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HIDDEN MARKOV MODEL (HMM)
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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time flies like an arrow

n v p d n

Naïve Bayes for Time Series Data
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We could treat each word-tag pair (i.e. token) as independent. This 
corresponds to a Naïve Bayes model with a single feature (the word).
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time flies like an arrow

n v p d n<START>

Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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HMM:

“Naïve Bayes”:

From Mixture Model to HMM
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SUPERVISED LEARNING FOR 
HMMS
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HMM Parameters:

Hidden Markov Model
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HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model
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y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Joint Distribution: 

Hidden Markov Model
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Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models

16
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.
– McCallum:  multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

19
Slide from William Cohen



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

20
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BACKGROUND: MESSAGE PASSING
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Great Ideas in ML: Message Passing
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22
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing
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adapted from MacKay (2003) textbook
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Great Ideas in ML: Message Passing
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2 + 1 + 3 = 6 of 
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree

25
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 here

3 here
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(= 3+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here
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Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here
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Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree
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adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

29
adapted from MacKay (2003) textbook



THE FORWARD-BACKWARD 
ALGORITHM
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Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Decoding: Find the most-likely sequence of hidden 
states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations

31



n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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time flies like an arrow

n v p d n<START>

Hidden Markov Model
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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Y2 Y3Y1

X3X2X1
find preferred tags



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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Y2 Y3Y1
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Forward-Backward Algorithm
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Viterbi Algorithm: Most Probable Assignment
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• Most probable assignment = path with highest product
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Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags
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Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Y2 Y3Y1

X3X2X1
find preferred tags
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.



Y2 Y3Y1
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find preferred tags
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Forward-Backward Algorithm: Finds Marginals

52
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)
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α2(a) b2(a)

“belief that Y2 = v”
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a “belief that Y2 = a”
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v 0.1
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v 0.2
n 0
a 0.8

divide 
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to get 
marginal 
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Inference for HMMs

Whiteboard
– Derivation of Forward algorithm
– Forward-backward algorithm
– Viterbi algorithm

55



Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

59



LINEAR-CHAIN CRFS
Conditional Random Fields (CRFs) for time series data

60



Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  

– NLP example: In a sentence segmentation task, each segmental state may depend 
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function

– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 61

Y1 Y2 … … … Yn
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Conditional Random Field (CRF)

62time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Xi given words wi.
The factors and Z are now specific to the sentence w.

p(n, v, p, d, n | time, flies, like, an, arrow)     =       (4 * 8 * 5 * 3 * …)



Conditional Random Field (CRF)
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ψ1 ψ3 ψ5 ψ7 ψ9
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v 3
n 4
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Recall: Shaded nodes in a graphical model are observed



Conditional Random Field (CRF)
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Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

X1 X2 X3 X4 X5

This linear-chain CRF is just like an HMM, except that its factors 
are not necessarily probability distributions
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Exercise

Multiple Choice: Which model does the above 
distribution share the most in common with?

A. Hidden Markov Model
B. Bernoulli Naïve Bayes
C. Gaussian Naïve Bayes
D. Logistic Regression
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Conditional Random Field (CRF)

66
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ψ0<START>

X1 X2 X3 X4 X5

This linear-chain CRF is just like an HMM, except that its factors 
are not necessarily probability distributions
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Conditional Random Field (CRF)
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Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

X

• That is the vector X
• Because it’s observed, we can condition on it for free
• Conditioning is how we converted from the MRF to the CRF 

(i.e. when taking a slice of the emission factors)

v 5
n 5
p 0.1
d 0.2



Conditional Random Field (CRF)
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Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

X

• This is the standard linear-chain CRF definition
• It permits rich, overlapping features of the vector X
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Conditional Random Field (CRF)
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Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5
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ψ0<START>

• This is the standard linear-chain CRF definition
• It permits rich, overlapping features of the vector X

p( | ) =
1

Z( )

K�
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�em(yk, )�tr(yk, yk�1, )

