
Maria-Florina Balcan
09/12/2018

Kernels Methods in Machine Learning

Kernelized Perceptron

Quick Recap about
Perceptron and Margins

Mistake bound model

• Example arrive sequentially.

The Online Learning Model

• We need to make a prediction.

Afterwards observe the outcome.

• Analysis wise, make no distributional assumptions.

• Goal: Minimize the number of mistakes.

Online Algorithm

Example 𝑥𝑖

Prediction ℎ(𝑥𝑖)Phase i:

Observe c∗(𝑥𝑖)

For i=1, 2, …, :

• Set t=1, start with the all zero vector 𝑤1.

Perceptron Algorithm in Online Model

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Note 1: wt is weighted sum of incorrectly classified examples

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 So, 𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X
X

X
X

O

O

O

O

O O

O

O

w

Note 2: Number of mistakes ever made depends only on the
geometric margin (amount of wiggle room) of
examples seen.

WLOG homogeneous linear separators

• No matter how long the sequence is or how high dimension n is!

X = Rn

Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1
w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1, margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

+
+

+
+-

-
-

-

-

𝛾
𝛾

+

--

-
-

w

Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum
𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

Poll time

Perceptron: Mistake Bound
Theorem: If data linearly separable by margin 𝛾 and points inside
a ball of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

++

+
+

+
+

+

-

-
-

-

-




--
-
-

+

w*

R

Margin: the amount of
wiggle-room available for
a solution.

• No matter how long the sequence is how high dimension n is!

So far, talked about margins in
the context of (nearly) linearly
separable datasets

What if Not Linearly Separable

Problem: data not linearly separable in the most natural

feature representation.

Solutions:

• “Learn a more complex class of functions”
• (e.g., decision trees, neural networks, boosting).

• “Use a Kernel”

• “Use a Deep Network”

Example: vs
No good linear
separator in pixel
representation.

• “Combine Kernels and Deep Networks”

(a neat solution that attracted a lot of attention)

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Overview of Kernel Methods

What is a Kernel?

A kernel K is a legal def of dot-product: i.e. there exists an
implicit mapping Φ s.t. K(,) =Φ()⋅ Φ()

Why Kernels matter?

• Many algorithms interact with data only via dot-products.

• So, if replace x ⋅ z with K x, z they act implicitly as if data
was in the higher-dimensional Φ-space.

• If data is linearly separable by large margin in the Φ-space,
then good sample complexity.

E.g., K(x,y) = (x ¢ y + 1)d

: (n-dimensional space) ! nd-dimensional space

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Kernels

Definition

K(⋅,⋅) is a kernel if it can be viewed as a legal definition of
inner product:

• ∃ ϕ: X → RN s.t. K x, z = ϕ x ⋅ ϕ(z)

• Range of ϕ is called the Φ-space.

• N can be very large.

• But think of ϕ as implicit, not explicit!!!!

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥1
2, 𝑥2

2, 2𝑥1𝑥2)

x2

x1

O

O O

O

O

O

O
O

X
X

X

X

X
X

X

X X

X

X

X

X

X

X

X

X
X

z1

z3

O

O

O
O

O

O

O

OO

X X

X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-spaceOriginal space

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x1

2, x2
2, 2x1x2)

x2

x1

O

O O

O

O

O

O
O

X
X

X

X

X
X

X

X X

X

X

X

X

X

X

X

X
X

z1

z3

O

O

O
O

O

O

O

OO

X X

X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-spaceOriginal space

ϕ x ⋅ ϕ 𝑧 = x1
2, x2

2, 2x1x2 ⋅ (𝑧1
2, 𝑧2

2, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z)

Kernels

Definition

K(⋅,⋅) is a kernel if it can be viewed as a legal definition of
inner product:

• ∃ ϕ: X → RN s.t. K x, z = ϕ x ⋅ ϕ(z)

• Range of ϕ is called the Φ-space.

• N can be very large.

• But think of ϕ as implicit, not explicit!!!!

Example

Note: feature space might not be unique.

ϕ:R2 → R4, x1, x2 → Φ x = (x1
2, x2

2, x1x2, x2x1)

ϕ x ⋅ ϕ 𝑧 = (x1
2, x2

2, x1x2, x2x1) ⋅ (z1
2, z2

2, z1z2, z2z1)

= x ⋅ 𝑧 2 = K(x, z)

ϕ:R2 → R3, x1, x2 → Φ x = (x1
2, x2

2, 2x1x2)

ϕ x ⋅ ϕ 𝑧 = x1
2, x2

2, 2x1x2 ⋅ (𝑧1
2, 𝑧2

2, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z)

Avoid explicitly expanding the features

Feature space can grow really large and really quickly….

Crucial to think of ϕ as implicit, not explicit!!!!

– 𝑥1
𝑑 , 𝑥1𝑥2…𝑥𝑑 , 𝑥1

2𝑥2…𝑥𝑑−1
– Total number of such feature is

𝑑 + 𝑛 − 1
𝑑

=
𝑑 + 𝑛 − 1 !

𝑑! 𝑛 − 1 !

– 𝑑 = 6, 𝑛 = 100, there are 1.6 billion terms

• Polynomial kernel degreee 𝑑, 𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧

𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧

𝑂 𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛!

