Sample Complexity for Function Approximation. Model Selection.

Maria-Florina (Nina) Balcan 03/10/2018

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

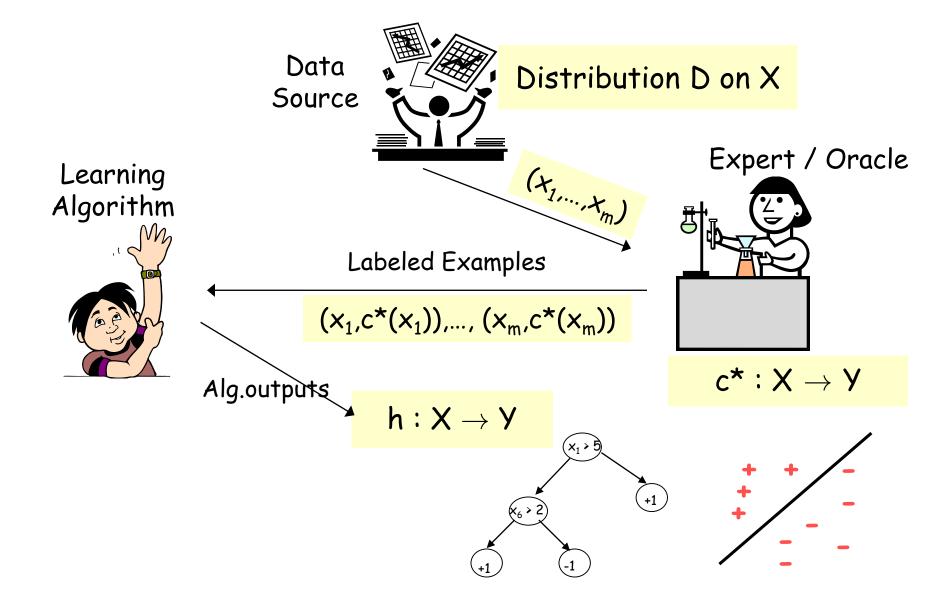
• E.g.: logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

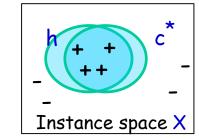
PAC/SLT models for Supervised Classification



PAC/SLT models for Supervised Learning

- X feature/instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples drawn i.i.d. from D and labeled by target c*
 - labels $\in \{-1,1\}$ binary classification
- Algo does optimization over S, find hypothesis h.
- Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$



- Fix hypothesis space H [whose complexity is not too large]
 - Realizable: $c^* \in H$.
 - Agnostic: c^* "close to" H.

Sample Complexity for Supervised Learning Realizable Case

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with 5 (if one exits).

Theorem

$$m \ge \left(\frac{1}{\varepsilon}\right) \ln(|H|) + \ln\left(\frac{1}{\delta}\right)$$
 samples of m training examples

Prob. over different

labeled examples are sufficient so that with prob. $1-\delta$ all $h\in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Linear in $1/\epsilon$

Theorem

$$m = O\left(\frac{1}{\varepsilon} VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in \mathbb{R}^d VCdim(H)=d+1

$$m = O\left(\frac{1}{\varepsilon} \left[d \log \left(\frac{1}{\varepsilon} \right) + \log \left(\frac{1}{\delta} \right) \right] \right)$$

Sample complexity linear in d

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Sample Complexity: Uniform Convergence Agnostic Case

Empirical Risk Minimization (ERM)

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H with smallest err_s(h)

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

labeled examples are sufficient s.t. with probab. $\geq 1-\delta$, all $h\in H$ have $|err_D(h)-err_S(h)|<\varepsilon$. 1/ ϵ^2 dependence [as opposed]

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

to $1/\epsilon$ for realizable

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable], but get for something stronger.

labeled examples are sufficient s.t. with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\sqrt{\frac{1}{m}}$$
 as opposed to $\frac{1}{m}$ for realizable

