Kernels Methods in Machine Learning

Kernelized Perceptron

Maria-Florina Balcan 09/12/2018

Quick Recap about Perceptron and Margins

The Online Learning Model

- Example arrive sequentially.
- We need to make a prediction. Afterwards observe the outcome.

For $\mathrm{i}=1,2, \ldots$:

Mistake bound model

- Analysis wise, make no distributional assumptions.
- Goal: Minimize the number of mistakes.

Perceptron Algorithm in Online Model

 WLOG homogeneous linear separators- Set $t=1$, start with the all zero vector w_{1}.
- Given example x, predict + iff $w_{t} \cdot x \geq 0$
- On a mistake, update as follows:
- Mistake on positive, $w_{t+1} \leftarrow w_{t}+x$
- Mistake on negative, $w_{t+1} \leftarrow w_{t}-x$

Note 1: w_{t} is weighted sum of incorrectly classified examples $w_{t}=a_{i_{1}} x_{i_{1}}+\cdots+a_{i_{k}} x_{i_{k}} \quad$ So, $w_{t} \cdot x=a_{i_{1}} x_{i_{1}} \cdot x+\cdots+a_{i_{k}} x_{i_{k}} \cdot x$

Note 2: Number of mistakes ever made depends only on the geometric margin (amount of wiggle room) of examples seen.

- No matter how long the sequence is or how high dimension n is!

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x=0$.

Definition: The margin γ_{w} of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_{w} over all linear separators w.

Poll time

Perceptron: Mistake Bound

Theorem: If data linearly separable by margin γ and points inside a ball of radius R, then Perceptron makes $\leq(R / \gamma)^{2}$ mistakes.

- No matter how long the sequence is how high dimension n is!

> Margin: the amount of wiggle-room available for a solution.
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

So far, talked about margins in the context of (nearly) linearly separable datasets

What if Not Linearly Separable

Problem: data not linearly separable in the most natural feature representation.

Example:

No good linear separator in pixel representation.

Solutions:

- "Learn a more complex class of functions"
- (e.g., decision trees, neural networks, boosting).
- "use a Kernel" (a neat solution that attracted a lot of attention)
- "use a Deep Network"
- "combine Kernels and Deep Networks"

Overview of Kernel Methods

What is a Kernel?
A kernel K is a legal def of dot-product: i.e. there exists an

E.g., $K(x, y)=(x \cdot y+1)^{d}$
$\phi:(n$-dimensional space $) \rightarrow n^{d}$-dimensional space

Why Kernels matter?

- Many algorithms interact with data only via dot-products.
- So, if replace $\mathrm{x} \cdot \mathrm{z}$ with $\mathrm{K}(\mathrm{x}, \mathrm{z})$ they act implicitly as if data was in the higher-dimensional Φ-space.
- If data is linearly separable by large margin in the Φ-space, then good sample complexity.

Kernels

Definition

$K(\cdot, \cdot)$ is a kernel if it can be viewed as a legal definition of inner product:

- $\exists \phi: X \rightarrow R^{N}$ s.t. $K(x, z)=\phi(x) \cdot \phi(z)$
- Range of ϕ is called the Φ-space.
- N can be very large.
- But think of ϕ as implicit, not explicit!!!!!

Example

For $\mathrm{n}=2, \mathrm{~d}=2$, the kernel $\mathrm{K}(\mathrm{x}, \mathrm{z})=(\mathrm{x} \cdot \mathrm{z})^{\mathrm{d}}$ corresponds to

$$
\left(x_{1}, x_{2}\right) \rightarrow \Phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

Original space

Example

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z}) & =\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \cdot\left(\mathrm{z}_{1}^{2}, \mathrm{z}_{2}^{2}, \sqrt{2} z_{1} z_{2}\right) \\
& =\left(\mathrm{x}_{1} z_{1}+\mathrm{x}_{2} z_{2}\right)^{2}=(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
\end{aligned}
$$

Original space

Ф-space

Kernels

Definition

$K(\cdot, \cdot)$ is a kernel if it can be viewed as a legal definition of inner product:

- $\exists \phi: X \rightarrow R^{N}$ s.t. $K(x, z)=\phi(x) \cdot \phi(z)$
- Range of ϕ is called the Φ-space.
- N can be very large.
- But think of ϕ as implicit, not explicit!!!!!

Example

Note: feature space might not be unique.