=
1

Z( )
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Visual Notation: Usually we 
draw a CRF without showing 
the variable corresponding to X



Whiteboard

• Forward-backward algorithm
for linear-chain CRF
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General CRF

71

The topology of the 
graphical model for a CRF 
doesn’t have to be a chain
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Standard CRF Parameterization

Define each potential function in terms of a 
fixed set of feature functions:
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p�( | ) =
1

Z( )

�
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��( �, ; �)

Predicted
variables

Observed
variables
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Standard CRF Parameterization

Define each potential function in terms of a 
fixed set of feature functions:
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time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

��( �, ; �) = (� · �( �, ))



Standard CRF Parameterization

Define each potential function in terms of a 
fixed set of feature functions:
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n
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ψ2 v
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ψ9
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SUPERVISED LEARNING FOR CRFS
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What is Training?

That’s easy: 

Training = picking good model parameters!

But how do we know if the 
model parameters are any “good”?

76



Machine 
Learning

Log-likelihood Training
1. Choose model

Such that derivative in #3 is ea

2. Choose objective: 
Assign high probability to the 
things we observe and low 
probability to everything else

77

3. Compute 
derivative by 
hand using the 
chain rule

4. Replace exact 
inference by 
approximate 
inference



Log-likelihood Training
1. Choose model 

Such that derivative in #3 is easy

2. Choose objective: 
Assign high probability to the 
things we observe and low 
probability to everything else

78

3. Compute 
derivative by 
hand using the 
chain rule

4. Compute the 
marginals by 
exact inference

Machine 
Learning

Note that these are factor marginals
which are just the (normalized) 
factor beliefs from BP!



Recipe for Gradient-based Learning

1. Write down the objective function
2. Compute the partial derivatives of the 

objective (i.e. gradient, and maybe Hessian)
3. Feed objective function and derivatives into 

black box

4. Retrieve optimal parameters from black 
box

79
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Optimization Algorithms

What is the black box?
• Newton’s method
• Hessian-free / Quasi-Newton methods

– Conjugate gradient
– L-BFGS

• Stochastic gradient methods
– Stochastic gradient descent (SGD)
– Stochastic meta-descent
– AdaGrad

80

Optimization



Stochastic Gradient Descent

81

• Gradient Descent:

~x(k+1)

= ~x(k) + tOf(~x) = ~x(k) + t
NX

i=1

Of
i

(x)

• SGD Algorithm:
1. Choose a starting point x.
2. While not converged:

� Choose a step size t.
� Choose i so that it sweeps through the training set.
� Update

~x(k+1)

= ~x(k) + tOf
i

(~x)

• For CRF training Stochastic Meta Descent is even better (Vishwanathan, 2006).

2.2 Additional readings

• PGM Appendix A.5: Continuous Optimization
• Boyd & Vandenberghe “Convex Optimization” http://www.stanford.edu/b̃oyd/cvxbook/

� Chapter 9: Unconstrained Minimization
⌅ 9.3 Gradient Descent
⌅ 9.4 Steepest Descent
⌅ 9.5 Newton’s Method

• Intuitive explanation of Lagrange Multipliers (without the assumption of differentiability):
http://www.umiacs.umd.edu/r̃esnik/ling848_fa2004/lagrange.html

2.3 Advanced readings

• “Overview of Quasi-Newton optimization methods” http://homes.cs.washington.edu/g̃alen/files/quasi-
newton-notes.pdf

• Shewchuk (1994) “An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain” http://www.cs.cmu.edu/q̃uake-papers/painless-conjugate-gradient.pdf

• Conjugate Gradient Method: http://www.cs.iastate.edu/c̃s577/handouts/conjugate-gradient.pdf

3 Third Review Session

3.1 Continuous Optimization (constrained)

3.1.1 Running example: MLE of a Multinomial

• Recall the pdf of the Categorical distribution:
� support: X 2 {0, . . . , k}
� pmf: p(X = k) = ✓

k

• Let X
i

⇠ Categorical(~✓) for 1  i  N .
• The likelihood of all these is:

Q
N

i=1

✓
X

i

=

Q
k

l=1

✓Nl

l

where N
l

is the number of X
i

= l.
• The log-likelihood is then: LL(~✓) =

P
k

l=1

N
l

log(✓
l

)

• Suppose we want to find the maximum likelihood parameters: ~✓
MLE

= argmin

~

✓

LL(~✓) subject
to the constraints

P
k

l=1

✓
l

= 1 and 0  ✓
l

8l.