Kernelizing a learning algorithm

• If all computations involving instances are in terms of
inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

• Examples of kernalizable algos:

• classification: Perceptron, SVM.

• regression: linear, ridge regression.

• clustering: k-means.

• Set t=1, start with the all zero vector 𝑤1.

Kernelizing the Perceptron Algorithm

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Easy to kernelize since 𝑤𝑡 is weighted sum of incorrectly
classified examples 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X
X

X
X

O

O

O

O

O O

O

O

w

Replace

Note: need to store all the mistakes so far.

with
𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥)

Kernelizing the Perceptron Algorithm
• Given 𝑥, predict + iff

• On the 𝑡 th mistake, update as follows:

• Mistake on positive, set 𝑎𝑖𝑡 ← 1; store 𝑥𝑖𝑡
• Mistake on negative, 𝑎𝑖𝑡 ← −1; store 𝑥𝑖𝑡

Perceptron 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X X

X
X

O

O

O

O

O O

O

O

w

Exact same behavior/prediction rule as if mapped data in the
𝜙-space and ran Perceptron there!

→ 𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥)

Φ-space

𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑡−1𝐾(𝑥𝑖𝑡−1 , 𝑥) ≥ 0

Do this implicitly, so computational savings!!!!!

𝜙(𝑥𝑖𝑡−1) ⋅ 𝜙(𝑥)

Generalize Well if Good Margin
• If data is linearly separable by margin in the 𝜙-space,

then small mistake bound.

• If margin 𝛾 in 𝜙-space, then Perceptron makes
𝑅

𝛾

2
mistakes.

+
w*

+

+
+

+
+

+

-

-
-

-

-




-
-

-

-

+

R

Φ-space

Kernels: More Examples

• Polynomial: K x, 𝑧 = x ⋅ 𝑧 d or K x, 𝑧 = 1 + x ⋅ 𝑧 d

• Gaussian: K x, 𝑧 = exp −
𝑥−𝑧

2

2 𝜎2

• Linear: K x, z = x ⋅ 𝑧

• Laplace Kernel: K x, 𝑧 = exp −
||𝑥−𝑧||

2 𝜎2

• Kernel for non-vectorial data, e.g., measuring similarity
between sequences.

Properties of Kernels

Theorem (Mercer)

K is a kernel if and only if:

• K is symmetric

• For any set of training points 𝑥1, 𝑥2, … , 𝑥𝑚 and for
any 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑅, we have:

σ𝑖,𝑗 𝑎𝑖𝑎𝑗𝐾 𝑥𝑖 , 𝑥𝑗 ≥ 0

𝑎𝑇𝐾𝑎 ≥ 0

I.e., 𝐾 = (𝐾 𝑥𝑖 , 𝑥𝑗)𝑖,𝑗=1,…,𝑚 is positive semi-definite.

Kernel Methods

• Offer great modularity.

• No need to change the underlying learning
algorithm to accommodate a particular choice
of kernel function.

• Also, we can substitute a different algorithm
while maintaining the same kernel.

Kernel, Closure Properties

Easily create new kernels using basic ones!

then K x, z = c1K1 x, z + c2K2 x, z is a kernel.

If K1 ⋅,⋅ and K2 ⋅,⋅ are kernels c1 ≥ 0, 𝑐2 ≥ 0,Fact:

Key idea: concatenate the 𝜙 spaces.

ϕ x = (c1 ϕ1 x , c2 ϕ2(x))

ϕ x ⋅ ϕ(z) = c1 ϕ1 x ⋅ ϕ1 z + c2 ϕ2 x ⋅ ϕ2 z

𝐾1(𝑥, 𝑧) 𝐾2(𝑥, 𝑧)

Kernel, Closure Properties

then K x, z = K1 x, z K2 x, z is a kernel.

If K1 ⋅,⋅ and K2 ⋅,⋅ are kernels,Fact:

Key idea: ϕ x = ϕ1,i x ϕ2,j x
𝑖∈ 1,…,𝑛 ,𝑗∈{1,…,𝑚}

ϕ x ⋅ ϕ(z) =෍

𝑖,𝑗

ϕ1,i x ϕ2,j x ϕ1,i z ϕ2,j z

=෍

𝑖

ϕ1,i x ϕ1,𝑖 z ෍

𝑗

ϕ2,𝑗 x ϕ2,j z

= σ𝑖ϕ1,i x ϕ1,𝑖 z K2 x, z = K1 x, z K2 x, z

Easily create new kernels using basic ones!

Kernels, Discussion

• Lots of Machine Learning algorithms are kernalizable:

• classification: Perceptron, SVM.

• regression: linear regression.

• clustering: k-means.

• If all computations involving instances are in terms
of inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

Kernels, Discussion
• If all computations involving instances are in terms

of inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

How to choose a kernel:

• Use Cross-Validation to choose the parameters, e.g., 𝜎 for
Gaussian Kernel K x, 𝑧 = exp −

𝑥−𝑧
2

2 𝜎2

• Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El Ghaoui-
Jordan’04]

• Kernels often encode domain knowledge (e.g., string kernels)

