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Structural risk minimization




Two Core Aspects of Machine Learning

[Algor'i’rhm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization ] (Labeled) Data

Confidence for rule effectiveness on future data.



PAC/SLT models for Supervised Classification
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x;,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target ¢
- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h. <

* Goal: h has small error over D. _ -
I X
errp(h) = Pr (h(x) # c*(x)) nstance space
xN

« Fix hypOThCSiS space H [whose complexity is not too large]
« Realizable: ¢* € H.

« Agnostic: ¢* “close 10" H.



Sample Complexity for Supervised Learning
Realizable Case

Consistent Learner
« TInput: S: (xq,c*(x)),..., (X,,*(X,))
* Output: Find h in H consistent with S (if one exits).

Theorem Prob. over different

IN] samples of m
m ‘n(|H|) TIn{3 fraining examples
labeled examples are sufﬂoent%a with prob 1—90)all h € H with

errp(h) > & have errg(h) > 0.

Linear in 1/¢

T heorem

1
m = O([ = W Cdim(H) log ( ) + log (5)])
labeled examples are sufficient so that with probab. 1 -4, all h € H

with errp(h) > ¢ have errg(h) > 0.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem
1 _ 1 1
m= O (— [VC’dzm(H) 09 (—) + log (-)D
£ € )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators inRY  m = 0O Gg G) + log (%)D

VCdim(H)= d+1

; Sample complexity linear in d
+

So, if double the number of features, then I only need
roughly twice the number of samples to do well.



Sample Complexity: Uniform Convergence
Aghostic Case

Empirical Risk Minimization (ERM)
Input: Si (xq,c*(x)),..., (X.c* (X))

* Output: Find h in H with smallest errg(h)

m z@m(wn +n (2]

labeled examples are sufficienfk.t. with probab. > 1 -4, all h € H
have |errp(h) —errg(h)| < e.

T heorem

1/€% dependence [as opposed

tol/e for realizable]
T heorem

m = O@[VCdz‘m(H) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with |errp(h) —errg(h)| < e.



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

1/e* dependence as opposed to 1/¢
Theorem for realizable], but 961’ fOI"

> : {In(|H|) Tn (?)] something stronger.
labeled examples are sufficient s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

2) Statistical Learning Theory style:

\/% as opposed fo % for
With prob. at least 1 — &, for all h € H: realizable

(. o /1N )\
errp(h) < errg(h) +@1 (Z[H]) + In \EU>




Sample Complexity: Infinite Hypothesis Spaces

Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).
Theorem

1 1
=0 (2 [vedmn) +109 (1))
£ )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with |errp(h) —errg(h)| < e.

2) Statistical Learning Theory style:

With prob. at least 1 — ¢, for all h € H:

errp(h) < errg(h) + O ( \/ ﬁ (VCdim(H) In (VC deiz (H)) + In (%)))




VCdimension Generalization Bounds

Eg.. errp(h) <errg(h)+0 <\/ﬁ (VCdim(H) In (Vcdir;(m) + In (%)))

VC bounds: distribution independent bounds

@ + Generic: hold for any concept class and any distribution.
- [nearly tight in the WC over choice of D]

@

.@&7 * Might be very loose specific distr. that are more
=@  benign than the worst case....

* Hold only for binary classification; we want bounds for
fns approximation in general (e.g., multiclass classification and
regression).



Rademacher Complexity Bounds

[Koltchinskii&Panchenko 2002]

 Distribution/data dependent. Tighter for nice distributions.

« Apply to general classes of real valued functions & can be used to
recover the VCbounds for supervised classification.

* Prominent technique for generalization bounds in last decade.

See "Introduction to Statistical Learning Theory”
O. Bousquet, S. Boucheron, and 6. Lugosi.



Rademacher Complexity
Problem Setup

* Aspace Zand adistr. Dz
 F beaclass of functions from Z to [0,1]

e S = {z4,...,2} bei.id. from Dz

Want a high prob. uniform convergence bound, all f € F satisfy:

Eplf(z)] < Eglf(z)] -@omplexity of F, niceness@

What measure of complexity?

General discrete Y

Eg., Z=XxY,Y={-11}, H={h: X - Y} hyp. space (eg., lin. sep)

F=L(H) = {ln:XxY - [0,1]}, wherel,(z = (x,¥)) = L=y
[Loss fnc induced by h
Then E,_p[l,(z)] = errp(h) and Eg[l,(z)] = errg(h). and 0/1 loss]

errp|h] < errg[h] + term(complexity of H, niceness of D/S)



Rademacher Complexity

Space Z and a distr. D|z: F be a class of functions from Z to [0,1]
LetS = {z4,..,zn} be i.i.d from Dz.

