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Big & High-Dimensional Data

 High-Dimensions = Lot of Features

Document classification
Features per document =
thousands of words/unigrams

o : X7
millions of bigrams, contextual B
information

Surveys - Netflix
480189 users x 17770 movies
movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6
Tom 5 ? 7 1 3 ?
George ? 7 3 1 2 5
Susan 4 3 1 7 5 1
Beth 4 3 7 2 4 2




Big & High-Dimensional Data

High-Dimensions = Lot of Features

MEG Brain Imaging
120 locations x 500 time points

x 20 objects
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« Big & High-Dimensional Data.

» Useful to learn lower dimensional
representations of the data.



Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower
dimensional) structure from high dimensional datasets.

Useful for:
e Visualization

« More efficient use of resources
(e.g., time, memory, communication)

« Statistical: fewer dimensions > better generalization
* Noise removal (improving data quality)

« Further processing by machine learning algorithms



Principal Component Analysis (PCA)

What is PCA: Unsupervised technique for extracting
variance structure from high dimensional datasets.

Nt

PCA is an orthogonal projection or transformation of the data
into a (possibly lower dimensional) subspace so that the variance
of the projected data is maximized.



Principal Component Analysis (PCA)

If we rotate data, again only one

Intrinsically lower dimensional than the ) : .
coordinate is more important.

dimension of the ambient space.

+

Only one relevant feature Both features are relevant

Question: Can we transform the features so that we only need to
preserve one latent feature?



Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective representation
of the data.

Identifying the axes is known as Principal Components Analysis, and

can be obtained by using classic matrix computation tools (Eigen or
Singular Value Decomposition).



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions
that capture most of the variance in the data.

« First PC - direction of greatest variability in data.

* Projection of data points along first PC

discriminates data most along any one direction
(pts are the most spread out when we project the data on

that direction compared to any other directions).

Quick reminder:

|Iv]|=1, Point x; (D-dimensional vector) Xi AV

Projection of x; onto vis v x;



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions
that capture most of the variance in the data.

« 1st PC - direction of greatest variability in data.

« 2ndPC - Next orthogonal (uncorrelated) direction
of greatest variability

(remove all variability in first direction, then find next direction of
greatest variability)

e Andsoon ..



Principal Component Analysis (PCA)

Let vy, vy, ..., vq denote the d principal components.
vi-vi =0,i#j andvi-v; =1, i=j

Assume data is centered (we extracted the sample mean).|

Let X = [xq,X3, ..., Xn]| (columns are the datapoints)

Find vector that maximizes sample variance of projected data

— Z (vix,)? = vIXXTv
z—l
m‘;:\x vIXXTyv st. viv=1

_ Wrap constraints into the
Lagrangian: maxy v/ XX'v —avly objective function

0/0v =0 (XXT — A)v = 0 = (XXT)v = Av




Principal Component Analysis (PCA)

(XXT)v =2Av, so v (the first PC) is the eigenvector
of sample correlation/covariance matrix X X'

Sample variance of projection v X X'v = Aviv =1

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Eigenvalues 1, = 1, > 15 > -+

* The 15 PC v, is the the eigenvector of the sample covariance matrix
X X" associated with the largest eigenvalue

« The 2nd PC v, is the the eigenvector of the sample covariance
matrix X X" associated with the second largest eigenvalue

e Andsoon ..



Principal Component Analysis (PCA)

« So, the new axes are the eigenvectors of the matrix of sample
correlations X X' of the data.

« Transformed features are uncorrelated.

X2 +¢)

% X1

Geometrically: centering followed by rotation.

- Linear transformation

Key computation: eigendecomposition of XX* (closely related
to SVD of X).



Two Interpretations

So far: Maximum Variance Subspace. PCA finds vectors v such that
projections on to the vectors capture maximum variance in the data

n
Z (VTXz')Q = vIxXxTy

1
=1

Alternative viewpoint: Minimum Reconstruction Error. PCA
finds vectors v such that projection on to the vectors yields
minimum MSE reconstruction



Two Interpretations
E.g., for the first component.

Maximum Variance Direction: 15t PC a vector v such that projection
on to this vector capture maximum variance in the data (out of all
possible one dimensional projections)

1 n
— Z vix)? = vIXXTy
n,—

Minimum Reconstruction Error: 15t PC a vector v such that
projection on to this vector yields minimum MSE reconstruction

1 2 5
=3 Ixi — (VIx)v
ni—1 V- X



Why? Pythagorean Theorem

E.g., for the first component.

Maximum Variance Direction: 15t PC a vector v such that projection
on to this vector capture maximum variance in the data (out of all
possible one dimensional projections)

1 & g TxxTy 1 >
EZ Vv Xz) =v XX ; Z ||X’L (V Xz)VH

Minimum Reconstruction Error: 15t PC a vector v such that
projection on to this vector yields minimum MSE reconstruction

blue? + green? = black? Xj
black? is fixed (it's just the data)

So, maximizing blue? is
equivalent to minimizing green?



Dimensionality Reduction using PCA

The eigenvalue 1 denotes the amount of variability captured along
that dimension (aka amount of energy along that dimension).

Zero eigenvalues indicate no variability along those directi

ons =>
data lies exactly on a linear subspace

Only keep data projections onto principal components with [/
non-zero eigenvalues, say vy, ..., vi,, where k=rank(X X")

Original representation Transformed representation

Data point projection |
x; = (x}, ..., x?) (vy - x4, ., vg - xY)

D-dimensional vector d-dimensional vector




Dimensionality Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues

Can ignore the components of smaller significance.
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Might lose some info, but if eigenvalues are small, do not lose much



Example: faces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)

Can represent a face image using just 15 numbers!



