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PCA and Kernel PCA

Learning Representations.

Dimensionality Reduction. 



• High-Dimensions = Lot of Features

Document classification

Features per document = 

thousands of words/unigrams

millions of bigrams,  contextual 

information

Surveys - Netflix

480189 users x 17770 movies

Big & High-Dimensional Data



• High-Dimensions = Lot of Features

MEG Brain Imaging

120 locations x 500 time points 

x 20 objects

Big & High-Dimensional Data

Or any high-dimensional image data



• Useful to learn lower dimensional 
representations of the data.

• Big & High-Dimensional Data.



PCA, Kernel PCA, ICA: Powerful unsupervised learning 
techniques for extracting hidden (potentially lower 
dimensional) structure from high dimensional datasets.

Learning Representations

Useful for:

• Visualization 

• Further processing by machine learning algorithms

• More efficient use of resources 
(e.g., time, memory, communication)

• Statistical: fewer dimensions  better generalization

• Noise removal (improving data quality)



Principal Component Analysis (PCA)

What is PCA: Unsupervised technique for extracting 
variance structure from high dimensional datasets.

• PCA  is an orthogonal projection or transformation  of the data 
into a (possibly lower dimensional) subspace so that the variance 
of the projected data is maximized.



Principal Component Analysis (PCA)

Both features are relevant Only one relevant feature

Question: Can we transform the features so that we only need to 
preserve one latent feature? 

Intrinsically lower dimensional than the 
dimension of the ambient space.

If we rotate data, again only one 
coordinate is more important.



Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective representation 
of the data.

Identifying the axes is known as Principal Components Analysis, and 
can be obtained by using classic matrix computation tools (Eigen or 
Singular Value Decomposition).



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions 
that capture most of the variance in the data.

xi v

v ⋅ xi

• Projection of data points along first PC 
discriminates data most along any one direction 
(pts are the most spread out when we project the data on 
that direction compared to any other directions).

||v||=1, Point xi (D-dimensional vector)

Projection of xi onto v is v ⋅ xi

• First PC – direction of greatest variability in data.

Quick reminder:



Principal Component Analysis (PCA)
Principal Components (PC) are orthogonal directions 
that capture most of the variance in the data.

xi − v ⋅ xixi

v ⋅ xi

• 1st PC – direction of greatest variability in data.

• 2nd PC – Next orthogonal (uncorrelated) direction 
of greatest variability

(remove all variability in first direction, then find next direction of 
greatest variability)

• And so on …



Principal Component Analysis (PCA)

Let v1, v2, …, vd denote the d principal components.

Wrap constraints into the 
objective function

vi ⋅ vj = 0, i ≠ j

Find vector that maximizes sample variance of projected data

and vi ⋅ vi = 1, i = j

Let X = [x1, x2, … , xn] (columns are the datapoints)

Assume data is centered (we extracted the sample mean).



Principal Component Analysis (PCA)
X XT v = λv , so v (the first PC) is the eigenvector 

of sample correlation/covariance matrix 𝑋 𝑋𝑇

Sample variance of projection v𝑇𝑋 𝑋𝑇v = 𝜆v𝑇v = 𝜆

Thus, the eigenvalue 𝜆 denotes the amount of variability 
captured along that dimension (aka amount of energy along that 

dimension).

Eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯

• The 1st PC 𝑣1 is the the eigenvector of the sample covariance matrix 
𝑋 𝑋𝑇 associated with the largest eigenvalue 

• The 2nd PC 𝑣2 is the the eigenvector of the sample covariance 
matrix 𝑋 𝑋𝑇 associated with the second largest eigenvalue 

• And so on …



x1

x2

• Transformed features are uncorrelated.

• So, the new axes are the eigenvectors of the matrix of sample 
correlations 𝑋 𝑋𝑇 of the data.

• Geometrically: centering followed by rotation.

Principal Component Analysis (PCA)

– Linear transformation

Key computation: eigendecomposition of 𝑋𝑋𝑇 (closely related 
to SVD of 𝑋).



Two Interpretations
So far: Maximum Variance Subspace. PCA finds vectors v such that 
projections on to the  vectors capture maximum variance in the data

Alternative viewpoint: Minimum Reconstruction Error. PCA 
finds vectors v such that projection on to the vectors yields 
minimum MSE reconstruction 

xi v

v ⋅ xi



Two Interpretations

Maximum Variance Direction: 1st PC a vector v such that projection 
on to this vector capture maximum variance in the data (out of all 
possible one dimensional projections)

Minimum Reconstruction Error: 1st PC a vector v such that 
projection on to this vector yields minimum MSE reconstruction 

xi v

v ⋅ xi

E.g., for the first component.



