

10-715 Advanced Intro. to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models +

Conditional Random Fields

Matt Gormley Guest Lecture 2 Oct. 31, 2018

1. Data

$$\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$$

$$\sum_{\text{fime}} n \quad \text{files} \quad \text{filke} \quad \text{an} \quad \text{frov}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{filke} \quad \text{an} \quad \text{frov}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{filke} \quad \text{an} \quad \text{frov}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{files} \quad \text{filke} \quad \text{an} \quad \text{frov}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files} \quad \text{files}$$

$$\sum_{\text{sample}} n \quad \text{files} \quad \text{files}$$

2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(oldsymbol{x}_C) = \sum_{oldsymbol{x}': oldsymbol{x}_C' = oldsymbol{x}_C} p(oldsymbol{x}' \mid oldsymbol{ heta})$$

2. Partition Function

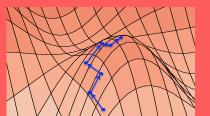
$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference $x \in C \in C$

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



HIDDEN MARKOV MODEL (HMM)

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Sample 1:	n	flies	p like	d	$ \begin{array}{c c} $
Sample 2:	n	n	like	an	$ \begin{array}{c c} $
Sample 3:	n	fily	with	heir	$\begin{cases} \mathbf{n} \\ \mathbf{y}^{(3)} \\ \mathbf{x}^{(3)} \end{cases}$
Sample 4:	with	n	you	will	$\begin{cases} y^{(4)} \\ x^{(4)} \end{cases}$

Naïve Bayes for Time Series Data

We could treat each word-tag pair (i.e. token) as independent. This corresponds to a Naïve Bayes model with a single feature (the word).

(.3*.8*.1*.5*...)p(n, v, p, d, n, time, flies, like, an, arrow) =time time flies flies like time flies .2 .2

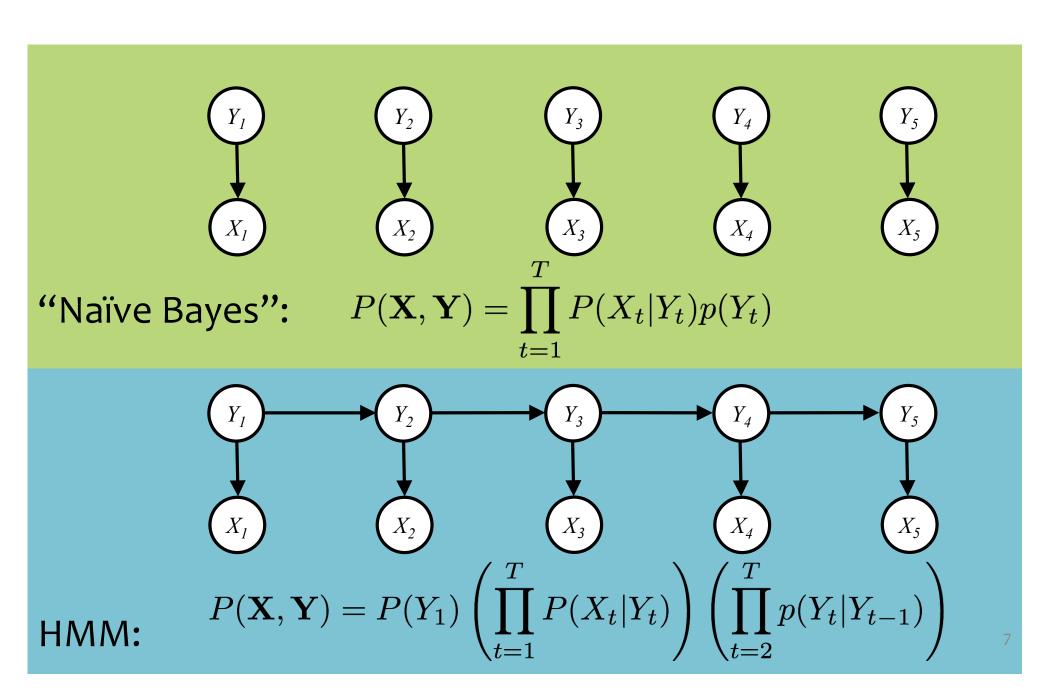
.1

.1

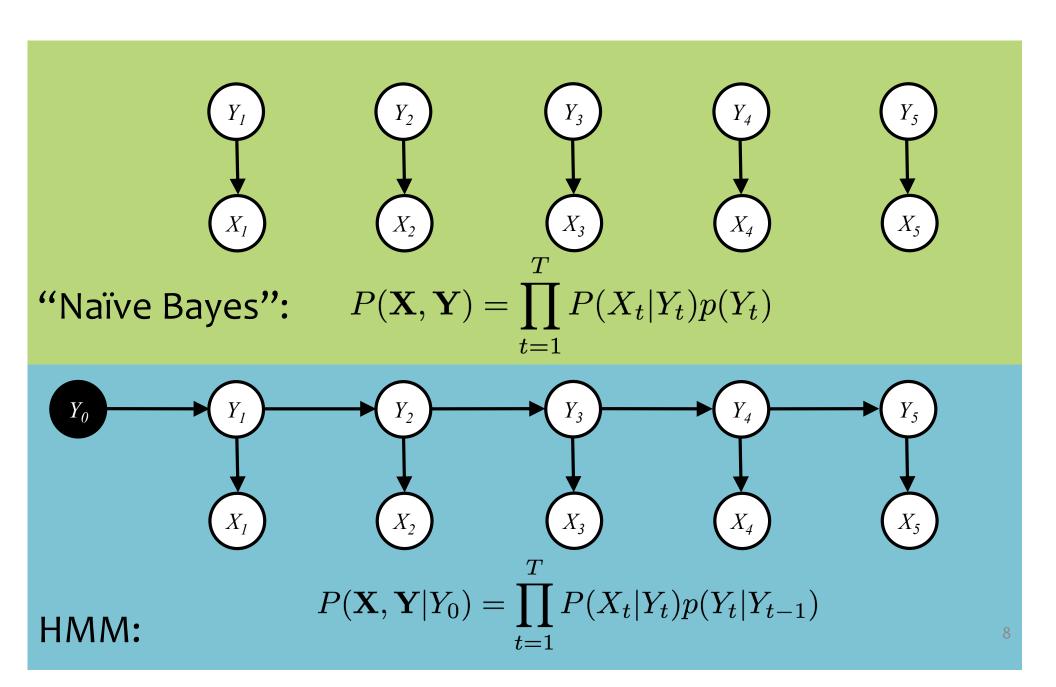
A Hidden Markov Model (HMM) provides a joint distribution over the the sentence/tags with an assumption of dependence between adjacent tags.



From Mixture Model to HMM



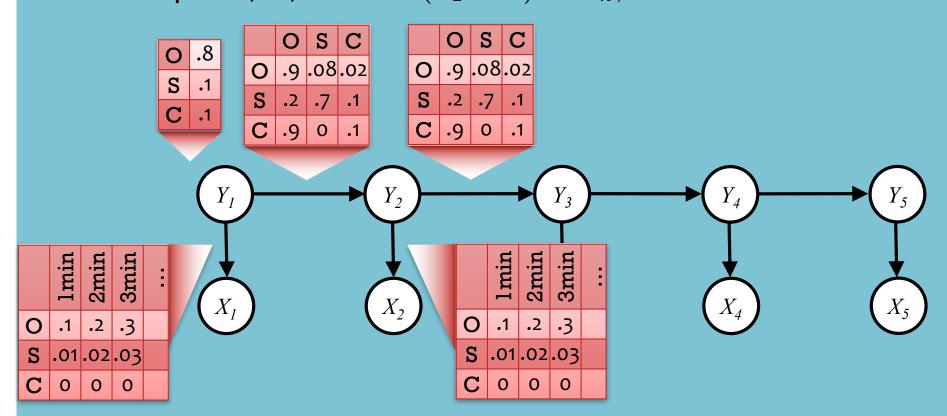
From Mixture Model to HMM



SUPERVISED LEARNING FOR HMMS

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$



HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

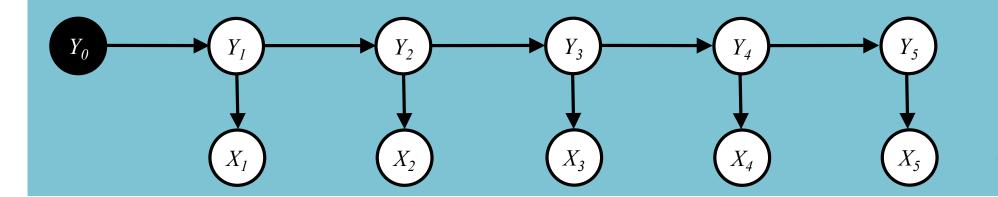
Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \text{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

