture originally written by
 Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php

	Design and Debugging��15-213/14-513/15-513: Introduction to Computer Systems�8th Lecture, September 21, 2023
	After this lecture
	Outline
	Atlas-Centaur
	Defects, Errors, & Failures
	Curse of Debugging
	Defects to Failures
	Explicit Debugging
	Scientific Debugging
	Scientific Debugging
	Scientific Debugging
	Code with a Bug
	Constructing a Hypothesis
	Brute Force Approach
	Brute Force Approach
	Brute Force Approach
	Slide Number 17
	Slide Number 18
	Constructing a Hypothesis
	Prediction
	Experiment
	Observation
	Debugging Tools
	Diagnosis
	Fix and Confirm
	Learn
	Quick and Dirty
	Code Smells
	Quiz
	Outline
	Design
	Design
	Design
	Complexity
	Complexity Management
	Complexity Management
	Managing Complexity
	Complexity Example
	Complexity Example
	Designs need to be testable
	Designs need to be testable
	Testing Example
	Testable design is modular
	Trust the Compiler!
	Communication
	Communication
	Slide Number 47
	Avoid deliberately meaningless names:
	Naming is understanding
	Better naming practices
	Naming guidelines – Use dictionary words
	Avoid using single-letter names
	Limit name character length
	Limit name word count
	Describe Meaning
	Use a large vocabulary
	Use problem domain terms
	Use opposites precisely
	Slide Number 59
	Don’t Comments
	Awkward Code
	Do Comments
	Why does this exist?
	How to write good comments
	How to write good comments
	Commit Messages
	Summary
	Acknowledgements

