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HIDDEN MARKOV MODEL (HMM)



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a™, y"} L,
Sample 1 ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘




Naive Bayes for Time Series Data

We could treat each word-tag pair (i.e. token) as independent. This
corresponds to a Naive Bayes model with a single feature (the word).
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 *8*2* g% )




From Mixture Model to HMM
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From Mixture Model to HMM

O 0 0 O C
““Naive Bayes””: 1;[ (X:|Ye)p

e ; .
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SUPERVISED LEARNING FOR
HMMS



Hidden Markov Model
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = A, i, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vt, k

Assumption: y, = START z G

Generative Story:

For notational
convenience, we fold the

Y: ~ Multinomial(By,_,) V¢ initial probabilities C into
. . the transition matrix B by
Xy~ Multmomlal(AYt) vVt our assumption.

MO



Hidden Markov Model




Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models
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Supervised Learning for HMMs

Learning an s (3® 3
HMM g D" X )/ ())jtt

decomposes Lidilsd = P4 B> a /"7?(7‘@')’

into solving two

(Independent) [é \07? )’tl/f. I )+ /.7 f(’(é} ,A>I

Mixture Models &




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
* Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.
— McCallum: multinomial Naive Bayes for text

— With McCallum, IE using HMMs on CORA

19
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Higher-order HMMs

* 15torder HMM (i.e. bigram HMM)

RYERR

e 2"d-order HMM (i.e. trlgram Hl\/\l\/\)




BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be
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Great Ideas in ML: Message Passing

Count the soldiers
here's Belief:
of me Must be

I+I+ I= 6 of
us

SonIy sek
my incoming
messages
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of free
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
# )
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Belief:
Must be
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
o
C )

Belief:
Must be

';f:”‘ wouldn't work correctly
S witha'loopy' (cydlic) graph



THE FORWARD-BACKWARD
ALGORITHM



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Decoding: Find the most-likely sequence of hidden
states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a™, y"} L,
Sample 1 ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘




Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 *8*2* g% )
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

35



Forward-Backward Algorithm
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Forward-Backward Algorithm
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* Let’s show the possible values for each variable
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Forward-Backward Algorithm

e N

L

* Let’s show the possible values for each variable



Forward-Backward Algorithm

N \/A

/\ﬁ?/\

* Let’s show the possible values for each variable
* One possible assignment
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Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
40



Forward-Backward Algorithm

vV n|la
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* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...

41

END



Viterbi Algorithm: Most Probable Assignment

<9 A M \ /
%@‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

<) A M N\ /
\’)(5‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z2) * product weight of one path
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Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A “



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

ﬁ\é//ﬂi A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/7) * total weigl%t of A *



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of VANE



Forward-Backward Algorithm: Finds Marginals

- = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

Ba(m) = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) v



Forward-Backward Algorithm: Finds Marginals

= total weight of these = total Weight of these
path preftgxes (@a+b+c) B path suffixes (X + Y +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
A Alret,n)

total weight of o/l paths through A
= o) Aref,n) By(n)
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Forward-Backward Algorithm: Finds Marginals

A “belief that ¥, = v”’
S / “belief that Y, =n”

AN n /"
A(pref., v)

total weight of A

= o,(v) A(pref,v) B,(v)

52



Forward-Backward Algorithm: Finds Marginals

“belief that ¥, = v”’

AN “belief that ¥, =n"
B.(a)

“belief that ¥, =a”

sum=2
A(pret., a) (total weight

of all paths)
total weight of A
= a,(a) A(pref,a) B,(a)

53



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

54



Inference for HMMs

Whiteboard

— Derivation of Forward algorithm
— Forward-backward algorithm
— Viterbi algorithm



Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Conditional Random Fields (CRFs) for time series data

LINEAR-CHAIN CRFS

60



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its
corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

Mismatch between learning objective function and prediction objective

function

— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015
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Conditional Random Field (CRF)

Conditional distribution over tags X, given words w..
The factors and Z are now specific to the sentence w.

1
n,v, p,d, n | time, flies, like, an, arrow . — *8* ® *...

P Z
v n|p|d v nip d
v 1]/6/3|4| |v|1]6/3]|4
n|ic/4/201 |n/ 8|4 2|01
p|{1(3|1|3| |[p/1[3]|1]|3
do18/0/|0 do18/0|0




Conditional Random Field (CRF)

Recall: Shaded nodes in a graphical model are observed

v np d vin p|d
v| 1]/6(3|4 11634
n <4 2|0.1 8 4|2 |01
p(1|3|1]|3 1313
do18|0 0 0.18 |0

I@l 4l(?
5

5

0. \F
e
W




Conditional Random Field (CRF)

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

p(y|x) = ﬁ H Vem Yk, Tk ) Vtr (Y Yr—1)
k=1

K
- H exp(0 - ferm(yi, k) )exp(0 - fu (Yi, Y —1))
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Exercise

p(y|x) = m (Ui, ) Ut (Yie, Yr—1)

7 1=
e

0 fem ykaxk))exp(e . ftr(ykayk—l))

Multiple Choice: Which model does the above
distribution share the most in common with?

