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Two Core Aspects of Machine Learning

[Algor'i’rhm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization ] (Labeled) Data

Confidence for rule effectiveness on future data.



PAC/SLT models for Supervised Classification
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x;,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target ¢
- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h. <

* Goal: h has small error over D. _ -
I X
errp(h) = Pr (h(x) # c*(x)) nstance space
xN

« Fix hypOThCSiS space H [whose complexity is not too large]
« Realizable: ¢* € H.

« Agnostic: ¢* “close 10" H.



Sample Complexity for Supervised Learning
Realizable Case

Consistent Learner
« TInput: S: (xq,c*(x)),..., (X,,*(X,))
* Output: Find h in H consistent with S (if one exits).

Theorem Prob. over different

IN] samples of m
m ‘n(|H|) TIn{3 fraining examples
labeled examples are sufﬂoent%a with prob 1—90)all h € H with

errp(h) > & have errg(h) > 0.

Linear in 1/¢

T heorem

1
m = O([ = W Cdim(H) log ( ) + log (5)])
labeled examples are sufficient so that with probab. 1 -4, all h € H

with errp(h) > ¢ have errg(h) > 0.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem
1 _ 1 1
m= O (— [VC’dzm(H) 09 (—) + log (-)D
£ € )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators inRY  m = 0O Gg G) + log (%)D

VCdim(H)= d+1

; Sample complexity linear in d
+

So, if double the number of features, then I only need
roughly twice the number of samples to do well.



Sample Complexity: Uniform Convergence
Aghostic Case

Empirical Risk Minimization (ERM)
Input: Si (xq,c*(x)),..., (X.c* (X))

* Output: Find h in H with smallest errg(h)

m z@m(wn +n (2]

labeled examples are sufficienfk.t. with probab. > 1 -4, all h € H
have |errp(h) —errg(h)| < e.

T heorem

1/€% dependence [as opposed

tol/e for realizable]
T heorem

m = O@[VCdz‘m(H) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with |errp(h) —errg(h)| < e.



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

1/e* dependence as opposed to 1/¢
Theorem for realizable], but 961’ fOI"

> : {In(|H|) Tn (?)] something stronger.
labeled examples are sufficient s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

2) Statistical Learning Theory style:

\/% as opposed fo % for
With prob. at least 1 — &, for all h € H: realizable

(. o /1N )\
errp(h) < errg(h) +@1 (Z[H]) + In \EU>




Sample Complexity: Infinite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).
Theorem

1 1
=0 (2 [vedmn) +109 (1))
£ )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with |errp(h) —errg(h)| < e.

2) Statistical Learning Theory style:

With prob. at least 1 — ¢, for all h € H:

errp(h) < errg(h) + O ( \/ ﬁ (VCdim(H) In (VC deiz (H)) + In (%)))




VCdimension Generalization Bounds

Eg.. errp(h) <errg(h)+0 <\/ﬁ (VCdim(H) In (Vcdir;(m) + In (%)))

VC bounds: distribution independent bounds

@ + Generic: hold for any concept class and any distribution.
- [nearly tight in the WC over choice of D]

@

.@&7 * Might be very loose specific distr. that are more
=@  benign than the worst case....

* Hold only for binary classification; we want bounds for
fns approximation in general (e.g., multiclass classification and
regression).



Rademacher Complex: Binary classification
Fact: H = {h: X - Y} hyp. space (eg. lin. sep) F= L(H), d=VCdim(H):

em

ln(le[S]D n
Rs(F) < \/ So, by Sauer's lemma, Rg(F) < 2an()

m m

Theorem: For any H, any distr. D, w.h.p. = 1 — § all h € H satisfy:

errp(h)< errg(h) + R,(H) + 3

N
N
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generalization bound

Many more uses!ll Margin bounds for SVM, boosting,
regression bounds, etc.



Can we use our bounds for */Tg |
model selection? \v



True Error, Training Error, Overfitting

Model selection: trade-off between decreasing training error and
keeping H simple.

error

errp(h) < errg(h) + R,(H)+...

train error

generalization
error

complexity



Structural Risk Minimization (SRM)
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What happens if we increase m?

Black curve will stay close to the red curve for
longer, everything shift to the right...



Structural Risk Minimization (SRM)
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Structural Risk Minimization (SRM)

® ngHng3g’ngg

¢ Ry = argmingey, {errs(h))

As k increases, errg(hy) goes down but complex. term goes up.

° ie = argmink21{err5(ﬁk) + CompleXItY(Hk)}
Output h = h;

Claim: W.h.p., errp (ﬁ) < min-miny-ey, . [errp(h*) + 2Zcomplexity(Hy-)]

Proof:
« We chose h s.t. err (ﬁ) + Complexity(HE) < errg(h*) + complexity(Hy+).

«  Whp, errp(h) < errg(h) + complexity(Hg).
« Whp, errg(h*) < errp(h*) + complexity(Hy+).



Techniques to Handle Overfitting

« Structural Risk Minimization (SRM). H, cH,c - cH; c..
Minimize gener. bound: h = argminys,{errg(hy) + complexity(Hy)}

« Often computationally hard....

* Nice case where it is possible: M. Kearns, Y. Mansour, ICML'98, “A Fast, Bottom-Up
Decision Tree Pruning Algorithm with Near-Optimal Generalization"

* Regularization: general family closely related to SRM
« E.g.,, SVM, regularized logistic regression, e’rc).@ﬁ2

Some nhorm when H
IS a vector space;
e.g., L, norm

« Cross Validation: Picked through cross validation

* minimizes expressions of the form: errg(h)

* Hold out part of the training data and use it as a proxy for the
generalization error



What you should know

* Notion of sample complexity.

« Understand reasoning behind the simple sample
complexity bound for finite H [exam question!].

« Shattering, VC dimension as measure of complexity,
Sauer's lemma, form of the VC bounds (upper and lower
bounds).

« Rademacher Complexity.

 Model Selection, Structural Risk Minimization.



