Sample Complexity for Function Approximation. Model Selection.

Maria-Florina (Nina) Balcan 09/24/2018

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

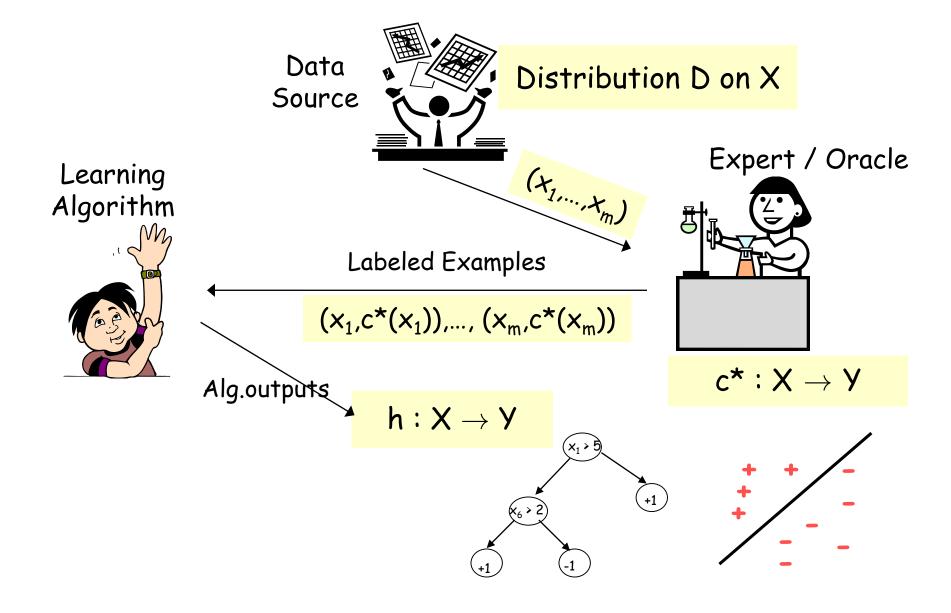
• E.g.: logistic regression, SVM, Adaboost, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

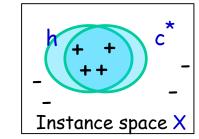
PAC/SLT models for Supervised Classification



PAC/SLT models for Supervised Learning

- X feature/instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples drawn i.i.d. from D and labeled by target c*
 - labels $\in \{-1,1\}$ binary classification
- Algo does optimization over S, find hypothesis h.
- Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$



- Fix hypothesis space H [whose complexity is not too large]
 - Realizable: $c^* \in H$.
 - Agnostic: c^* "close to" H.

Sample Complexity for Supervised Learning Realizable Case

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with 5 (if one exits).

Theorem

$$m \ge \left(\frac{1}{\varepsilon}\right) \ln(|H|) + \ln\left(\frac{1}{\delta}\right)$$
 samples of m training examples

Prob. over different

labeled examples are sufficient so that with prob. $1-\delta$ all $h\in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Linear in $1/\epsilon$

Theorem

$$m = O\left(\frac{1}{\varepsilon} VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in \mathbb{R}^d VCdim(H)=d+1

$$m = O\left(\frac{1}{\varepsilon} \left[d \log \left(\frac{1}{\varepsilon}\right) + \log \left(\frac{1}{\delta}\right) \right] \right)$$

Sample complexity linear in d

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Sample Complexity: Uniform Convergence Agnostic Case

Empirical Risk Minimization (ERM)

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H with smallest err_s(h)

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

labeled examples are sufficient s.t. with probab. $\geq 1-\delta$, all $h\in H$ have $|err_D(h)-err_S(h)|<\varepsilon$. 1/ ϵ^2 dependence [as opposed]

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

to $1/\epsilon$ for realizable

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable], but get for something stronger.

labeled examples are sufficient s.t. with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\sqrt{\frac{1}{m}}$$
 as opposed to $\frac{1}{m}$ for realizable

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{1}{2m} \left(\ln \left(2|H| \right) + \ln \left(\frac{1}{\delta} \right) \right)}.$$

Sample Complexity: Infinite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). Theorem

$$m = O\left(\frac{1}{\varepsilon^2}\left[VCdim(H) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$err_{D}(h) \leq err_{S}(h) + O\left(\sqrt{\frac{1}{2m}\left(VCdim(H)\ln\left(\frac{em}{VCdim(H)}\right) + \ln\left(\frac{1}{\delta}\right)\right)}\right).$$

VCdimension Generalization Bounds

$$\text{E.g.,} \quad \operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + O\left(\sqrt{\frac{1}{2m}}\left(\operatorname{VCdim}(H)\ln\left(\frac{\operatorname{em}}{\operatorname{VCdim}(H)}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right).$$

VC bounds: distribution independent bounds

Generic: hold for any concept class and any distribution.

[nearly tight in the WC over choice of D]

- Might be very loose specific distr. that are more benign than the worst case....
- Hold only for binary classification; we want bounds for fns approximation in general (e.g., multiclass classification and regression).

Rademacher Complexity Bounds

[Koltchinskii&Panchenko 2002]

- Distribution/data dependent. Tighter for nice distributions.
- Apply to general classes of real valued functions & can be used to recover the VCbounds for supervised classification.
- Prominent technique for generalization bounds in last decade.

See "Introduction to Statistical Learning Theory" O. Bousquet, S. Boucheron, and G. Lugosi.