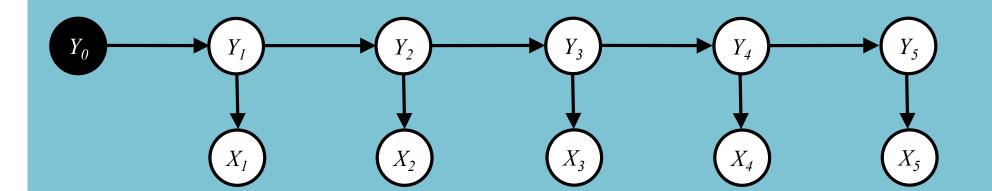


Joint Distribution:

$$y_0 = \mathsf{START}$$

$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

$$= \prod_{t=1}^{1} A_{y_t, x_t} B_{y_{t-1}, y_t}$$



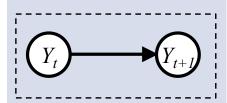
Training HMMs

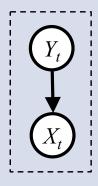
Whiteboard

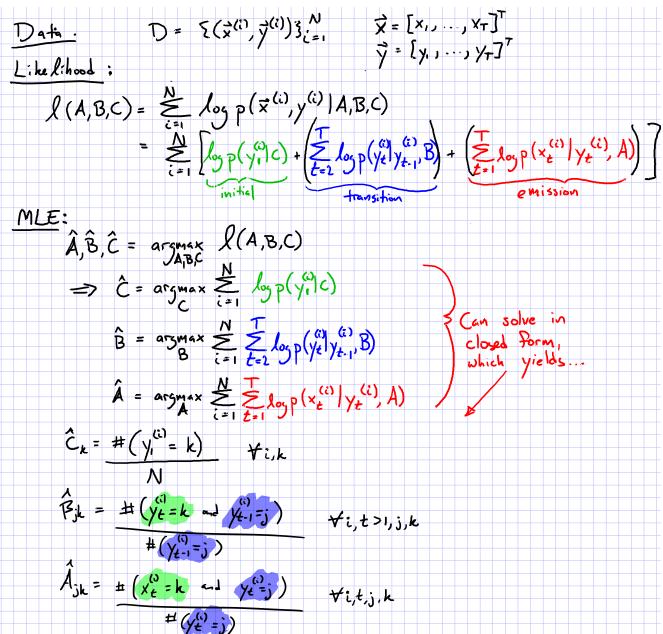
- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models

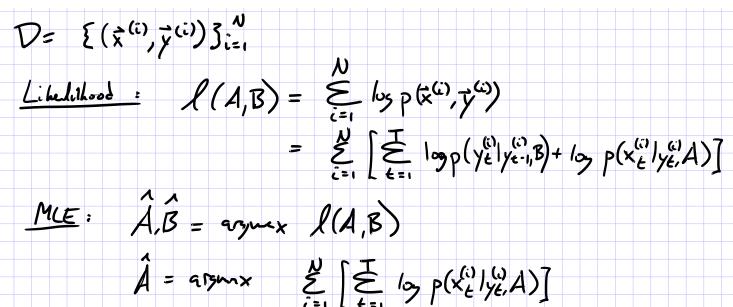


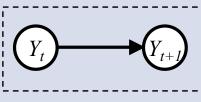


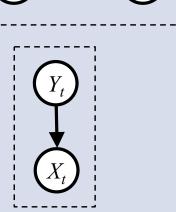


Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models





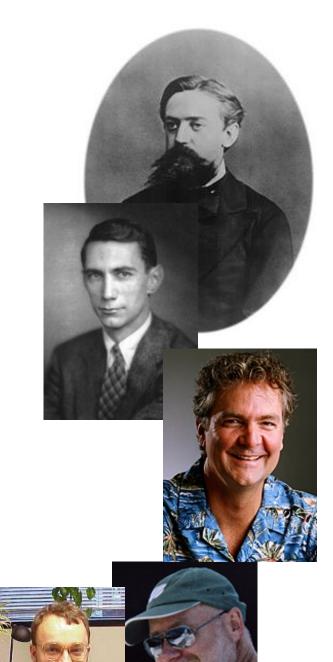


13 = 9 mex & [= 109 p(ye | ye-1, B)]

HMMs: History

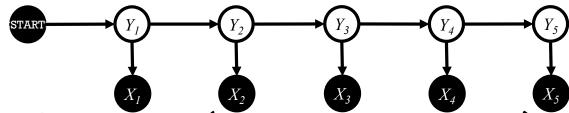
- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

• ...

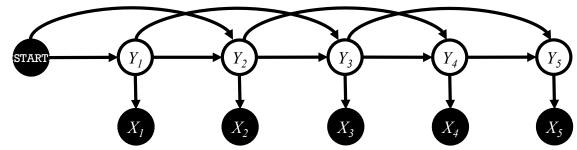


Higher-order HMMs

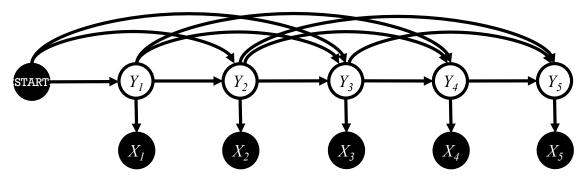
• 1st-order HMM (i.e. bigram HMM)



• 2nd-order HMM (i.e. trigram HMM)

