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Sample complex.
Â

Sample Complexity for Function 
Approximation. Model Selection.

Structural risk minimization



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: logistic regression, SVM, Adaboost, etc.



Labeled Examples  

PAC/SLT models for Supervised Classification

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
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• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X
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• Realizable: 𝑐∗ ∈ 𝐻. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

• Fix hypothesis space H [whose complexity is not too large]

• Agnostic: 𝑐∗ “close to” H. 



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with S (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Prob. over different 
samples of m 
training examples

Linear in 1/𝜖

Realizable Case



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

E.g., H= linear separators in Rd

Sample complexity linear in d

So, if double the number of features, then I only need 
roughly twice the number of samples to do well.
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VCdim(H)= d+1



Sample Complexity: Uniform Convergence

Agnostic Case
Empirical Risk Minimization (ERM)

• Output: Find h in H with smallest errS(h)

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

1/𝜖2 dependence [as opposed 
to1/𝜖 for realizable]



Sample Complexity: Finite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h +
1

2m
ln (2 H ) + ln

1

𝛿
.

With prob. at least 1 − 𝛿, for all h ∈ H:

1/𝜖2 dependence [as opposed to 1/𝜖

for realizable], but get for 
something stronger.
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Sample Complexity: Infinite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
.

With prob. at least 1 − 𝛿, for all h ∈ H:



VCdimension Generalization Bounds

errD h ≤ errS h + O
1

2m
VCdim H ln

em

VCdim H
+ ln

1

δ
.E.g.,

VC bounds: distribution independent bounds 

• Generic: hold for any concept class and any distribution.

• Might be very loose specific distr. that are more 
benign than the worst case….

• Hold only for binary classification;  we want bounds for 
fns approximation  in general (e.g., multiclass classification and 

regression).

[nearly tight in the WC over choice of D]



Rademacher Complexity Bounds

• Distribution/data dependent. Tighter for nice distributions.

• Apply to general classes of real valued functions & can be used to 
recover the VCbounds for supervised classification.

[Koltchinskii&Panchenko 2002]

See “Introduction to Statistical Learning Theory”
O. Bousquet, S. Boucheron, and G. Lugosi.

• Prominent technique for generalization bounds in last decade.



Rademacher Complexity
Problem Setup

• F be a class of functions from Z to [0,1]

• S = {z1, … , zm} be i.i.d. from  D|Z

• A space Z and a distr. D|Z

Want a high prob. uniform convergence bound, all f ∈ F satisfy:

ED f z ≤ ES f z + term(complexity of F, niceness of D/S)

E.g.,  Z = X × Y, Y = {−1,1}, H = {h: X → Y} hyp. space (e.g., lin. sep)

Then E𝑧~𝐷 lh z = errD(h) and ES lh z = errS(h). 

F = L(H) = {lh: X × Y → [0,1]}, where lh 𝑧 = x, y = 1 h x ≠𝑦

What measure of complexity?

[Loss fnc induced by h 
and 0/1 loss]

errD h ≤ errS h + term(complexity of H, niceness of D/S)

General discrete Y



Rademacher Complexity

So,  taking the expectation over 𝜎 this measures the ability of 
class F to fit random noise.

sup measures for any given set S and Rademacher vector 𝜎, 
the max correlation between f zi and 𝜎𝑖 for all f ∈ F

The empirical Rademacher complexity of F is: 

෡Rm(F) = Eσ1,…,σm sup
f∈F

1

m
෍

i

σif zi

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}. 

Rm F = ES[෡Rm(F)]The Rademacher complexity of F is: 

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1]

Let S = {z1, … , zm} be i.i.d from  D|Z. 



Rademacher Complexity

The empirical Rademacher complexity of F is: 

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}. 

Rm F = ES[෡Rm(F)]The Rademacher complexity of F is: 

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1]

Let S = {z1, … , zm} be i.i.d from  D|Z. 

Whp all f ∈ F satisfy:

ED f z ≤ ES f z + 2Rm F +
ln 2/δ

2m

ED f z ≤ ES f z + 2 ෡Rm F + 3
ln 1/δ

m

Theorem: Useful if it decays with m.

෡Rm(F) = Eσ1,…,σm sup
f∈F

1

m
෍

i

σif zi



Rademacher Complexity

The empirical Rademacher complexity of F is: 

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}. 

Rm F = ES[෡Rm(F)]The Rademacher complexity of F is: 

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1]

Let S = {z1, … , zm} be i.i.d from  D|Z. 

E.g.,:

2) F={all 0/1 fnc}, then  ෡Rm(F) = 1/2

1) F={f}, then ෡Rm(F) = 0

[To maximize set f(zi) = 1 when σi = 1 and f(zi) = 0 when σi = −1. Then quantity 
inside expectation is #1′𝑠 ∈ 𝜎, which is m/2 by linearity of expectation.]

[Linearity of expectation: each σif(zi) individually has expectation 0.]

෡Rm(F) = Eσ1,…,σm sup
f∈F

1

m
෍

i

σif zi



Rademacher Complexity

The empirical Rademacher complexity of F is: 

෡Rm(F) = Eσ1,…,σm sup
f∈F

1

m
෍

o

σif zi

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}. 

Rm F = ES[෡Rm(F)]The Rademacher complexity of F is: 

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1]

Let S = {z1, … , zm} be i.i.d from  D|Z. 

E.g.,:

2) F={all 0/1 fnc}, then  ෡Rm(F) = 1/2

1) F={f}, then ෡Rm(F) = 0

3) F=L(H), H=binary classifiers then: RS F ≤
ln 2|H[S]|

m

RS F ≤
ln 2|H|

m
H finite:



Rademacher Complexity Bounds

The empirical Rademacher complexity of F is: 

෡Rm(F) = Eσ1,…,σm sup
f∈F

1

m
෍

o

σif zi

where 𝜎𝑖 are i.i.d. Rademacher variables chosen uniformly from {−1,1}. 

Rm F = ES[෡Rm(F)]The Rademacher complexity of F is: 

Space Z and a distr. D|Z; F be a class of functions from Z to [0,1]

Let S = {z1, … , zm} be i.i.d from  D|Z. 

Data dependent bound!

Bound expectation of each f in 
terms of its empirical average 
& the RC of F

Proof uses Symmetrization and Ghost Sample Tricks! (same as for VC bound)

Whp all f ∈ F satisfy:

ED f z ≤ ES f z + 2Rm F +
ln 2/δ

2m

Theorem:

ED f z ≤ ES f z + 2 ෡Rm F + 3
ln 1/δ

m



Rademacher Complex: Binary classification

Theorem: For any H, any distr. D, w.h.p. ≥ 1 − 𝛿 all h ∈ H satisfy:

Fact:

So, by Sauer’s lemma, RS F ≤
2dln

em

d

m
RS F ≤

ln 2|H[S]|

m

errD h ≤ errS h +
2dln

em
d

m
+ 3

ln 2/δ

2m

Many more uses!!! Margin bounds for SVM, boosting, 
regression bounds, deep nets bounds etc.

errD h ≤ errS h + Rm H + 3
ln 2/δ

2m
.

generalization bound

H = {h: X → Y} hyp. space (e.g., lin. sep) F= L(H), d=VCdim(H):



What you should know

• Shattering, VC dimension as measure of complexity, 
Sauer’s lemma, form of the VC bounds

• Notion of sample complexity.

• Rademacher Complexity.