A. Hidden Markov Model
B. Bernoulli Naive Bayes

C. Gaussian Naive Bayes

D. Logistic Regression



Conditional Random Field (CRF)

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

p(y|x) = ﬁ H Vem Yk, Tk ) Vtr (Y Yr—1)
k=1

K
- H exp(0 - ferm(yi, k) )exp(0 - fu (Yi, Y —1))

@IQ\IG\IG\IG\I?
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Conditional Random Field (CRF)

e Thatis the vector X

 Becauseit’s observed, we can condition on it for free
* Conditioning is how we converted from the MRF to the CRF
(i.e. when taking a slice of the emission factors)

v np d vin p|d
v|(1(6[3/4]| |[v|1/6|3]|4
n 84,201 |n|8|4|2]|01
p 1/3/1]3 p 1/3/1]|3
do18 0 0 do18 0 0
(N () 7.

O =0
v, 3
nl4
p0.1
d

R
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Conditional Random Field (CRF)

* This is the standard linear-chain CRF definition
* It permits rich, overlapping features of the vector X

(y‘X Hwem Yk, X )wtr(yk Yk—1,X )

‘

K
H H fem yka ))eXp(e ' ftr(ykayk—lax))

@ ] Y, /1;2\ %3\ @ Y




Conditional Random Field (CRF)

* This is the standard linear-chain CRF definition
* It permits rich, overlapping features of the vector X

(Y‘X Hwem Yk, X )wtr(yk Yk—1,X )

‘

K
H H fem yka ))eXp(e ' ftr(ykayk—lax))

@I%IYI%I?I?

Visual Notation: Usually we
draw a CRF without showing
the variable corresponding to X




Whiteboard

* Forward-backward algorithm
for linear-chain CRF



General CRF

The topology of the
graphical model for a CRF
doesn’t have to be a chain

po(yix) = —— [ ¥a(va x:6)



Standard CRF Parameterization

po(y|x) = H% (Ya,x;0)

Define each potentlal functlon in terms of a
fixed set of feature functions:

Vo (Ya,X;0) =exp(0 - (Yo, X))
.

Predicted Observed
variables variables



Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

wa(YOzv}(; H) — eXp(g ' fa(YanX))

e

yai(;)l’l

:I} o time flies

(o)—m

/3



Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

Va(Ya,X;0) =exp(0 - £, (ya, X))




SUPERVISED LEARNING FOR CRFS



What is Training?

That’s easy:

Training = picking good model parameters!

But how do we know if the
model parameters are any “good’”?



Machine
Learning

Log-likelihood Training

1.  Choose model 1
po(y) = — | [ Va(va)
2. Choose objective: o
Assign high probability to the .
things we observe and low L(e) — Z log pe (y)
probability to everything else yED
3. Compute

derivative by - -

i dL(0
nand using the dg(j) =D | 20 [fai(Wa) = D_po(yi) fai(ye)

chainrule yeD \ o y’




Machine
Learning

Log-likelihood Training

1.  Choose model 1
Such that derivative in #3is easy P9 (y) = 5 H exp(é’ - f

/4
2. Choose objective: e
Assign high probability to the .
things we observe and low L(e) — E : log pg (y)
probability to everything else yED
3. Compute

derivative by - -

: dL(6
hand usingthe 7% = 57 | 5 |fuofve) = Shratvifs (v

chain rule yeD \ o

4. Compute the

marginals by Note that these are factor marginals
of which are just the (normalized)
exact inrerence factor beliefs from BP!




Recipe for Gradient-based Learning

. Write down the objective function

. Compute the partial derivatives of the
objective (i.e. gradient, and maybe Hessian)

. Feed objective function and derivatives into
black box

‘ Optimization

—)

. Retrieve optimal parameters from black
box




Optimization Algorithms

What is the black box?
e Newton’s method

* Hessian-free [ Quasi-Newton methods
— Conjugate gradient
— L-BFGS

* Stochastic gradient methods

— Stochastic gradient descent (SGD)
— Stochastic meta-descent
— AdaGrad




Stochastic Gradient Descent

e Suppose we have N training examples s.t. f(z) = S, f;(z).
e This implies that Vf(z) = S5\, Vf;(z).

SGD Algorithm:
1. Choose a starting point .
2. While not converged:
o Choose a step size t.
o Choose 7 so that it sweeps through the training set.
o Update
ZFHY = k) 49 fi(2)



Whiteboard

RF model

RF

RF

ata log-likelihood
erivatives



Practical Considerations

for Gradient-based Methods
* Overfitting
— L2 regularization
— L1 regularization
— Regularization by early stopping
* For SGD: Sparse updates



“Empirical” Comparison of
Parameter Estimation Methods

Example NLP task: CRF dependency parsing
Suppose: Training time is dominated by inference

Dataset: One million tokens
Inference speed: 1,000 tokens [ sec
=» 0.27 hours per pass through dataset