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z}) & =\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \cdot\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right) \\
& =\left(\mathrm{x}_{1} z_{1}+\mathrm{x}_{2} z_{2}\right)^{2}=(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{4},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{x}_{1}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z})= & \left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{x}_{1}\right) \cdot\left(\mathrm{z}_{1}^{2}, \mathrm{z}_{2}^{2}, \mathrm{z}_{1} \mathrm{z}_{2}, \mathrm{z}_{2} \mathrm{z}_{1}\right) \\
& =(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
\end{aligned}
$$

Avoid explicitly expanding the features

Feature space can grow really large and really quickly.... Crucial to think of ϕ as implicit, not explicit!!!!!

Polynomial kernel degreee $d, k(x, z)=\left(x^{\top} z\right)^{d}=\phi(x) \cdot \phi(z)$

- $x_{1}^{d}, x_{1} x_{2} \ldots x_{d}, x_{1}^{2} x_{2} \ldots x_{d-1}$
- Total number of such feature is

$$
\binom{d+n-1}{d}=\frac{(d+n-1)!}{d!(n-1)!}
$$

- $d=6, n=100$, there are 1.6 billion terms

$$
k(x, z)=\left(x^{\top} z\right)^{d}=\phi(x) \cdot \phi(z)
$$

Kernelizing a learning algorithm

- If all computations involving instances are in terms of inner products then:
- Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.
- Computationally, only need to modify the algo by replacing each $\mathrm{x} \cdot \mathrm{z}$ with a $\mathrm{K}(\mathrm{x}, \mathrm{z})$.
- Examples of kernalizable algos:
- classification: Perceptron, SVM.
- regression: linear, ridge regression.
- clustering: k-means.

Kernelizing the Perceptron Algorithm

- Set $t=1$, start with the all zero vector w_{1}.
- Given example x, predict + iff $w_{t} \cdot x \geq 0$
- On a mistake, update as follows:
- Mistake on positive, $w_{t+1} \leftarrow w_{t}+x$
- Mistake on negative, $w_{t+1} \leftarrow w_{t}-x$

Easy to kernelize since w_{t} is weighted sum of incorrectly classified examples $w_{t}=a_{i_{1}} x_{i_{1}}+\cdots+a_{i_{k}} x_{i_{k}}$

Replace $w_{t} \cdot x=a_{i_{1}} x_{i_{1}} \cdot x+\cdots+a_{i_{k}} x_{i_{k}} \cdot x$ with

$$
a_{i_{1}} K\left(x_{i_{1}}, x\right)+\cdots+a_{i_{k}} K\left(x_{i_{k}}, x\right)
$$

Note: need to store all the mistakes so far.

Kernelizing the Perceptron Algorithm

- Given x, predict + iff
$\phi\left(x_{i_{t-1}}\right) \cdot \phi(x)$

$$
a_{i_{1}} K\left(x_{i_{1}}, x\right)+\cdots+a_{i_{t-}} K\left(x_{i_{t-1}}, x\right) \geq 0
$$

- On the t th mistake, update as follows:
- Mistake on positive, set $a_{i_{t}} \leftarrow 1$; store $x_{i_{t}}$
Φ-space

- Mistake on negative, $a_{i_{t}} \leftarrow-1$; store $x_{i_{t}}$

Perceptron $w_{t}=a_{i_{1}} x_{i_{1}}+\cdots+a_{i_{k}} x_{i_{k}}$
$w_{t} \cdot x=a_{i_{1}} x_{i_{1}} \cdot x+\cdots+a_{i_{k}} x_{i_{k}} \cdot x \quad \rightarrow \quad a_{i_{1}} K\left(x_{i_{1}}, x\right)+\cdots+a_{i_{k}} K\left(x_{i_{k}}, x\right)$
Exact same behavior/prediction rule as if mapped data in the ϕ-space and ran Perceptron there!

Do this implicitly, so computational savings!!!!!

Generalize Well if Good Margin

- If data is linearly separable by margin in the ϕ-space, then small mistake bound.
- If margin γ in ϕ-space, then Perceptron makes $\left(\frac{R}{\gamma}\right)^{2}$ mistakes.

Kernels: More Examples

- Linear: $K(x, z)=x \cdot z$
- Polynomial: $\mathrm{K}(\mathrm{x}, \mathrm{z})=(\mathrm{x} \cdot z)^{\mathrm{d}}$ or $\mathrm{K}(\mathrm{x}, \mathrm{z})=(1+\mathrm{x} \cdot z)^{\mathrm{d}}$
- Gaussian: $\mathrm{K}(\mathrm{x}, \mathrm{z})=\exp \left[-\frac{\|x-z\|^{2}}{2 \sigma^{2}}\right]$
- Laplace Kernel: $K(x, z)=\exp \left[-\frac{\|x-z\|}{2 \sigma^{2}}\right]$
- Kernel for non-vectorial data, e.g., measuring similarity between sequences.