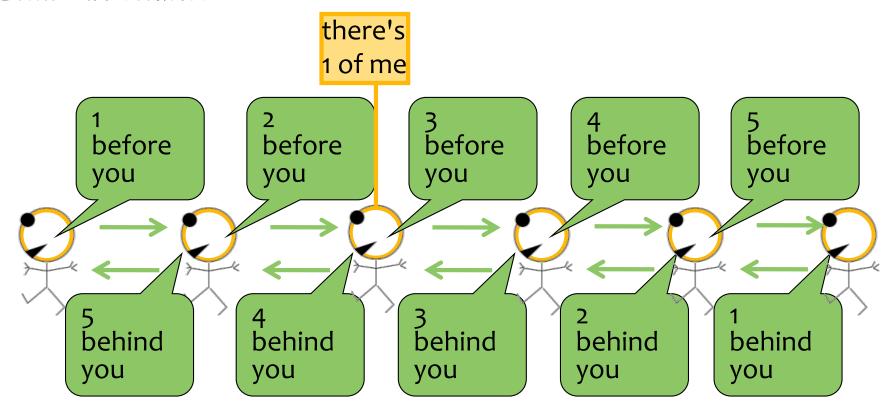


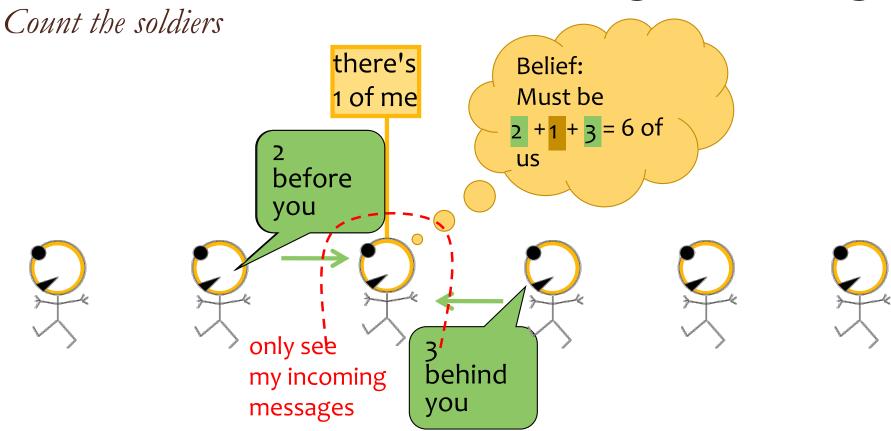
• 3rd-order HMM

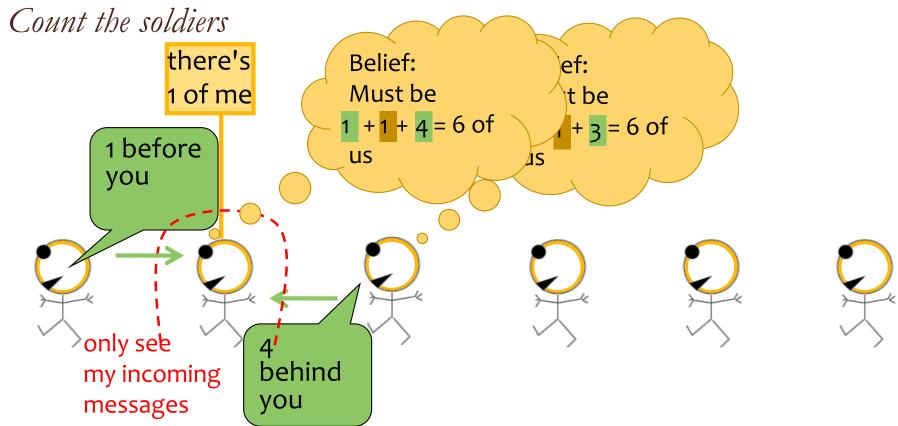


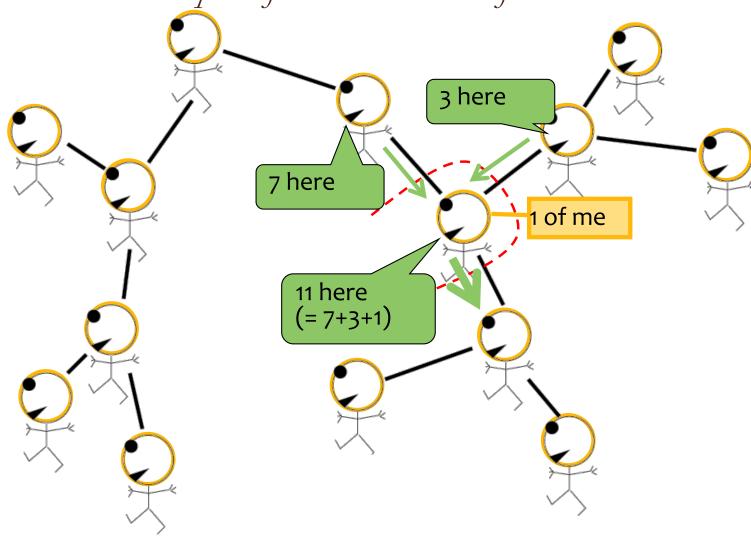
BACKGROUND: MESSAGE PASSING

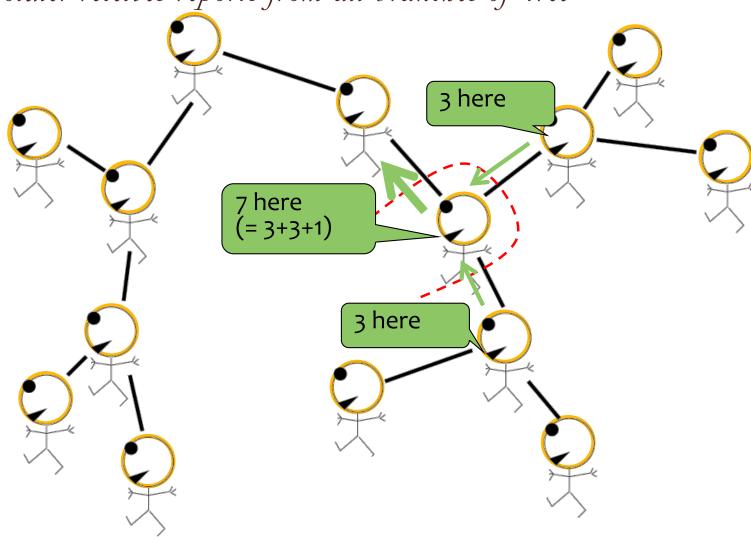
Count the soldiers

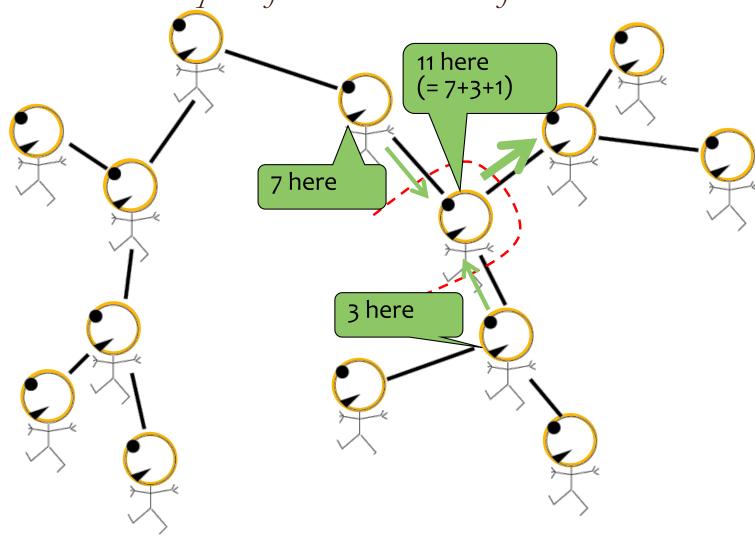


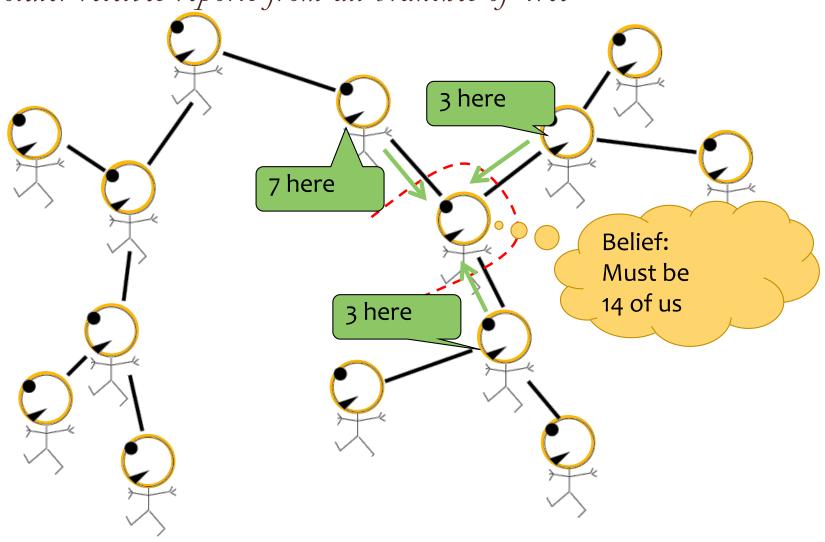


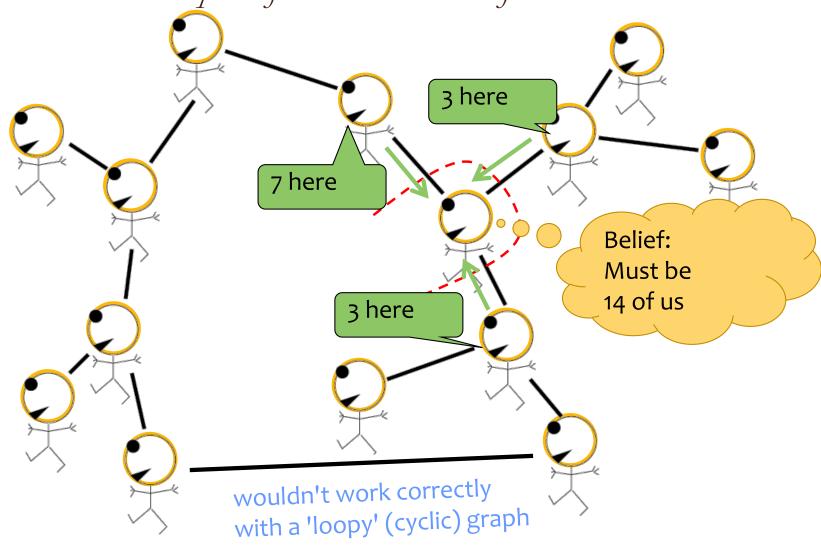












THE FORWARD-BACKWARD ALGORITHM

Inference for HMMs

Whiteboard

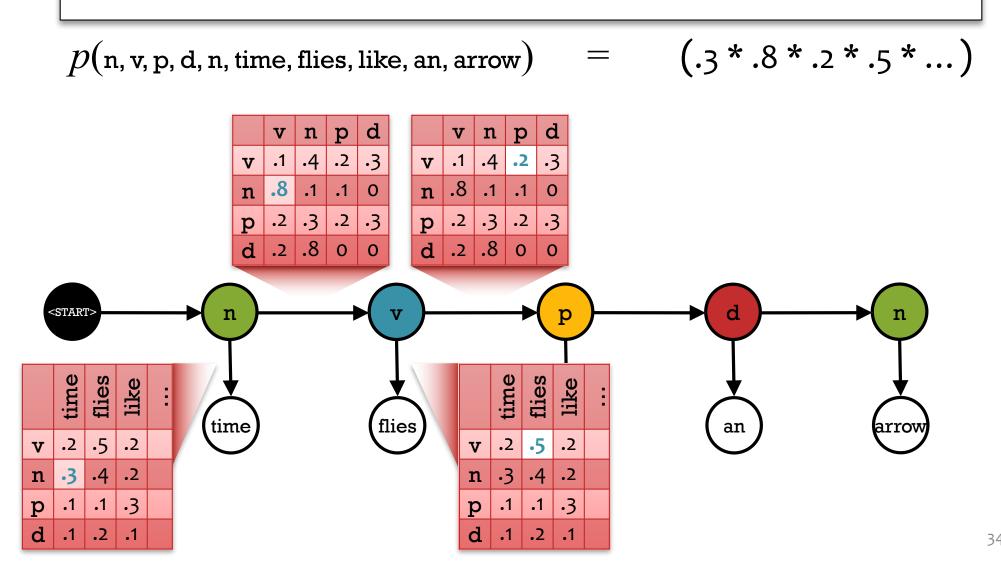
- Three Inference Problems for an HMM
 - 1. Evaluation: Compute the probability of a given sequence of observations
 - Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations

