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Sample Complexity for Function 
Approximation. Model Selection.



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: logistic regression, SVM, Adaboost, etc.



Labeled Examples  

PAC/SLT models for Supervised Classification
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Expert / Oracle
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Alg.outputs

Distribution D on X

c* : X ! Y
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• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X
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• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

• Fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with S (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Prob. over different 
samples of m 
training examples

Linear in 1/𝜖

Realizable Case



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

E.g., H= linear separators in Rd

Sample complexity linear in d

So, if double the number of features, then I only need 
roughly twice the number of samples to do well.
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VCdim(H)= d+1



Sample Complexity: Uniform Convergence

Agnostic Case
Empirical Risk Minimization (ERM)

• Output: Find h in H with smallest errS(h)

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable]



Sample Complexity: Finite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h +
1

2m
ln (2 H ) + ln

1

𝛿
.

With prob. at least 1 − 𝛿, for all h ∈ H:

1/𝜖2 dependence [as opposed to 1/𝜖

for realizable], but get for 
something stronger.
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Sample Complexity: Infinite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
.

With prob. at least 1 − 𝛿, for all h ∈ H:



VCdimension Generalization Bounds

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
.E.g.,

VC bounds: distribution independent bounds 

• Generic: hold for any concept class and any distribution.

• Might be very loose specific distr. that are more 
benign than the worst case….

• Hold only for binary classification;  we want bounds for 
fns approximation  in general (e.g., multiclass classification and 

regression).

[nearly tight in the WC over choice of D]



Rademacher Complex: Binary classification

Theorem: For any H, any distr. D, w.h.p. ≥ 1 − 𝛿 all h ∈ H satisfy:

Fact:

So, by Sauer’s lemma, RS F ≤
2dln

em

d

m
RS F ≤

ln 2|H[S]|

m

errD h ≤ errS h +
2dln

em
d

m
+ 3

ln 2/δ

2m

Many more uses!!! Margin bounds for SVM, boosting, 
regression bounds, etc.

errD h ≤ errS h + Rm H + 3
ln 2/δ

2m
.

generalization bound

H = {h: X → Y} hyp. space (e.g., lin. sep) F= L(H), d=VCdim(H):



Can we use our bounds for 
model selection?



True Error, Training Error, Overfitting

error

complexity

train error

generalization
error

errD h ≤ errS h + Rm H +…

Model selection: trade-off between decreasing training error and 
keeping H simple.



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 



What happens if we increase m?

Black curve will stay close to the red curve for 
longer, everything shift to the right…



Structural Risk Minimization (SRM)

error 
rate

Hypothesis complexity

empirical error

overfitting

𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 



Structural Risk Minimization (SRM)

As k increases, errS ෠hk goes down but complex. term goes up.

• 𝐻1 ⊆ 𝐻2 ⊆ 𝐻3 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

• ෠hk = argminh∈Hk
{errS h }

• ෠𝑘 = argmink≥1{errS ෠hk + complexity(Hk)}

Output ෠ℎ = ෠ℎ෠𝑘

Claim: W.h.p., errD ෠h ≤ mink∗minh∗∈Hk∗
errD h∗ + 2complexity Hk∗

Proof:
• We chose ෠h s.t. errs ෠h + complexity H෡k ≤ errS h∗ + complexity(Hk∗).

• Whp, errD ෠h ≤ errs ෠h + complexity H෡k .

• Whp, errS h∗ ≤ errD h∗ + complexity Hk∗ .



Techniques to Handle Overfitting

• Cross Validation: 

• Structural Risk Minimization (SRM).

• Regularization:

Minimize gener. bound:

• minimizes expressions of the form: errS h + λ h
2

• E.g., SVM, regularized logistic regression, etc.

• Hold out part of the training data and use it as a proxy for the 
generalization error

෠ℎ = argmink≥1{errS ෠hk + complexity(Hk)}

𝐻1 ⊆ 𝐻2 ⊆ ⋯ ⊆ 𝐻𝑖 ⊆… 

Some norm when H 
is a vector space; 
e.g., L2 norm

Picked through cross validation

general family closely related to SRM

• Often computationally hard….

• Nice case where it is possible: M. Kearns, Y. Mansour, ICML’98, “A Fast, Bottom-Up 
Decision Tree Pruning Algorithm with Near-Optimal Generalization” 



What you should know

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds (upper and lower 

bounds).

• Notion of sample complexity.

• Understand reasoning behind the simple sample 
complexity bound for finite H [exam question!].

• Model Selection, Structural Risk Minimization.

• Rademacher Complexity.