7

2.1.5 Newton-Raphson (Newton’s method, a second-order method)

• From our introductory example, we know that we can find the solution to a quadratic function
analytically. Yet gradient descent may take many steps to converge to that optimum. The
motivation behind Newton’s method is to use a quadratic approximation of our function to
make a good guess where we should step next.

• Definition: the Hessian of an n-dimensional function is the matrix of partial second derivatives
with respect to each pair of dimensions.

O2f(~x) =

2

664

d

2
f(~x)

dx

2
1

d

2
f(~x)

dx1dx2
...

d

2
f(~x)

dx2dx1

d

2
f(~x)

dx

2
2

... ...

3
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• Consider the secord order Taylor series expansion of f at x.

ĝ(v) = ˆf(x+ v) = f(x) + Of(x)T v + 1

2

vTO2f(x)v

• We want to find the v that maximizes ĝ(v). This maximizer is called Newton’s step. Ox
nt

=

argmax

v

ĝ(v).
• Algorithm:

1. Choose a starting point x.
2. While not converged:

� Compute Newton’s step Ox
nt

= (O2f(x))�1Of(x)
� Update x(k+1)

= x(k) + Ox
nt

• Intuition:
� If f(x) is quadratic, x+ Ox

nt

exactly maximizes f .
� ĝ(v) is a good quadratic approximation to the function f near the point x. So if f(x) is

locally quadratic, then f(x) is locally well approximated by ĝ(v).
� See Figure 9.17 in Boyd and Vandenberghe.

• In most presentations, Newton-Raphson would be presented a minimization algorithm, for
which we would negate the definition of Newton’s step from above.

2.1.6 Quasi-Newton methods (L-BFGS)

• What if we have n = millions of features?
• The Hessian matrix H = O2f(x) is too large: n2 entries.
• quasi-Newton methods approximate the Hessian.
• Limited memory BFGS stores only a history of the last k updates to ~x and Of(~x). k is usually

small (e.g. k = 10).
• This history is used to approximate the Hessian-vector product.
• Optimization has nearly become a technology. Almost every language has many generic

optimization routines built in that you can use out of the box.

2.1.7 Stochastic Gradient Descent

• Suppose we have N training examples s.t. f(x) =
P

N

i=1

f
i

(x).
• This implies that Of(x) =

P
N

i=1

Of
i

(x).

6



Whiteboard

• CRF model
• CRF data log-likelihood
• CRF derivatives
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Practical Considerations 
for Gradient-based Methods

• Overfitting
– L2 regularization
– L1 regularization
– Regularization by early stopping

• For SGD: Sparse updates
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“Empirical” Comparison of 
Parameter Estimation Methods

84

• Example NLP task: CRF dependency parsing
• Suppose: Training time is dominated by inference
• Dataset: One million tokens
• Inference speed: 1,000 tokens / sec 
• è 0.27 hours per pass through dataset

# passes through
data to converge

# hours to 
converge

GIS 1000+ 270

L-BFGS 100+ 27

SGD 10 ~3



BELIEF PROPAGATION
Exact inference for tree-structured factor graphs
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Inference for HMMs

• Sum-product BP on an HMM is called the 
forward-backward algorithm

• Max-product BP on an HMM is called the 
Viterbi algorithm
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Inference for CRFs