Problem Setup

- A space Z and a distr. $D_{|Z}$
- F be a class of functions from Z to [0,1]
- $S = \{z_1, ..., z_m\}$ be i.i.d. from $D_{|Z|}$

Want a high prob. uniform convergence bound, all $f \in F$ satisfy:

```
E_D[f(z)] \le E_S[f(z)] + term(complexity of F, niceness of D/S)
```

What measure of complexity?

General discrete Y

E.g.,
$$Z=X\times Y, Y=\{-1,1\}, \qquad H=\{h\colon X\to Y\}$$
 hyp. space (e.g., lin. sep)
$$F=L(H)=\{l_h\colon X\times Y\to [0,1]\}, \text{ where } l_h\big(z=(x,y)\big)=1_{\{h(x)\neq y\}}$$
 [Loss fnc induced by hand $E_{z\sim D}[l_h(z)]=\operatorname{err}_D(h)$ and $E_S[l_h(z)]=\operatorname{err}_S(h)$.
$$\operatorname{err}_D[h]\leq \operatorname{err}_S[h]+\operatorname{term}(\text{complexity of } H, \text{niceness of } D/S)$$

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

sup measures for any given set S and Rademacher vector σ , the max correlation between $f(z_i)$ and σ_i for all $f \in F$

So, taking the expectation over σ this measures the ability of class F to fit random noise.

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

$$\begin{aligned} &\text{Theorem:} & \text{Whp all } f \in F \text{ satisfy:} & \text{Useful if it decays with m.} \\ & E_D[f(z)] \leq E_S[f(z)] + 2R_m(F) + \sqrt{\frac{\ln(2/\delta)}{2m}} \\ & E_D[f(z)] \leq E_S[f(z)] + 2\,\widehat{R}_m(F) + 3\sqrt{\frac{\ln(1/\delta)}{m}} \end{aligned}$$

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{i} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

E.g.,:

- 1) F={f}, then $\widehat{R}_m(F) = 0$ [Linearity of expectation: each $\sigma_i f(z_i)$ individually has expectation 0.]
- 2) F={all 0/1 fnc}, then $\widehat{R}_m(F) = 1/2$

[To maximize set $f(z_i) = 1$ when $\sigma_i = 1$ and $f(z_i) = 0$ when $\sigma_i = -1$. Then quantity inside expectation is $\#1's \in \sigma$, which is m/2 by linearity of expectation.]

Space Z and a distr. $D_{|Z}$; F be a class of functions from Z to [0,1] Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_{m}(F) = E_{\sigma_{1},...,\sigma_{m}} \left[\sup_{f \in F} \frac{1}{m} \sum_{o} \sigma_{i} f(z_{i}) \right]$$

where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

E.g.,:

- 1) F={f}, then $\widehat{R}_m(F) = 0$
- 2) F={all 0/1 fnc}, then $\widehat{R}_m(F) = 1/2$
- 3) F=L(H), H=binary classifiers then: $R_S(F) \le \sqrt{\frac{\ln(2|H[S]|)}{\frac{m}{m}}}$ H finite: $R_S(F) \le \sqrt{\frac{\ln(2|H|S)|}{m}}$

Rademacher Complexity Bounds

Space Z and a distr. D_{1Z} ; F be a class of functions from Z to [0,1]Let $S = \{z_1, ..., z_m\}$ be i.i.d from $D_{|Z}$.

The empirical Rademacher complexity of F is:

$$\widehat{R}_m(F) = E_{\sigma_1,\dots,\sigma_m} \left[\sup_{f \in F} \frac{1}{m} \sum_o \sigma_i f(z_i) \right]$$
 where σ_i are i.i.d. Rademacher variables chosen uniformly from $\{-1,1\}$.

The Rademacher complexity of F is: $R_m(F) = E_S[\widehat{R}_m(F)]$

Theorem: Whp all $f \in F$ satisfy: Data dependent bound!

$$\begin{split} E_D[f(z)] &\leq E_S[f(z)] + 2R_m(F) + \sqrt{\frac{ln(2/\delta)}{2m}} \\ E_D[f(z)] &\leq E_S[f(z)] + 2\,\widehat{R}_m(F) + \sqrt{\frac{ln(1/\delta)}{2m}} \end{split} \quad \begin{array}{l} \text{Bound expectation of each f in terms of its empirical average \& the RC of F} \\ \frac{ln(1/\delta)}{m} \end{split}$$

Proof uses Symmetrization and Ghost Sample Tricks! (same as for VC bound)

Rademacher Complex: Binary classification

Fact: $H = \{h: X \to Y\}$ hyp. space (e.g., lin. sep) F = L(H), d = VCdim(H):

$$R_S(F) \leq \sqrt{\frac{\ln(2|H[S]|)}{m}} \qquad \text{So, by Sauer's lemma, } R_S(F) \leq \sqrt{\frac{2d\ln\left(\frac{em}{d}\right)}{m}}$$

Theorem: For any H, any distr. D, w.h.p. $\geq 1 - \delta$ all $h \in H$ satisfy:

$$\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$$
 $\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{2\dim(\frac{\operatorname{em}}{d})}{m}} + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$

generalization bound

Many more uses!!! Margin bounds for SVM, boosting, regression bounds, deep nets bounds etc.

What you should know

Notion of sample complexity.

Shattering, VC dimension as measure of complexity,
 Sauer's lemma, form of the VC bounds

Rademacher Complexity.