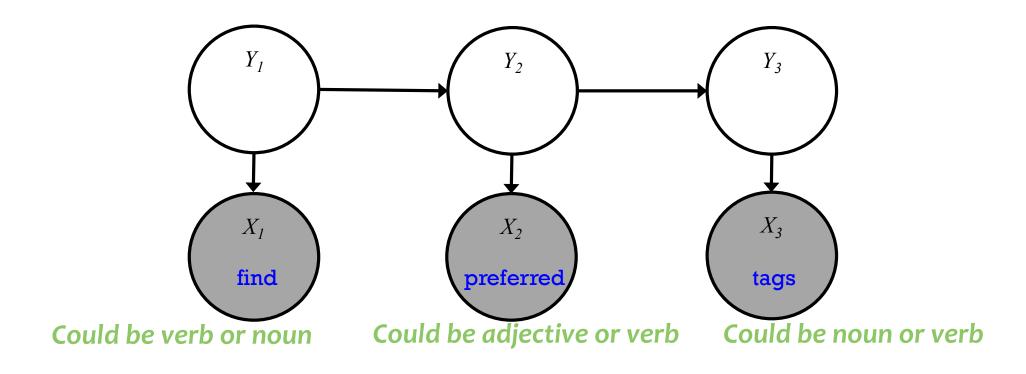
Dataset for Supervised Part-of-Speech (POS) Tagging

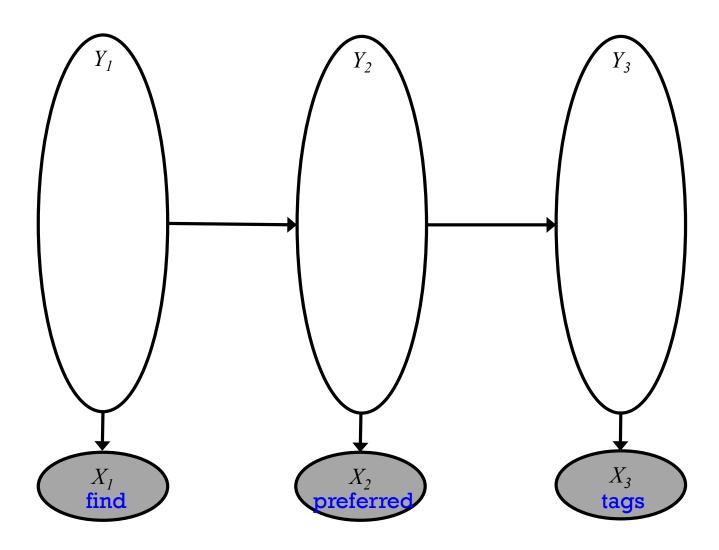
Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

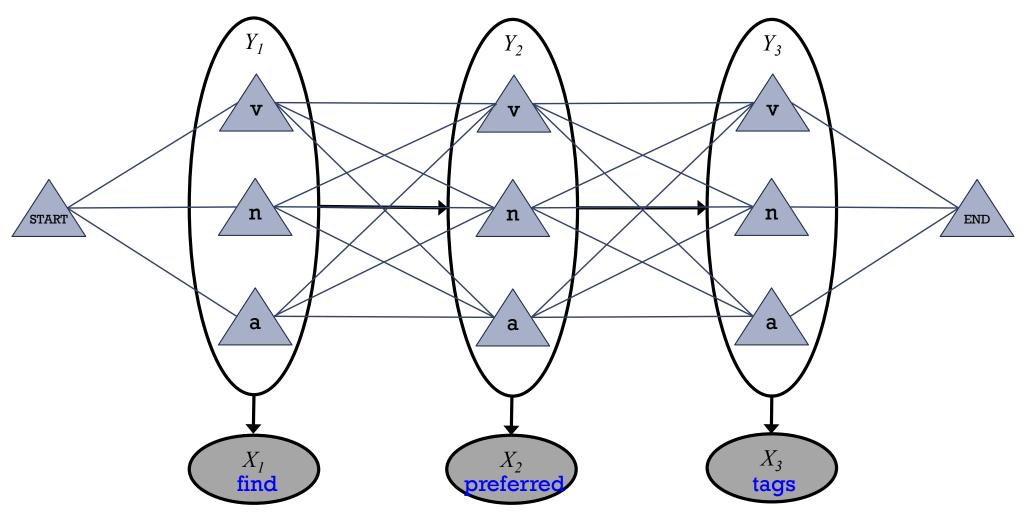
Sample 1:	n	v flies	p like	an	n }	$y^{(1)}$ $x^{(1)}$
Sample 2:	n	n	like	d	n }	$y^{(2)}$ $x^{(2)}$
Sample 3:	n	fly	with	n	n } vings	$y^{(3)}$ $x^{(3)}$
Sample 4:	with	n	you	will	v } see }	$y^{(4)}$ $x^{(4)}$

A Hidden Markov Model (HMM) provides a joint distribution over the the sentence/tags with an assumption of dependence between adjacent tags.