PCA provably useful before doing k-means clustering and also
empirically useful. E.q.,

> Performance: cost increase < 5%; x10 to x100 speedup

> k-Means Clustering: k-means cost/time vs dimension
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PCA Discussion

Strengths

Eigenvector method
No ftuning of the parameters

No local optima

Weaknesses

Limited to second order statistics

Limited to linear projections

21



Kernel PCA (Kernel Principal
Component Analysis)

Useful when data lies on or near a low d-
dimensional linear subspace of the ¢-
space associated with a kernel



Properties of PCA

Given a set of n centered observations
x; € RP?, 15t PC is the direction that
maximizes the variance

- X =(x1, %9, .., Xp)

1
- V1 = argmax||v||=1 ;Zi(UTXi)Z

— argmax”v”:l E ‘UTXXTU

. . 1
Covariance matrix C = ;XXT

e v, can be found by solving the
eigenvalue problem:

- Cvy; = Av,(of maximum A)



Properties of PCA

Given a set of n centered observations
x; € RP?, 15t PC is the direction that
maximizes the variance

- X =(x1, %9, .., Xp)

1
- V1 = argmax||v||=1 ;Zi(UTXi)Z

— argmax”v”:l E ‘UTXXTU

Covariance matrix C = %XXTis a DxD matrix

the (i,j) entry of XX is the correlation of the i-th coordinate
ofexamples with jth coordinate of examples

To use kernels, need to use the inner-product matrix X' X.



Alternative expression for PCA

The principal component lies in the span of the data

(2] =Zakxi = Xa

i
Why? 1st PC is direction of largest variance, and for any direction outside of
the span of the data, only get more variance if we project that direction into
the span.

Plug this in we have

1
Cv, = EXXTXa =1 Xa

Now, left-multiply the LHS and RHS by x7. Only depends on

the inner product

lXTXXTXCZ — )[XTXC( matrix
n




Kernel PCA

Key Idea: Replace inner product matrix by kernel matrix
» PCA: -XTXXTXa = 1X"Xa
o Let K = [K(xi,xj)]ij be the matrix of all dot-products
in the ¢-space.

» Kernel PCA: replace "X"X" with K.

ZKKa = AKa, or equivalently, ~Ka = Aa
n n

Key computation: form an n by n kernel matrix K, and
then perform eigen-decomposition on K.



Kernel PCA Example

Gaussian RBF kernel exp (— ||x2—x2||) over 2 dimensional space

o

Eigenvector evaluated at a test point x is a function

wip() =X a; < ¢(x'), p(x) > =F; a;k(x, x)

Eigen enval Eigen

1.5
1
0.5
0

-BAS_I
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What You Should Know

* Principal Component Analysis (PCA)
« What PCA is, what is useful for.

« Both the maximum variance subspace and the
minimum reconstruction error viewpoint.

 Kernel PCA



Additional material on computing the principal
components and ICA



Power method for computing PCs

Given matrix X € RP*", compute the top eigenvector of X X*

Initialize with random © € RP
Repeat
7« XXT%

v e v/]vl|

Claim

For any € > 0, whp over choice of initial vector, after O Glogg)
iterations, we have 9T XXTD > (1 — €)A4.

Then can subtract the ¥ component off of each example and
repeat to get the next.



Eigendecomposition

Any symmetric matrix A = XX' is guaranteed to have an
eigendecomposition with real eigenvalues: A =V AV”,

2, Y
= 0 % = i AiviviT
A vV A 4
(DxD) (DxD) (DxD) (DxD)

Matrix A is diagonal with eigenvalues 1, = 1, = --- on the
diagonal. Matrix V has the eigenvectors as the columns.



Singular Value Decomposition (SVD)

Eigendecomp of XX is closely related to SVD of X.

Given a matrix X € RP*", the SVD is a decomposition: X” = USV"

— T
_ 0 Oy = Zi O-iu,:vi

S (dx VT (d x
d) D)

XT (nx U(TlX
D) d)

« S is a diagonal matrix with the singular values oy, ..., g4 of X.

« Columns of U, V are orthogonal, unit length.
« So, XX =vSUTUSV"T =VS*VT = eigendecomposition of XX,

So, 4; = o7 and can read off the solution from the SVD.



Singular Value Decomposition (SVD)

Eigendecomp of XX is closely related to SVD of X.

Given a matrix X € RP*", the SVD is a decomposition: X” = USV"

o
_ 0 a2 =D JiuiviT
S (dx VT (d x
d) D)
XT (n X U (Tl X
D) d)

« In fact, can view the rows of US as the coordinates of
each example along the axes given by the d eigenvectors.

So, 4; = o7 and can read off the solution from the SVD.



Independent Component Analysis (ICA)

Find a linear transformation
x=V-s

for which coefficients s = (s, s5, ...,sp)" are
statistically independent

p(S1,S2, -, Sp) = D1(51)P2(52) ... Pr(Sp)

Algorithmically, we need to identify matrix V and coefficients s,
s.t. under the condition x = VT .- s the mutual information
between sy, s,, ..., sp IS minimized:

D
1(5{,S9,...,Sp) = Z H(s; ) — H(s{,S3,...,Sp)
i=1



PCA Y oA

PCA finds directions of maximum variation,
ICA would find directions most "aligned” with data.