Why? Pythagorean Theorem

xi v

v ⋅ xi

blue2 + green2 = black2

black2 is fixed (it’s just the data)

So, maximizing blue2 is 
equivalent to minimizing green2

Maximum Variance Direction: 1st PC a vector v such that projection 
on to this vector capture maximum variance in the data (out of all 
possible one dimensional projections)

Minimum Reconstruction Error: 1st PC a vector v such that 
projection on to this vector yields minimum MSE reconstruction 

E.g., for the first component.



Dimensionality Reduction using PCA

xi v

vTxi

The eigenvalue 𝜆 denotes the amount of variability captured along 
that dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directions => 
data lies exactly on a linear subspace

Only keep data projections onto principal components with 
non-zero eigenvalues, say v1, … , vk, where k=rank(𝑋 𝑋𝑇)

Original representation Transformed representation

Data point
𝑥𝑖 = (𝑥𝑖

1, … , 𝑥𝑖
𝐷)

projection
(𝑣1 ⋅ 𝑥

𝑖 , … , 𝑣𝑑 ⋅ 𝑥
𝑖)

D-dimensional vector d-dimensional vector



Dimensionality Reduction using PCA
In high-dimensional problems, data sometimes lies near a linear 
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues
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Can ignore the components of smaller significance. 

Might lose some info, but if eigenvalues are small, do not lose much



Can represent a face image using just 15 numbers! 



• PCA provably useful before doing k-means clustering and also 
empirically useful. E.g.,



PCA Discussion
Strengths
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Eigenvector method

No tuning of the parameters

No local optima

Weaknesses

Limited to second order statistics

Limited to linear projections



Kernel PCA (Kernel Principal 
Component Analysis)

Useful when data  lies on or near a low d-
dimensional linear subspace of the 𝜙-
space associated with a kernel



Properties of PCA
• Given a set of 𝑛 centered observations 

𝑥𝑖 ∈ 𝑅𝐷,  1st PC is the direction that 
maximizes the variance

– 𝐶𝑣1 = 𝜆𝑣1(of maximum 𝜆)

– 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛

– 𝑣1 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣 =1
1

𝑛
σ𝑖 𝑣

⊤𝑥𝑖
2

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣 =1

1

𝑛
𝑣⊤𝑋𝑋⊤𝑣

• Covariance matrix 𝐶 =
1

𝑛
𝑋𝑋⊤

• 𝑣1 can be found by solving the 
eigenvalue problem:



Properties of PCA

• Covariance matrix 𝐶 =
1

𝑛
𝑋𝑋⊤is a DxD matrix

the (i,j) entry of 𝑋𝑋⊤ is the correlation of the i-th coordinate 
ofexamples with jth coordinate of examples

• To use kernels, need to use the inner-product matrix 𝑋𝑇𝑋.

• Covariance matrix 𝐶 =
1

𝑛
𝑋𝑋⊤

• Given a set of 𝑛 centered observations 
𝑥𝑖 ∈ 𝑅𝐷,  1st PC is the direction that 
maximizes the variance

– 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛

– 𝑣1 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣 =1
1

𝑛
σ𝑖 𝑣

⊤𝑥𝑖
2

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑣 =1

1

𝑛
𝑣⊤𝑋𝑋⊤𝑣



Alternative expression for PCA
• The principal component lies in the span of the data

𝑣1 =෍

𝑖

𝛼𝑘𝑥𝑖 = 𝑋𝛼

Why? 1st PC is direction of largest variance, and for any direction outside of 
the span of the data, only get more variance if we project that direction into 
the span. 

Only depends on 
the inner product     

matrix 

• Plug this in we have

𝐶𝑣1 =
1

𝑛
𝑋𝑋⊤𝑋𝛼 = 𝜆 𝑋𝛼

• Now, left-multiply the LHS and RHS by 𝑋𝑇.

1

𝑛
𝑋⊤𝑋𝑋⊤𝑋𝛼 = 𝜆𝑋⊤𝑋𝛼



Kernel PCA 

• Key Idea: Replace inner product matrix by kernel matrix

PCA: 
1

𝑛
𝑋⊤𝑋𝑋⊤𝑋𝛼 = 𝜆𝑋⊤𝑋𝛼

Let 𝐾 = 𝐾 𝑥𝑖 , 𝑥𝑗
𝑖𝑗

be the matrix of all dot-products 

in the 𝜙-space.

Kernel PCA: replace “𝑋𝑇𝑋” with 𝐾.

• Key computation: form an 𝑛 by 𝑛 kernel matrix 𝐾, and 
then perform eigen-decomposition on 𝐾. 