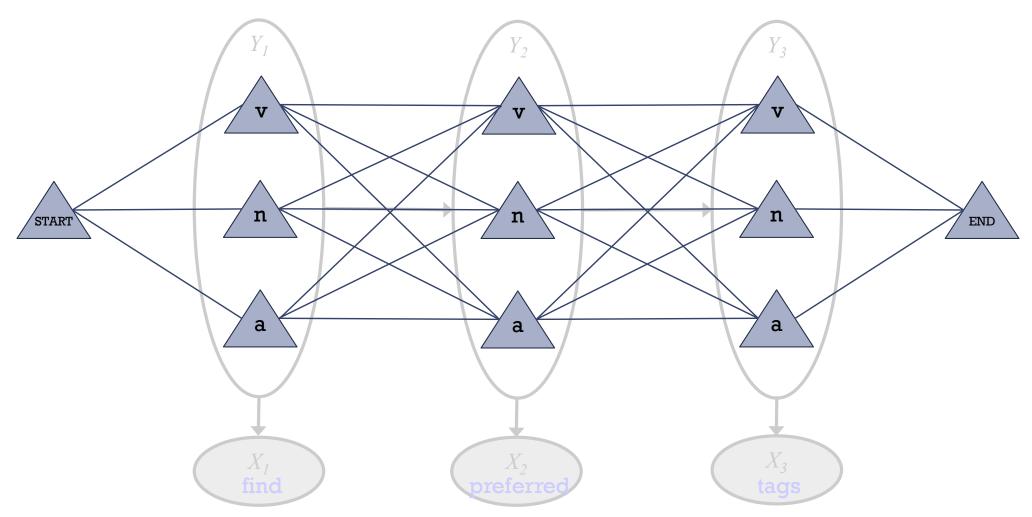




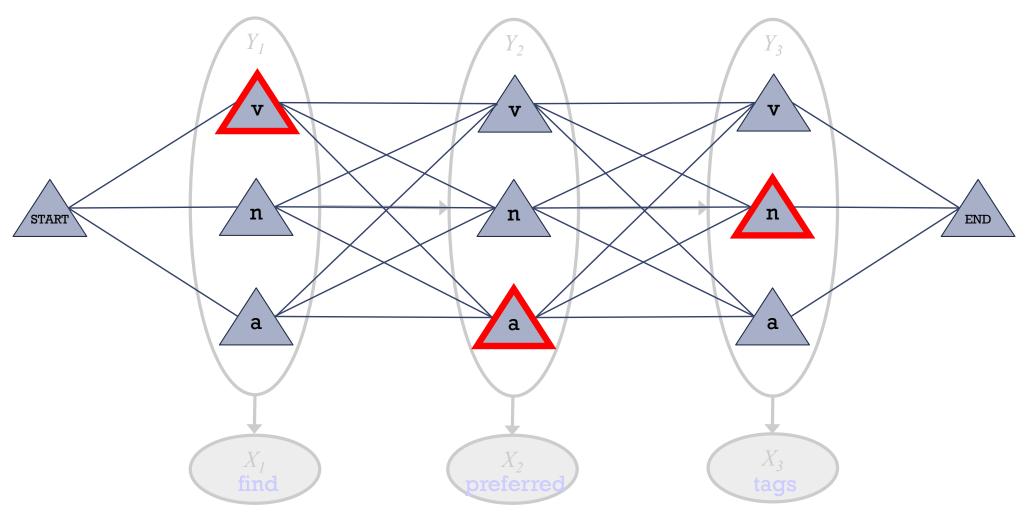




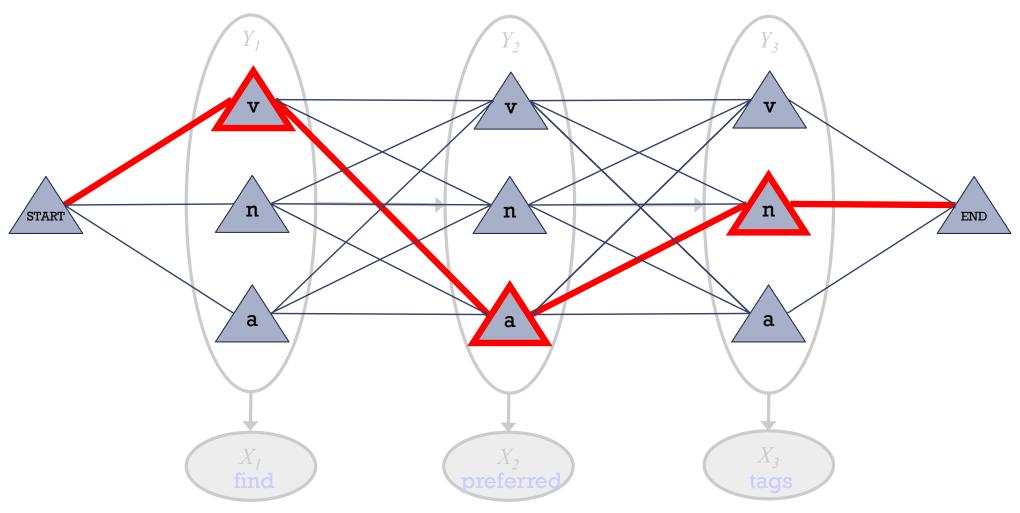
• Let's show the possible values for each variable



• Let's show the possible values for each variable

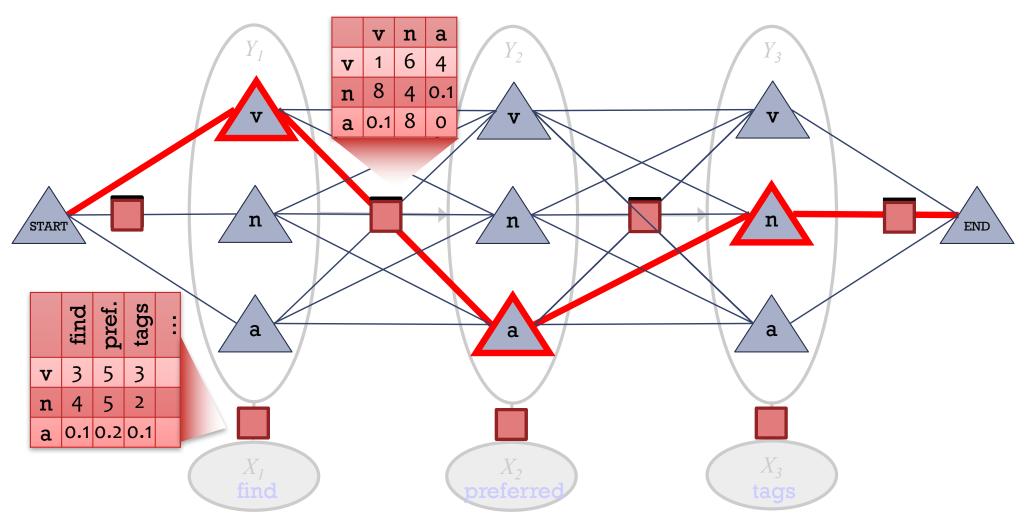


- Let's show the possible values for each variable
- One possible assignment



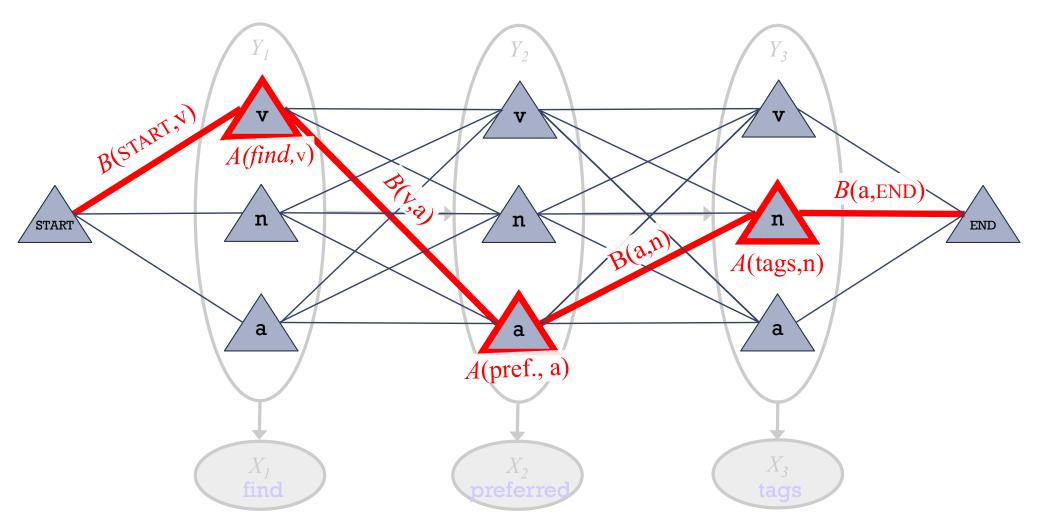
- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Forward-Backward Algorithm



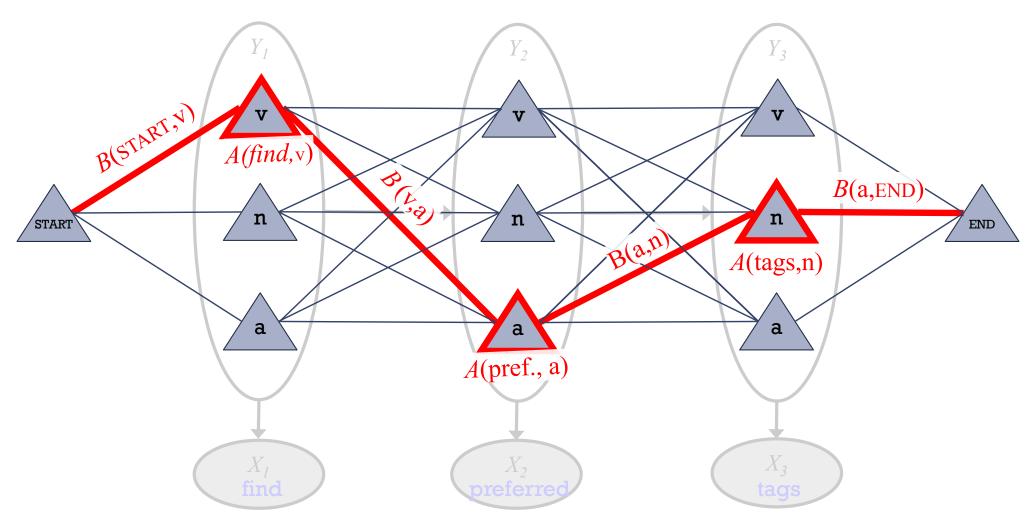
- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Viterbi Algorithm: Most Probable Assignment

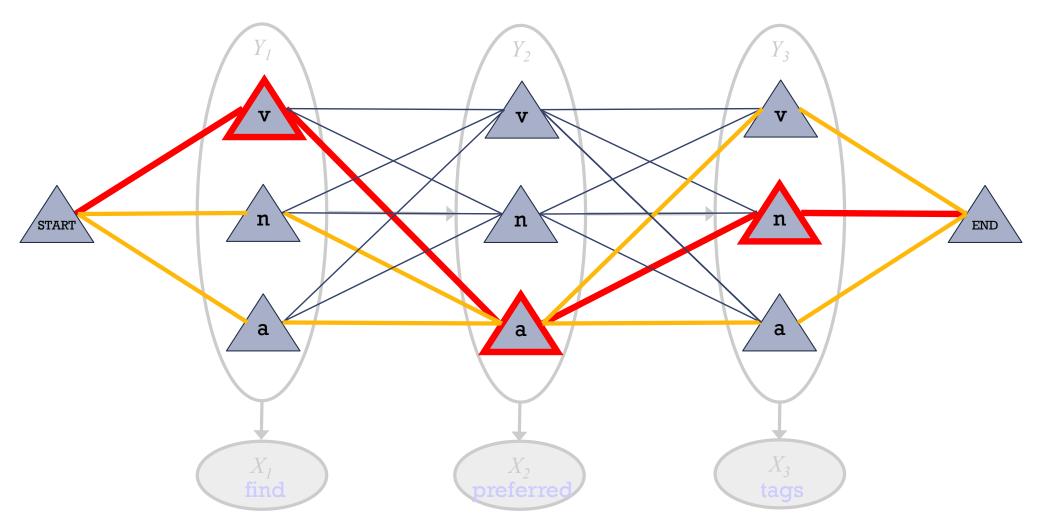


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product of 7 numbers}$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

