Kernels Methods in Machine Learning

Kernelized Perceptron

Maria-Florina Balcan
09/12/2018

Quick Recap about
Perceptron and Margins

The Online Learning Model

Example arrive sequentially.
We need to make a prediction.

Afterwards observe the outcome.

Fori=1 2, .. :

o Exanmple x;

Phase i: Online Algorithm), Prediction h(x;)

— Observe c*(x;)

Mistake bound model
Analysis wise, make no distributional assumptions.

« Goal: Minimize the number of mistakes.

Perceptron Algorithm in Online Model

WLOG homogeneous linear separators

Set =1, start with the all zero vector w;. =K

Given example x, predict + iff w; - x > 0 i X>><< ’ i~

On a mistake, update as follows: x X _Q_C:WO
Mistake on positive, wy 1 « w; + x x X < .

Mistake on negative, wy,; <« wy — x

Note 1: wy is weighted sum of incorrectly classified examples
We = @i, X + o+ Ay Xy So, wy - x = a; Xi, *xXx+--+a,x x

Note 2: Number of mistakes ever made depends only on the
geometric margin (amount of wiggle room) of
examples seen.

No matter how long the sequence is or how high dimension n is!

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Margin of example x;
If |lw|| =1, margin of x
w.r.t. wis |x - w|.

Margin of example x;

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0.

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum
7w over all linear separators w.

Poll time

Perceptron: Mistake Bound

Theorem: If data linearly separable by margin y and points inside
a ball of radius R, then Perceptron makes < (R/y)* mistakes.

No matter how long the sequence is how high dimension n is!

Margin: the amount of
wiggle-room available for
a solution.

=————’

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn't change the number of mistakes; algo is invariant to scaling.)

So far, talked about margins in
the context of (nearly) linearly
separable datasets

What if Not Linearly Separable

Problem: data not linearly separable in the most natural
feature representation.

No good linear
separator in pixel
representation.

Example: &

"
Solutions:

* “Learn a wmore complex class of functions”

* (e.g., decision trees, neural networks, boosting).

* "Usea Kernel" (a neat solution that attracted a lot of attention)

* “Use a Deep Network”

+ "Combine Kernels anod Deep Networks”

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Overview of Kernel Methods

What is a Kernel?
A kernel K is a legal def of dot-product: i.e. there exists an

implicit mapping @ s.t. K(g , @) :dn(g)- CD(@')
E.g. K(xy)=(x y+1)
¢: (n-dimensional space) — nd-dimensional space

Why Kernels matter?

Many algorithms interact with data only via dot-products.

So, if replace x - z with K(x,z) they act implicitly as if data
was in the higher-dimensional ®-space.

+ If data is linearly separable by large margin in the ®-space,
then good sample complexity.

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Kernels

Definition

K(:,-) is a kernel if it can be viewed as a legal definition of
inner product:

e 3¢:X->RN st.K(x2) =) - p2)
Range of ¢ is called the ®-space.
N can be very large.

But think of ¢ as implicit, not explicit!l!]

Example

For n=2, d=2, the kernel K(x,z) = (x - z)¢ corresponds to

(x1,x2) > P(x) = (x12»x22»\/§x1x2)

Original space d-space
X £
X X
X
X - X
’/'— -sx\ X
. X //, O ° X
\
'/ o O O \| 3(1 X
\] 2
Z
\\\ > O/// X > 1
X \\\?_ _—’// X
X X X o X X
X X
X X X z3 X X X

Example
(I): RZ - RB/ (XlJXZ) - CD(X) — (Xl'XZJ \/_X1X2)

CI)(X)) (I)(Z) — (XlJXZ’ \/_X1X2) (21;22;\/_2122)

= (X121 + X22,)? = (x- 2)? = K(x,2)

Original space ~Space
X N 2 \
X X
X
X o x X
X -7 O\\\
X/, O \\ X
ll O © © \| 51 .
‘\ @) , g > ‘1
N o ., X
. O L X
x \\5_-._—f’
X X X 0 x X
X Z; X x X X
X X X «

Kernels

Definition

K(:,-) is a kernel if it can be viewed as a legal definition of
inner product:

e 3¢:X->RN st.K(x2) =) - p2)
Range of ¢ is called the ®-space.
N can be very large.

But think of ¢ as implicit, not explicit!l!]

Example

Note: feature space might not be unique.

(I): RZ - RB: (XlJXZ) - CD(X) — (X%,X%, \/EX1X2)
(I)(X)) (I)(Z) — (X%,X%, \/EX1X2)) (Z12,Z22, \/521Z2)

= (X121 + X22,)? = (x- 2)? = K(x,2)

(I): RZ - R4: (X11X2) - CD(X) — (X%'X%ixl)(Z'XZXl)

¢(x) - d(z2) = (X%;X%:X1X2:X2X1) ‘ (Z%:Zg»Zﬂz»ZzZﬂ

= (x-2)? = K(x 2)

Avoid explicitly expanding the features

Feature space can grow really large and really quickly....

Crucial to think of ¢ as implicit, not explicit!ll!