Properties of Kernels

Theorem (Mercer)

K is a kernel if and only if:

- K is symmetric
- For any set of training points $x_{1}, x_{2}, \ldots, x_{m}$ and for any $a_{1}, a_{2}, \ldots, a_{m} \in R$, we have:

$$
\begin{aligned}
& a_{i, j} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0 \\
& a^{T} K a \geq 0
\end{aligned}
$$

I.e., $K=\left(K\left(x_{i}, x_{j}\right)\right)_{i, j=1, \ldots, m}$ is positive semi-definite.

Kernel Methods

- Offer great modularity.
- No need to change the underlying learning algorithm to accommodate a particular choice of kernel function.
- Also, we can substitute a different algorithm while maintaining the same kernel.

Kernel, Closure Properties

Easily create new kernels using basic ones!

Fact: If $\mathrm{K}_{1}(\cdot, \cdot)$ and $\mathrm{K}_{2}(\cdot, \cdot)$ are kernels $\mathrm{c}_{1} \geq 0, c_{2} \geq 0$, then $K(x, z)=c_{1} K_{1}(x, z)+c_{2} K_{2}(x, z)$ is a kernel.

Key idea: concatenate the ϕ spaces.

$$
\begin{aligned}
& \phi(\mathrm{x})=\left(\sqrt{\mathrm{c}_{1}} \phi_{1}(\mathrm{x}), \sqrt{c_{2}} \phi_{2}(\mathrm{x})\right) \\
& \phi(\mathrm{x}) \cdot \phi(\mathrm{z})=\mathrm{c}_{1} \phi_{1}(\mathrm{x}) \cdot \phi_{1}(\mathrm{z}) \\
& K_{1}(x, z)
\end{aligned} \mathrm{c}_{2} \phi_{2}(\mathrm{x}) \cdot \phi_{2}(\mathrm{z}), K_{2}(x, z),
$$

Kernel, Closure Properties

Easily create new kernels using basic ones!

Fact: If $\mathrm{K}_{1}(\cdot, \cdot)$ and $\mathrm{K}_{2}(\cdot, \cdot)$ are kernels, then $K(x, z)=K_{1}(x, z) K_{2}(x, z)$ is a kernel.

Key idea: $\quad \phi(\mathrm{x})=\left(\phi_{1, \mathrm{i}}(\mathrm{x}) \phi_{2, \mathrm{j}}(\mathrm{x})\right)_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}}$

$$
\begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z}) & =\sum_{i, j} \phi_{1, \mathrm{i}}(\mathrm{x}) \phi_{2, \mathrm{j}}(\mathrm{x}) \phi_{1, \mathrm{i}}(\mathrm{z}) \phi_{2, \mathrm{j}}(\mathrm{z}) \\
& =\sum_{i} \phi_{1, \mathrm{i}}(\mathrm{x}) \phi_{1, i}(\mathrm{z})\left(\sum_{j} \phi_{2, j}(\mathrm{x}) \phi_{2, \mathrm{j}}(\mathrm{z})\right) \\
& =\sum_{i} \phi_{1, \mathrm{i}}(\mathrm{x}) \phi_{1, i}(\mathrm{z}) \mathrm{K}_{2}(\mathrm{x}, \mathrm{z})=\mathrm{K}_{1}(\mathrm{x}, \mathrm{z}) \mathrm{K}_{2}(\mathrm{x}, \mathrm{z})
\end{aligned}
$$

Kernels, Discussion

- If all computations involving instances are in terms of inner products then:
- Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.
- Computationally, only need to modify the algo by replacing each $\mathrm{x} \cdot \mathrm{z}$ with a $\mathrm{K}(\mathrm{x}, \mathrm{z})$.
- Lots of Machine Learning algorithms are kernalizable:
- classification: Perceptron, SVM.
- regression: linear regression.
- clustering: k-means.

Kernels, Discussion

- If all computations involving instances are in terms of inner products then:
- Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.
- Computationally, only need to modify the algo by replacing each $\mathrm{x} \cdot \mathrm{z}$ with a $\mathrm{K}(\mathrm{x}, \mathrm{z})$.

How to choose a kernel:

- Kernels often encode domain knowledge (e.g., string kernels)
- Use Cross-Validation to choose the parameters, e.g., σ for Gaussian Kernel $K(x, z)=\exp \left[-\frac{\| x-\left.z\right|^{2}}{2 \sigma^{2}}\right]$
- Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El GhaouiJordan'04]