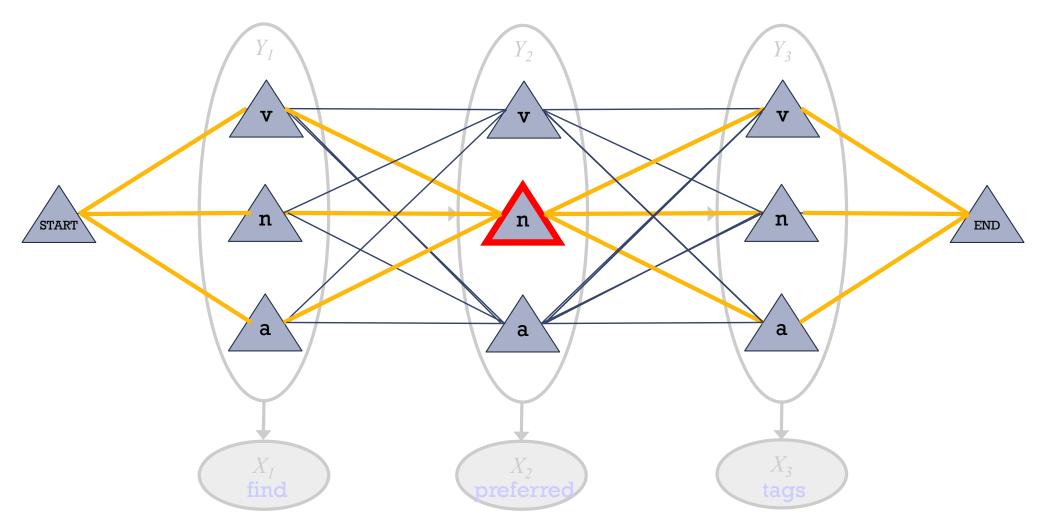
Viterbi Algorithm: Most Probable Assignment



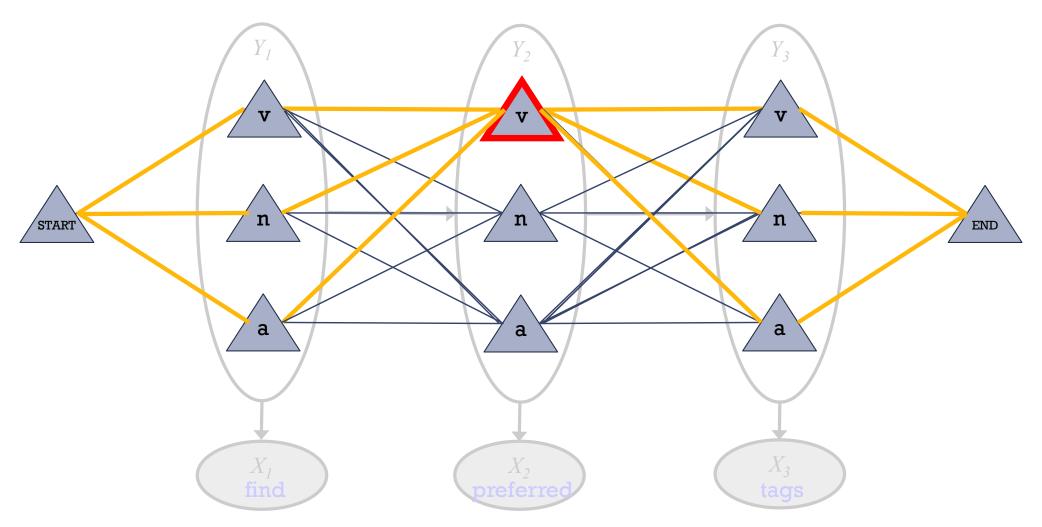
• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$



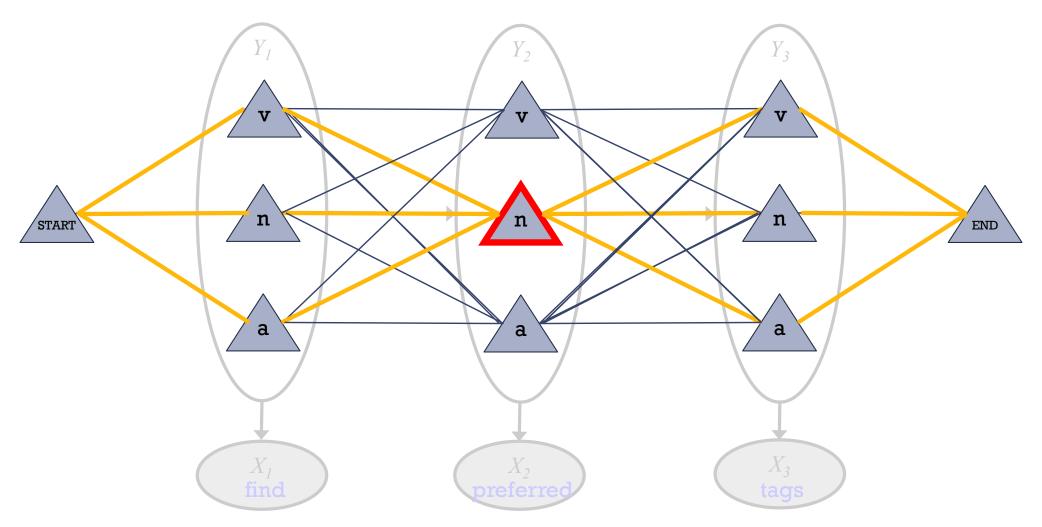
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through a



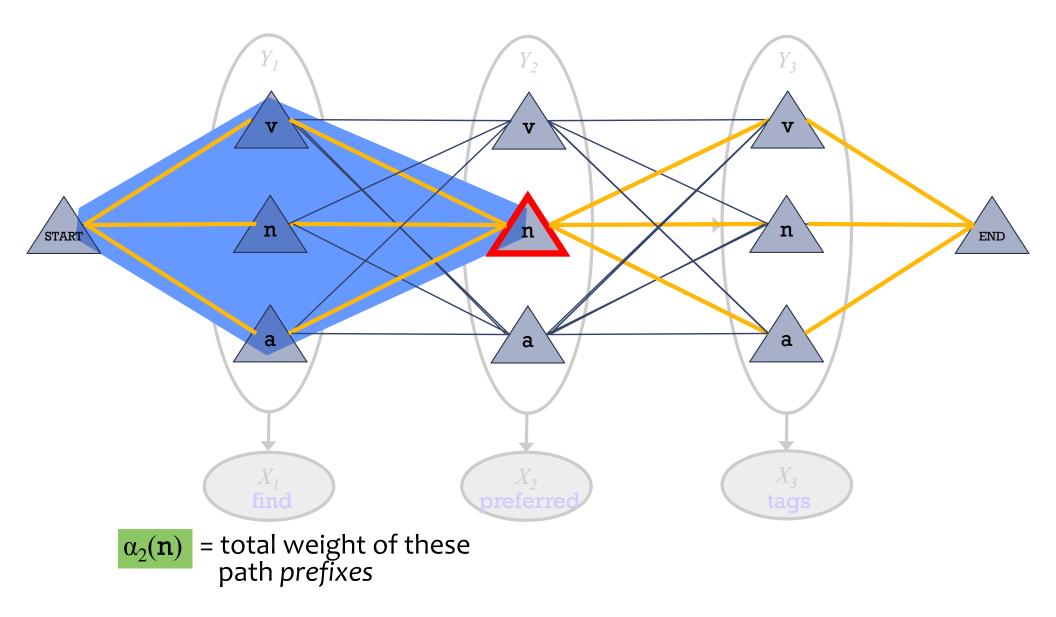
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product weight of one path}$
- Marginal probability $p(Y_2 = n)$ = (1/Z) * total weight of all paths through n