The empirical Rademacher complexity of F is:

~ 1
Ri(F) = Eoy...op [SUP Ezcﬂzj)‘

where o; are i.i.d. Rademacher variables chosen uniformly from {—1,1}.

The Rademacher complexity of F is: R, (F) = Eg[Ry,(F)]

sup measures for any given set S and Rademacher vector o,
the max correlation between f(z;) and o; for all f€ F

So, taking the expectation over o this measures the ability of
class F to fit random noise.



Rademacher Complexity

Space Z and a distr. D|z: F be a class of functions from Z to [0,1]
LetS = {z4,..,zn} be i.i.d from Dz.

The empirical Rademacher complexity of F is:

—~ 1
Rn(F) = Ecl,...,cm lsup 62 Gif(zi)]

feF
where o; are i.i.d. Rademacher variables chosen uniformly from {—1,1}.

The Rademacher complexity of Fis: R, (F) = Eg[Ry,(F)]

Theorem: Whp all f € F satisfy: Useful if it decays with m.

In(2/6)

2m

In(1/3)

m

Eplf(z)] < Eslf(z)] +

Eplf(2)] < Es[f(2)] + 2 R (F) + 3



Rademacher Complexity

Space Z and a distr. D|z: F be a class of functions from Z to [0,1]
LetS = {z4,..,zn} be i.i.d from Dz.

The empirical Rademacher complexity of F is:

—~ 1
Rn(F) = Ecl,...,cm lsflellg EZ 0if(z;)

where g; are i.i.d. Rademacher variables chosen uniformly from {—1,1}.

The Rademacher complexity of Fis: R, (F) = Eg[Ry,(F)]
E.g..
1) F={f}, then R, (F) =0

[Linearity of expectation: each oif(z;) individually has expectation O.]

2) F={all 0/1 fnc}, then R (F) =1/2

[To maximize set f(z;) = 1 when o; = 1 and f(z;) = 0 when o; = —1. Then quantity
inside expectation is #1's € o, which is m/2 by linearity of expectation.]



Rademacher Complexity

Space Z and a distr. D|z: F be a class of functions from Z to [0,1]
LetS = {z4,..,zn} be i.i.d from Dz.

The empirical Rademacher complexity of F is:

—~ 1
Rn(F) = Ecl,...,cm lsflellg) Ez oif(z;)

where o; are i.i.d. Rademacher variables chosen uniformly from {—1,1}.

The Rademacher complexity of Fis: R, (F) = Eg[Ry,(F)]

Eg..

1) F={f}, then R, (F) = 0

2) F={all 0/1 fnc}, then R, (F) =1/2

3) F=L(H), H=binary classifiers then: Rg(F) < \/ln(zli[s]l)

m

H finite:  Rg(F) < Jln(lel)



Rademacher Complexity Bounds

Space Z and a distr. D|z: F be a class of functions from Z to [0,1]
LetS = {z4,..,zn} be i.i.d from Dz.

The empirical Rademacher complexity of F is:

—~ 1
Renl®) = Bo o lelEllQ EZ O'if(Zi)‘
where o; are i.i.d. Rademacher variables chosen uniformly from {—1,1}.

The Rademacher complexity of Fis: R, (F) = Eg[Ry,(F)]

Theorem: Whp all f € F satisfy:  Dafa dependent bound!

In(2/8) Bound expectation of each f in
Eplf(z)] < Eg[f(z)] + 2R, (F) + terms of its empirical average
2m & the RC of F

Ep[f(z)] < Es[f(z)] + 2 R, (F) + 3 In(1/6)

Proof uses Symmetrization and Ghost Sample Tricks! (same as for vc bound)



Rademacher Complex: Binary classification
Fact: H = {h: X - Y} hyp. space (eg. lin. sep) F= L(H), d=VCdim(H):

em

In(2|H[S]|) n
Rs(F) < \/ 1] So, by Sauer's lemma, Rg(F) < 2an()

m m

Theorem: For any H, any distr. D, w.h.p. = 1 — § all h € H satisfy:

errp(h)< errg(h) + R,(H) + 3

N
N

,l 275
n(Z/6
2m >
2din () I
g i
errp(hX< errg(h) + n\1 d/ + 3 Il\::rg
A

\

generalization bound

Many more uses!ll Margin bounds for SVM, boosting,
regression bounds, deep nets bounds etc.



What you should know

* Notion of sample complexity.

« Shattering, VC dimension as measure of complexity,
Sauer's lemma, form of the VC bounds

« Rademacher Complexity.