Polynomial kernel degreee d, k(x,z) = (x"2)% = ¢(x) - ¢(2)

d 2
— X1, X1Xp X, XT X9 e Xg—1

- Total number of such feature is
(d+n—1) _ (d+n—-1)!
d dl(n—1)!
- d =6,n=100, there are 1.6 billion terms

number of monomialterms

O(n) computation!

k(x,2) = (x"2)% = ¢(x) - p(2)

800

a L
11111111111

number of input dimensions

| d=4

A4 d=3

Kernelizing a learning algorithm

« If all computations involving instances are in terms of
inner products then:

= Conceptually, work in a very high diml space and the alg's
performance depends only on linear separability in that
extended space.

= Computationally, only need to modify the algo by replacing
each x -z with a K(x, z).

« Examples of kernalizable algos:
 classification: Perceptron, SVM.

* regression: linear, ridge regression.

 clustering: k-means.

Kernelizing the Perceptron Algorithm

Set t=1, start with the all zero vector w;.

Given example x, predict + iff w, - x >0 b
X x

On a mistake, update as follows: L X
X

Mistake on positive, wy,q <« w; + x x X

Mistake on negative, wy,; < wy — x

Easy to kernelize since w; is weighted sum of incorrectly
classified examples w, = a; x;, + -+ a;, x;,

Replace we-x = a;x;, ~x+ - +ayxy X yith
a;, K(x;,x)+ -+ a;, K(x;,x)

Note: need to store all the mistakes so far.

Kernelizing the Perceptron Algorithm

®-space
Given x, predict + iff ¢ (xi,_,) - P(x)
@iy K(xiy, %) 4o 8 ait— 0 : X ; oO
KT
On the t th mistake, update as follows: VI O'VS’
X O
Mistake on positive, set a;, < 1, store x;, : e

Mistake on negative, a;, < —1. store x;,
Perceptron w; = a; x;, + -+ a;.x;,
Wex =a; X ~x+-+a,x, x - a KQ,x)+ - +a;,K(x,x)

Exact same behavior/prediction rule as if mapped data in the
¢-space and ran Perceptron therel

Generalize Well if Good Margin

If data is linearly separable by margin in the ¢-space,
then small mistake bound.

2
If margin y in ¢-space, then Perceptron makes (g) mistakes.

®-space

Kernels: More Examples

- Linear: K(x,z) =x-z

» Polynomial: K(x,z) = (x- z2)d or K(x,2) = (1 + x- z)¢4

. _ 1z’
¢ GGUSS'G”- K(X) Z) - eXp l_ 2 g2
- Laplace Kernel: K(x,z) = exp [— ”;C;Z”

Kernel for non-vectorial data, e.g., measuring similarity
between sequences.

Properties of Kernels

Theorem (Mercer)
K is a kernel if and only if:
e Kis symmetric

For any set of training points x;, x5, ..., x,, and for
any aq, s, ..., ay, € R, we have:

Yo oK (x,25) 20

a’Ka >0

ILe K= (K(xirxj))i,j=1,...,m IS pOSiTiVZ semi-definite.

Kernel Methods

-q

- Offer great modularity. X
* No need to change the underlying learning
algorithm to accommodate a particular choice
of kernel function.

* Also, we can substitute a different algorithm
while maintaining the same kernel.

Kernel, Closure Properties

a A
Easily create new kernels using basic ones! Mv

Fact: If K,(-,-) and K,(:,-) are kernels c¢; = 0,c, = 0,

then K(x,z) = ¢;K{(x,z) + c,K,(x,2) is a kernel.

Key idea: concatenate the ¢ spaces.

$(x) = (Ver d1(x), vz $2(x))

B0+ 6(2) = ¢ 41X) by D+ ¢ D4R - bz ()

K1 (x,2) K (x, 2)

Kernel, Closure Properties

a A

Easily create new kernels using basic ones!
Fact: If K,(-,-) and K,(:,) are kernels,
then K(x,z) = K;(x,2)K,(x,2) is a kernel.

Key idea: ¢(x) = (91, ¢,
D)) =) 1109 Doy (D1i(2) ()
LJj

— 2 (|)1,i(X) (|)1,i(Z) <Z (I)z,j (%) (I)z,j (Z)>

ie{1,..,n},je{1,...m}

l J

= 21 $1i(%) ¢1,i(2)Kz(x,2) = K1(x,2) Kz (x,2)

Kernels, Discussion

« If all computations involving instances are in terms
of inner products then:

= Conceptually, work in a very high diml space and the alg's
performance depends only on linear separability in that
extended space.

= Computationally, only need to modify the algo by replacing
each x -z with a K(x, z).

« Lots of Machine Learning algorithms are kernalizable:
* classification: Perceptron, SVM.

* regression: linear regression.

 clustering: k-means.

Kernels, Discussion

« If all computations involving instances are in terms
of inner products then:

= Conceptually, work in a very high diml space and the alg's
performance depends only on linear separability in that
extended space.

= Computationally, only need to modify the algo by replacing
each x -z with a K(x, z).

How to choose a kernel:

« Kernels often encode domain knowledge (e.g., string kernels)

« Use Cross-Validation to choose the parameters, e.g., ¢ for
Gaussian Kernel K z) = exp |- ==l

202

« Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El Ghaoui-
Jordan'04]