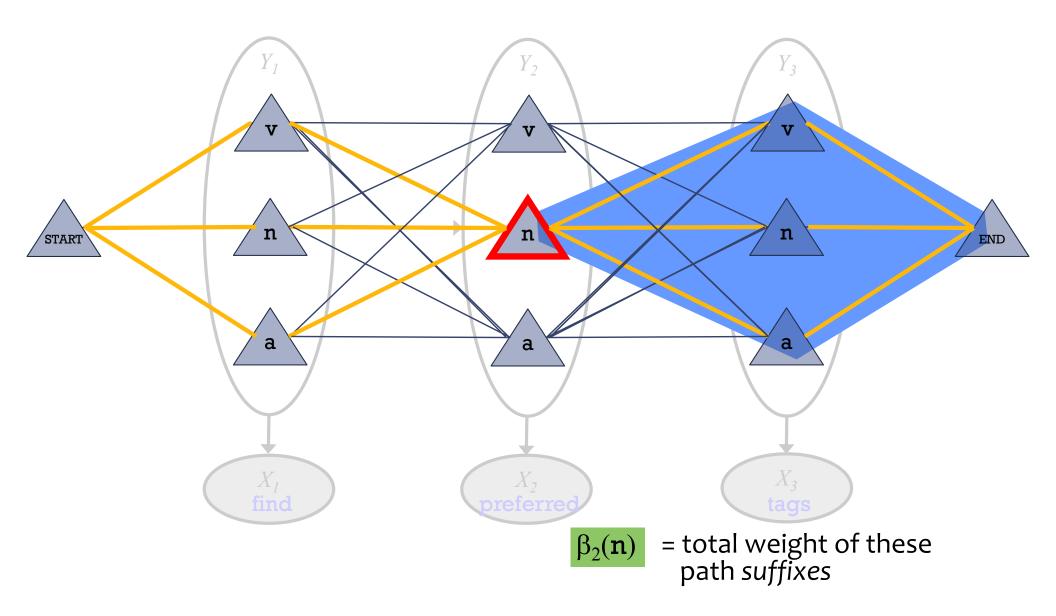
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product weight of one path}$
- Marginal probability $p(Y_2 = v)$ = (1/Z) * total weight of all paths through

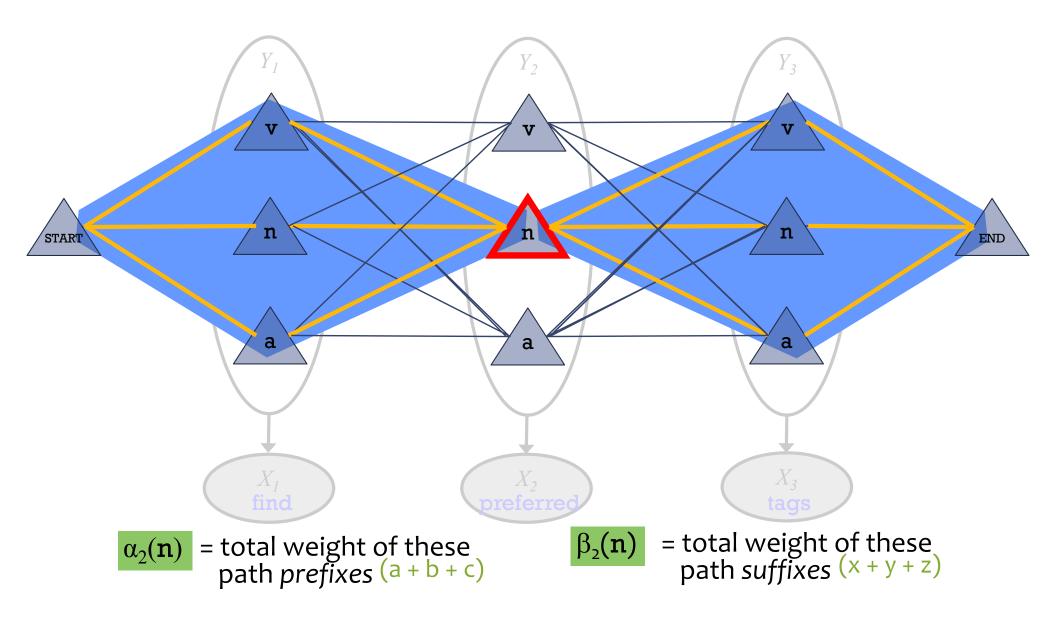


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product weight of one path}$
- Marginal probability $p(Y_2 = n)$ = (1/Z) * total weight of all paths through



48



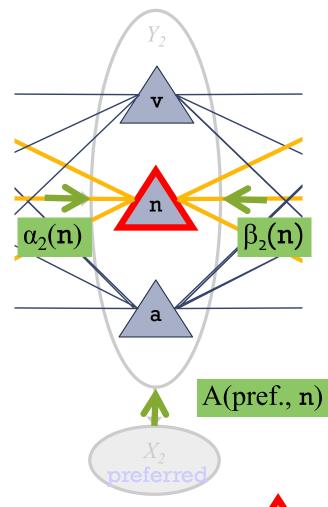


Product gives $\frac{ax+ay+az+bx+by+bz+cx+cy+cz}{ax+ay+az+bx+by+bz+cx+cy+cz} = total weight of <math>\frac{1}{2}$

Oops! The weight of a path through a state also includes a weight at that state.

So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the emission probability at this variable.



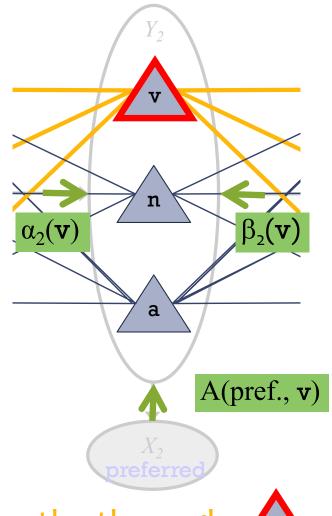
"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{n})$$

$$\alpha_2(\mathbf{n})$$
 A(pref., \mathbf{n}) $\beta_2(\mathbf{n})$

$$\beta_2(n)$$



"belief that $Y_2 = \mathbf{v}$ "

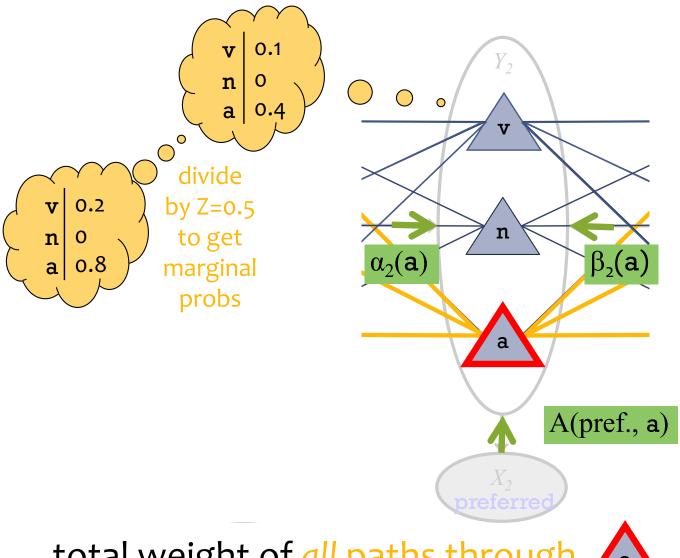
"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{v})$$

A(pref.,
$$\mathbf{v}$$
) $\beta_2(\mathbf{v})$

$$\beta_2(\mathbf{v})$$



"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = \mathbf{a}$ "

sum = Z(total weight of all paths)

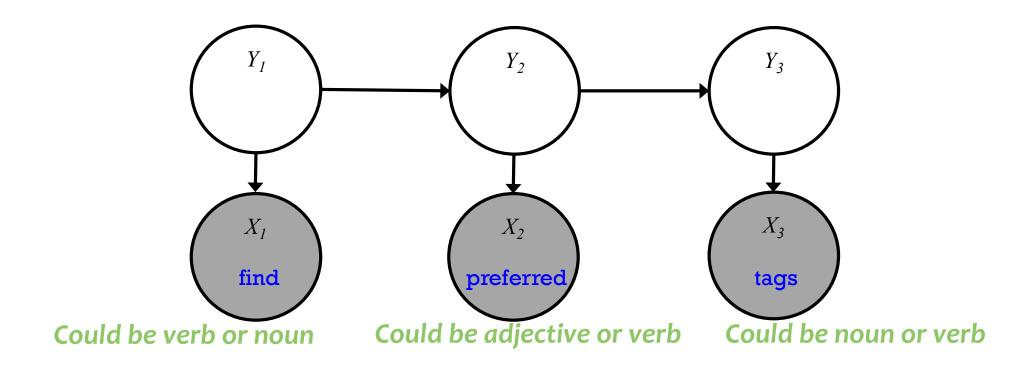
total weight of all paths through

$$= \alpha_2(\mathbf{a})$$

A(pref., a)
$$\beta_2(a)$$

$$\beta_2(a)$$

Forward-Backward Algorithm



Inference for HMMs

Whiteboard

- Derivation of Forward algorithm
- Forward-backward algorithm
- Viterbi algorithm

Inference in HMMs

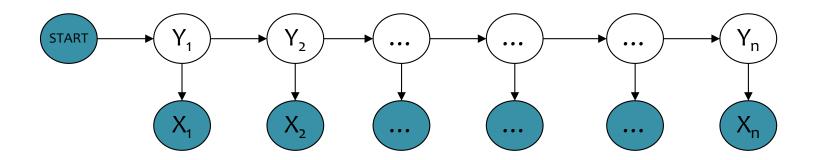
What is the **computational complexity** of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, O(K^T)
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, O(T*K²)
 - Thanks to dynamic programming!