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{1}{2m} \left(\ln \left(2|H| \right) + \ln \left(\frac{1}{\delta} \right) \right)}.$$

Sample Complexity: Infinite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). Theorem

$$m = O\left(\frac{1}{\varepsilon^2}\left[VCdim(H) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$err_{D}(h) \leq err_{S}(h) + O\left(\sqrt{\frac{1}{2m}\left(VCdim(H)\ln\left(\frac{em}{VCdim(H)}\right) + \ln\left(\frac{1}{\delta}\right)\right)}\right).$$

VCdimension Generalization Bounds

$$\text{E.g.,} \quad \operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + O\left(\sqrt{\frac{1}{2m}}\left(\operatorname{VCdim}(H)\ln\left(\frac{\operatorname{em}}{\operatorname{VCdim}(H)}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right).$$

VC bounds: distribution independent bounds

Generic: hold for any concept class and any distribution.

[nearly tight in the WC over choice of D]

- Might be very loose specific distr. that are more benign than the worst case....
- Hold only for binary classification; we want bounds for fns approximation in general (e.g., multiclass classification and regression).

Rademacher Complex: Binary classification

Fact: $H = \{h: X \to Y\}$ hyp. space (e.g., lin. sep) F = L(H), d = VCdim(H):

$$R_S(F) \le \sqrt{\frac{\ln(2|H[S]|)}{m}}$$
 So, by Sauer's lemma, $R_S(F) \le \sqrt{\frac{2d\ln\left(\frac{em}{d}\right)}{m}}$

Theorem: For any H, any distr. D, w.h.p. $\geq 1 - \delta$ all $h \in H$ satisfy:

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$$
 $\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{2\operatorname{din}\left(\frac{\operatorname{em}}{\operatorname{d}}\right)}{\operatorname{m}}} + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$

generalization bound

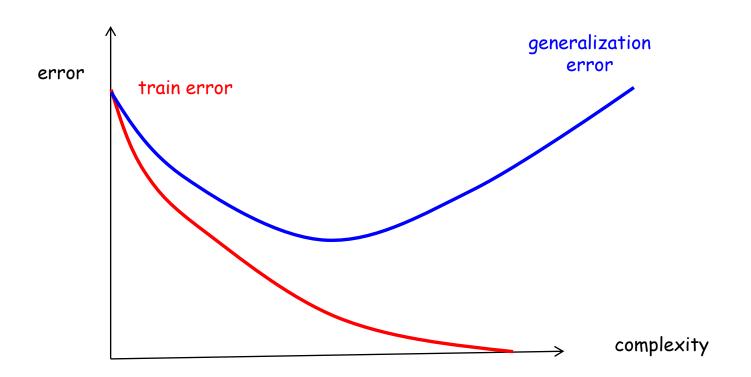
Many more uses!!! Margin bounds for SVM, boosting, regression bounds, etc.

Can we use our bounds for model selection?

True Error, Training Error, Overfitting

Model selection: trade-off between decreasing training error and keeping H simple.

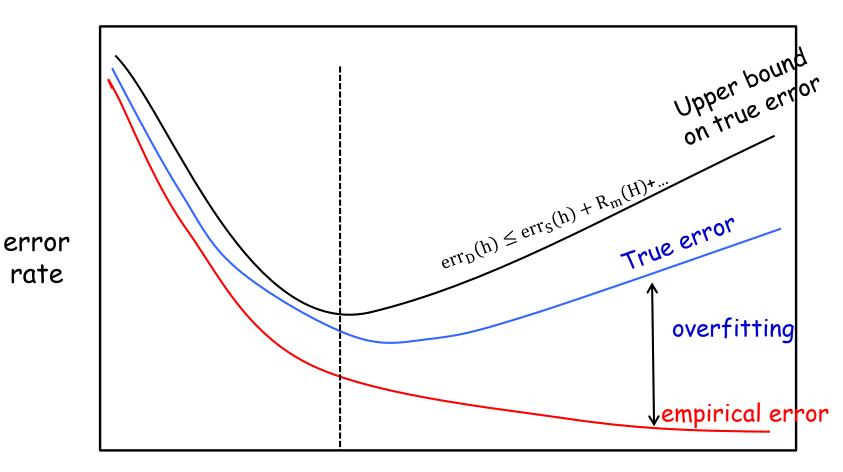
$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H)+...$$



Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \ldots$

rate



Hypothesis complexity

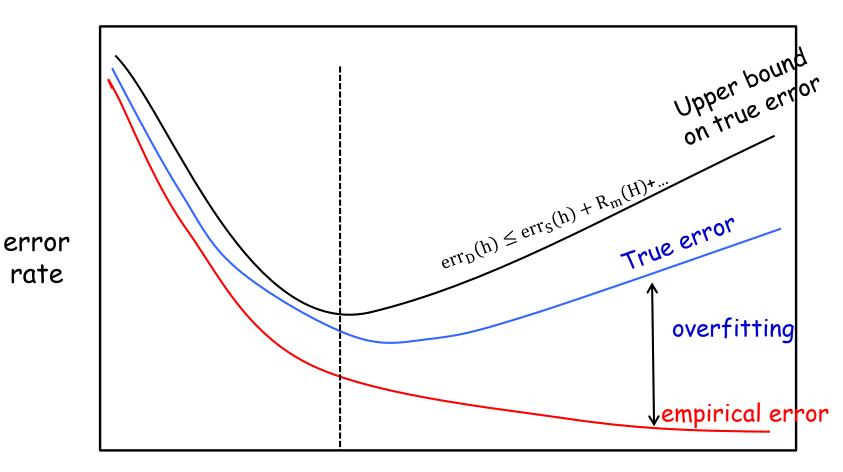
What happens if we increase m?

Black curve will stay close to the red curve for longer, everything shift to the right...

Structural Risk Minimization (SRM)

 $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \ldots$

rate



Hypothesis complexity

Structural Risk Minimization (SRM)

- $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$
- $\hat{h}_k = argmin_{h \in H_k} \{err_S(h)\}$ As k increases, $err_S(\hat{h}_k)$ goes down but complex. term goes up.
- $\hat{k} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_{k}) + \operatorname{complexity}(H_{k}) \}$ Output $\hat{h} = \hat{h}_{\hat{k}}$

```
Claim: W.h.p., \operatorname{err}_{D}(\hat{h}) \leq \min_{k^* \min_{h^* \in H_{k^*}}} [\operatorname{err}_{D}(h^*) + 2\operatorname{complexity}(H_{k^*})]
```

Proof:

- We chose \hat{h} s.t. $err_s(\hat{h}) + complexity(H_{\hat{k}}) \le err_S(h^*) + complexity(H_{k^*})$.
- Whp, $err_D(\hat{h}) \le err_s(\hat{h}) + complexity(H_{\hat{k}})$.
- Whp, $err_S(h^*) \le err_D(h^*) + complexity(H_{k^*})$.

Techniques to Handle Overfitting

- Structural Risk Minimization (SRM). $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \cdots$ Minimize gener. bound: $\hat{h} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_S(\hat{h}_k) + \operatorname{complexity}(H_k) \}$
 - Often computationally hard....
 - Nice case where it is possible: M. Kearns, Y. Mansour, ICML'98, "A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization"
- Regularization: general family closely related to SRM
 - E.g., SVM, regularized logistic regression, etc.,
 - minimizes expressions of the form: $err_S(h) + \lambda ||h||^2$

Some norm when H is a vector space; e.g., L₂ norm

Cross Validation:

Picked through cross validation

 Hold out part of the training data and use it as a proxy for the generalization error

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H [exam question!].
- Shattering, VC dimension as measure of complexity, Sauer's lemma, form of the VC bounds (upper and lower bounds).
- Rademacher Complexity.
- · Model Selection, Structural Risk Minimization.