1

𝑛
𝐾𝐾𝛼 = 𝜆𝐾𝛼, or equivalently,  

1

𝑛
𝐾𝛼 = 𝜆 𝛼



Kernel PCA Example

27

• Gaussian RBF kernel exp −
𝑥−𝑥′

2

2𝜎2
over 2 dimensional space

• Eigenvector evaluated at a test point 𝑥 is a function 
𝑤⊤𝜙 𝑥 = σ𝑖 𝛼𝑖 < 𝜙 𝑥𝑖 , 𝜙 𝑥 > =σ𝑖 𝛼𝑖𝑘(𝑥

𝑖 , 𝑥)



What You Should Know

• Principal Component Analysis (PCA)

• Kernel PCA

• What PCA is, what is useful for.

• Both the maximum variance subspace and the 

minimum reconstruction error viewpoint.



Additional material on computing the principal 

components and ICA



Power method for computing PCs

Given matrix 𝑋 ∈ 𝑅𝐷×𝑛, compute the top eigenvector of 𝑋 𝑋𝑇

Initialize with random   ො𝑣 ∈ 𝑅𝐷

Repeat

ොv ← X XTොv

ොv ← ොv/||ොv||

Claim

Then can subtract the ො𝑣 component off of each example and 
repeat to get the next.

For any 𝜖 > 0, whp over choice of initial vector, after 𝑂
1

𝜖
log

𝑑

𝜖

iterations, we have ො𝑣𝑇𝑋𝑋𝑇 ො𝑣 ≥ 1 − 𝜖 𝜆1.



Eigendecomposition

Any symmetric matrix 𝐴 = 𝑋𝑋𝑇 is guaranteed to have an 
eigendecomposition with real eigenvalues: 𝐴 = 𝑉 Λ 𝑉𝑇.

A 
(DxD)

=

V
(DxD)

Λ
(DxD)

𝜆1
𝜆2

𝜆3
…

0

0

𝑉𝑇

(DxD)

= σ𝑖 𝜆𝑖𝑣𝑖𝑣𝑖
𝑇

Matrix Λ is diagonal with eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ on the 
diagonal.  Matrix V has the eigenvectors as the columns.



Singular Value Decomposition (SVD)

• 𝑆 is a diagonal matrix with the singular values 𝜎1, … , 𝜎𝑑 of 𝑋.

• Columns of 𝑈, 𝑉 are orthogonal, unit length.

So, 𝜆𝑖 = 𝜎𝑖
2 and can read off the solution from the SVD.

Given a matrix 𝑋 ∈ 𝑅𝐷×𝑛, the SVD is a decomposition: 𝑋𝑇 = 𝑈𝑆𝑉𝑇

Eigendecomp of 𝑋𝑋𝑇 is closely related to SVD of 𝑋.

𝑋𝑇 (𝑛 ×
𝐷)

=

𝑈 (𝑛 ×
𝑑)

𝑆 (𝑑 ×
𝑑)

𝜎1
𝜎2

…

0
0

𝑉𝑇 (𝑑 ×
𝐷)

= σ𝑖 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

• So, 𝑋𝑋𝑇 = 𝑉𝑆𝑈𝑇𝑈𝑆𝑉𝑇 = 𝑉𝑆2𝑉𝑇 = eigendecomposition of 𝑋𝑋𝑇.



Singular Value Decomposition (SVD)

So, 𝜆𝑖 = 𝜎𝑖
2 and can read off the solution from the SVD.

Given a matrix 𝑋 ∈ 𝑅𝐷×𝑛, the SVD is a decomposition: 𝑋𝑇 = 𝑈𝑆𝑉𝑇

Eigendecomp of 𝑋𝑋𝑇 is closely related to SVD of 𝑋.

𝑋𝑇 (𝑛 ×
𝐷)

=

𝑈 (𝑛 ×
𝑑)

𝑆 (𝑑 ×
𝑑)

𝜎1
𝜎2

…

0
0

𝑉𝑇 (𝑑 ×
𝐷)

= σ𝑖 𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

• In fact, can view the rows of 𝑈𝑆 as the coordinates of 
each example along the axes given by the 𝑑 eigenvectors.



Independent Component Analysis (ICA)

𝑝 𝑠1, 𝑠2, … , 𝑠𝐷 = 𝑝1 𝑠1 𝑝2 𝑠2 …𝑝𝑛 𝑠𝐷

𝒙 = 𝑉 ∙ 𝒔

Find a linear transformation

for which coefficients 𝒔 = 𝑠1, 𝑠2, … , 𝑠𝐷
𝑇 are 

statistically independent

Algorithmically, we need to identify matrix V and coefficients s, 
s.t. under the condition 𝒙 = 𝑉𝑇 ∙ 𝒔 the mutual information 
between 𝑠1, 𝑠2, … , 𝑠𝐷 is minimized:

𝐼 𝑠1, 𝑠2, … , 𝑠𝐷 =෍

𝑖=1

𝐷

𝐻 𝑠𝑖 − 𝐻 𝑠1, 𝑠2, … , 𝑠𝐷



PCA finds directions of maximum variation, 
ICA would find directions most “aligned” with data.