GIS
L-BFGS
SGD

# passesthrough
data to converge

1000+
100+

10

# hours to
converge

270
P
~3




Exact inference for tree-structured factor graphs

BELIEF PROPAGATION

85



Inference for HMIMs

* Sum-product BP on an HMM is called the
forward-backward algorithm

* Max-product BP on an HMM is called the
Viterbi algorithm

86



Inference for

* Sum-product BP on is called the
forward-backward algorithm
* Max-product BP on is called the

Viterbi algorithm



THE FORWARD-BACKWARD
ALGORITHM



Learning and Inference Summary

For discrete variables:

Learning Marginal MAP
Inference Inference
HMM Forward- Viterbi
backward
Linear-chain Forward- Viterbi

CRF backward




Forward-Backward Algorithm

RN

find preferred tags




Forward-Backward Algorithm

BN
N EAE ‘- e ‘- ">/ }m
{2 >
4 N

N A A
: L2

find preferred tags
* Show the possible values for each variable



Forward-Backward Algorithm
AN V/Q\w @
<’ <
o B :
A e AN
Z AN

\A/
\_/

.

END

find preferred tags

* Let’s show the possible values for each variable
* One possible assignment

92



Forward-Backward Algorithm

Y;

ANEA
A\\. fAN

<

AR | AW P
‘\\

~

/=
N

A AA
\_/

find preferred

a

tags

* Let’s show the possible values for each variable

* One possible assignment
 And what the 7 factors think of it ...

93



Viterbi Algorithm: Most Probable Assignment

A . & @%% Wy3,41(,END) A
@al

N,
2 DA :

Uiz }(a)

find preferred tags

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

Vi }(V) Z <

<
?»
AN

s ’Xls&

W0
s

xR
>

Uiz }(a)

find preferred tags
* Sop(van)=(1/Z) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

find preferred tags

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A 9%



Forward-Backward Algorithm: Finds Marginals

o B A A= A

\?/ ‘\\?/

find preferred tags

—
o

" ——

\\
/

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A 57



Forward-Backward Algorithm: Finds Marginals

o,

* Sop(van)=(1/Z) * product weight of one path

~

~—

N

/
| |

Bt

find

YZ
A\
|~
n
E/

preferred

* Marginal probability p(Y, = a)

= (1/Z) * total weight of

o2

Agg



Forward-Backward Algorithm: Finds Marginals

o B A A= A

\?/ ‘\\?/

find preferred tags

—
o

" ——

\\
/

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A 9



Forward-Backward Algorithm: Finds Marginals

"
%

find preferred tags

o

o2

——

o,(n) = total weight of these
path prefixes

100

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

(X1

find preferred tags
B,(n) =total weight of these
path suffixes

101

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

Y;

find preferred tags
= total weight of these = total weight of these
path preftgxes (@a+b+c) B path suffixes (X + Y +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

#x

YZ
@ “belief that ¥, =n"

preferred
total weight of o/l paths through A
= %@ @ fa
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Forward-Backward Algorithm: Finds Marginals

/A
AK “belief that ¥, =v”’
.71 IN_—<

~ -
. % ’ “belief that Y, =n"
\/\If{z}(v)

preferred

total weight of A

= (V) viu(v) B,(V)

104



Forward-Backward Algorithm: Finds Marginals

“belief that ¥, = v”’

“belief that ¥, =n"

| SREY
\ 1
\ / “belief that ¥, = a”
sum=2
Viy(a) (total probability
B of all paths)
preferred

total weight of A

= @) wvpa) B,(a)
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CRF Tagging Model

RN

find preferred tags




Whiteboard

* Forward-backward algorithm
* Viterbi algorithm



CRF Tagging by Belief Propagation

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)

message

message ﬁ

H
o -~ |o
9 B g
- oW

@
W
=\

find preferred tags

* Forward-backward is a message passing algorithm.
* It's the simplest case of belief propagation.

108



HMMS VS CRFS



Generative vs. Discriminative

Liang & Jordan (ICML
2008) compares HMM
and CRF with identical
features

Dataset 1: (Real)

— WSJ Penn Treebank
(38K train, 5.5K test)

— 45 part-of-speech tags
Dataset 2: (Artificial)

— Synthetic data
generated from HMM
learned on Dataset 1
(1K train, 1K test)

Evaluation Metric:
Accuracy

98%
96%
94%
92%
90%
88%
86%
84%

95.60%
93.50%

Dataset 1

89.80%
87.90%

Dataset 2

“HMM
CRF



CRFs: some empirical results

* Parts of Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%
MEMM™ | 481%  26.99%
CRF™ | 427%  23.76%

T Using spelling features
— Using same set of features: HMM >=< CRF > MEMM
— USI l\% additional overlapping features: CRF* > MEMM* >>




SUMMARY



Summary: Learning and Inference

For discrete variables:

Learning Marginal MAP
Inference Inference
HMM MLE by counting Forward- Viterbi
backward
Linear-chain | Gradient based - doesn’t | Forward- Viterbi
CRF decompose because of backward
Z(x) and requires
marginal inference
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Summary: Models

Discriminative

Classification

Logistic
Regression

Structured
Prediction

CRF
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