• Sum-product BP on a CRF is called the 
forward-backward algorithm

• Max-product BP on a CRF is called the 
Viterbi algorithm
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THE FORWARD-BACKWARD 
ALGORITHM
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Learning and Inference Summary

For discrete variables:

89

Learning Marginal 
Inference

MAP 
Inference

HMM Forward-
backward

Viterbi

Linear-chain 
CRF

Forward-
backward

Viterbi



Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Y2 Y3Y1

Forward-Backward Algorithm
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v

n

a

v

n

a

v

n

a

START END

• Show the possible values for each variable
find preferred tags



Y2 Y3Y1
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v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment

find preferred tags

Forward-Backward Algorithm



Y2 Y3Y1
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v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

find preferred tags

Forward-Backward Algorithm



Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

ψ{3,4}(a,END)

ψ{3}(n)



Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path

ψ{3,4}(a,END)

ψ{3}(n)



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

97

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through v



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n



α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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find preferred tags



= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(found by dynamic programming: matrix-vector products)



α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



total weight of all paths through
= × ×

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

n

ψ{2}(n)

α2(n) b2(n
)

α2(n) ψ{2}(n) b2(n
)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the unigram 
factor at this variable.



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

n

a

v

n

a

START END

find preferred tags

ψ{2}(v)

α2(v) b2(v)

“belief that Y2 = v”v

“belief that Y2 = n”

total weight of all paths through
= × ×

v

α2(v) ψ{2}(v) b2(v)



Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals
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v

n

a

v

n

a

v

n

a

START END

find preferred tags

ψ{2}(a)

α2(a) b2(a)

“belief that Y2 = a”

“belief that Y2 = v”

“belief that Y2 = n”

sum = Z
(total probability
of all paths)

v 1.8
n 0
a 4.2

v 0.3
n 0
a 0.7

divide 
by Z=6 to 

get 
marginal 

probs

total weight of all paths through
= × ×

a

α2(a) ψ{2}(a) b2(a)



Y2 Y3Y1

CRF Tagging Model

106

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun



Whiteboard

• Forward-backward algorithm
• Viterbi algorithm
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……

find preferred tags

CRF Tagging by Belief Propagation

v 0.3
n 0
a 0.1

v 1.8
n 0
a 4.2

α βα

belief

message message

v 2
n 1
a 7

• Forward-backward is a message passing algorithm.
• It’s the simplest case of belief propagation.

v 7
n 2
a 1

v 3
n 1
a 6

β
v n a

v 0 2 1
n 2 1 0
a 0 3 1

v 3
n 6
a 1

v n a
v 0 2 1
n 2 1 0
a 0 3 1

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)



HMMS VS CRFS
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Generative vs. Discriminative
Liang & Jordan (ICML 
2008) compares HMM
and CRF with identical 
features
• Dataset 1: (Real)

– WSJ Penn Treebank 
(38K train, 5.5K test)

– 45 part-of-speech tags
• Dataset 2: (Artificial)

– Synthetic data 
generated from HMM 
learned on Dataset 1 
(1K train, 1K test)

• Evaluation Metric: 
Accuracy

129

93.50% 

89.80% 

95.60% 

87.90% 

84% 
86% 
88% 
90% 
92% 
94% 
96% 
98% 

Dataset 1 Dataset 2

HMM
CRF



CRFs: some empirical results

• Parts of Speech tagging

– Using same set of features: HMM >=< CRF > MEMM
– Using additional overlapping features: CRF+ > MEMM+ >> 

HMM

© Eric Xing @ CMU, 2005-2015 130



SUMMARY
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Summary: Learning and Inference

For discrete variables:

132

Learning Marginal 
Inference

MAP 
Inference

HMM MLE by counting Forward-
backward

Viterbi

Linear-chain 
CRF

Gradient based – doesn’t 
decompose because of 
Z(x) and requires 
marginal inference

Forward-
backward

Viterbi



Summary: Models

Classification Structured 
Prediction

Generative Naïve Bayes HMM

Discriminative Logistic 
Regression

CRF
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