Conditional Random Fields (CRFs) for time series data

LINEAR-CHAIN CRFS

Shortcomings of Hidden Markov Models



- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

Conditional distribution over tags X_i given words w_i . The factors and Z are now specific to the sentence w.

$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4 * 8 * 5 * 3 * ...)$$

$$v \mid p \mid d \quad v \mid p \mid d \quad v \mid 16 \mid 3 \mid 4 \quad n \mid 8 \mid 4 \mid 2 \mid 0.1 \quad p \mid 1 \mid 3 \mid 1 \mid 3 \quad d \mid 0.1 \mid 8 \mid 0 \mid 0$$

$$v \mid 3 \quad n \mid 4 \quad p \mid 0.1 \quad d \mid 0.1$$

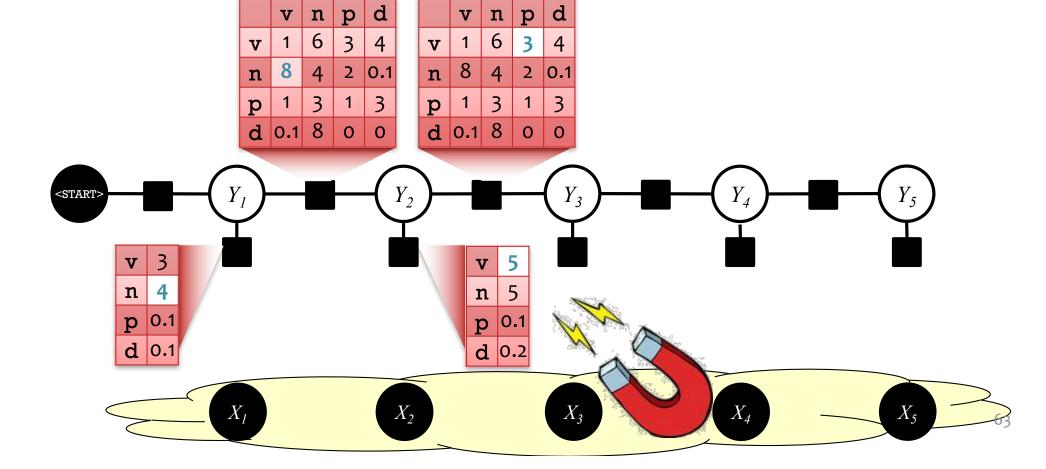
$$v \mid 3 \quad n \mid 4 \quad p \mid 0.1 \quad d \mid 0.1$$

$$v \mid 3 \quad n \mid 4 \quad p \mid 0.1 \quad d \mid 0.1$$

$$v \mid 3 \quad n \mid 4 \quad p \mid 0.1 \quad d \mid 0.2$$

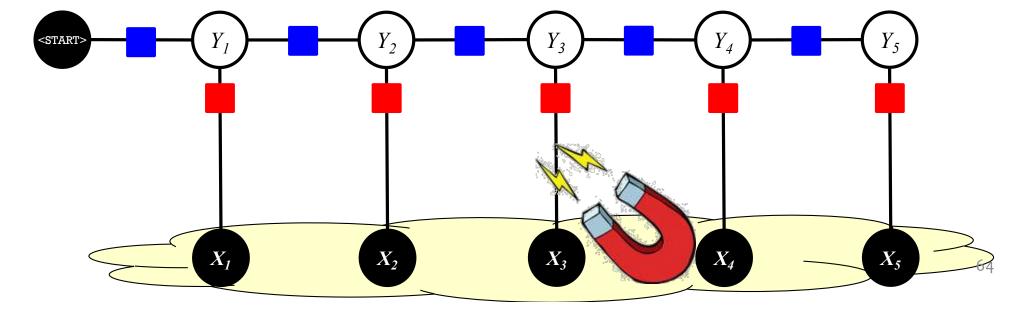
$$v \mid 3 \quad n \mid 4 \quad p \mid 0.1 \quad d \mid 0.2$$

Recall: Shaded nodes in a graphical model are observed



This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\mathsf{em}}(y_k, x_k) \psi_{\mathsf{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{tr}}(y_k, y_{k-1}))$$



Exercise

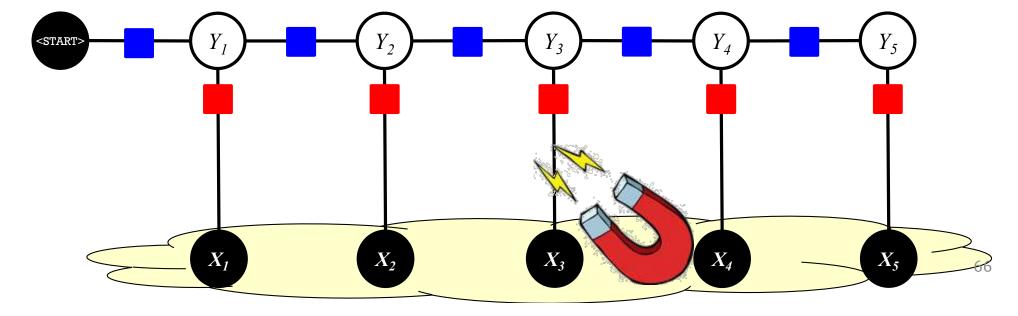
$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))$$

Multiple Choice: Which model does the above distribution share the most in common with?

- A. Hidden Markov Model
- B. Bernoulli Naïve Bayes
- C. Gaussian Naïve Bayes
- D. Logistic Regression

This **linear-chain CRF** is just **like an HMM**, except that its factors are **not** necessarily probability distributions

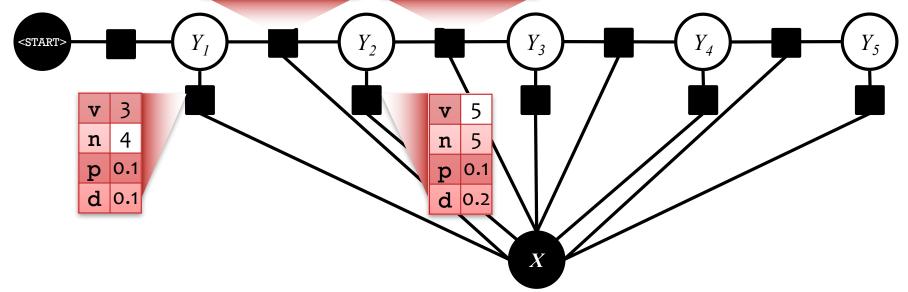
$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, x_k) \psi_{\text{tr}}(y_k, y_{k-1})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, x_k)) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}))$$



- That is the vector X
- Because it's observed, we can condition on it for free
- Conditioning is how we converted from the MRF to the CRF (i.e. when taking a slice of the emission factors)

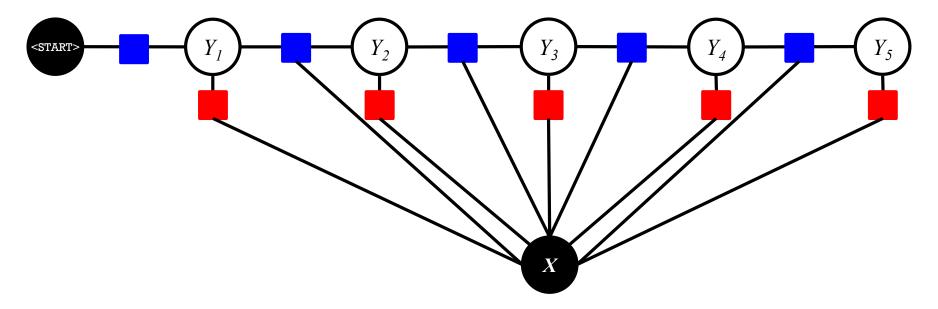
	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0

	v	n	р	d
v	1	6	3	4
n	8	4	2	0.1
р	1	3	1	3
d	0.1	8	0	0



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \psi_{\text{em}}(y_k, \mathbf{x}) \psi_{\text{tr}}(y_k, y_{k-1}, \mathbf{x})$$
$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{em}}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\text{tr}}(y_k, y_{k-1}, \mathbf{x}))$$



- This is the standard linear-chain CRF definition
- It permits rich, overlapping features of the vector X

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \boldsymbol{\psi}_{\mathsf{em}}(y_k, \mathbf{x}) \boldsymbol{\psi}_{\mathsf{tr}}(y_k, y_{k-1}, \mathbf{x})$$

$$= \frac{1}{Z(\mathbf{x})} \prod_{k=1}^{K} \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{em}}(y_k, \mathbf{x})) \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\mathsf{tr}}(y_k, y_{k-1}, \mathbf{x}))$$
THATE
$$Y_I$$

$$Y_2$$

$$Y_3$$

$$Y_4$$

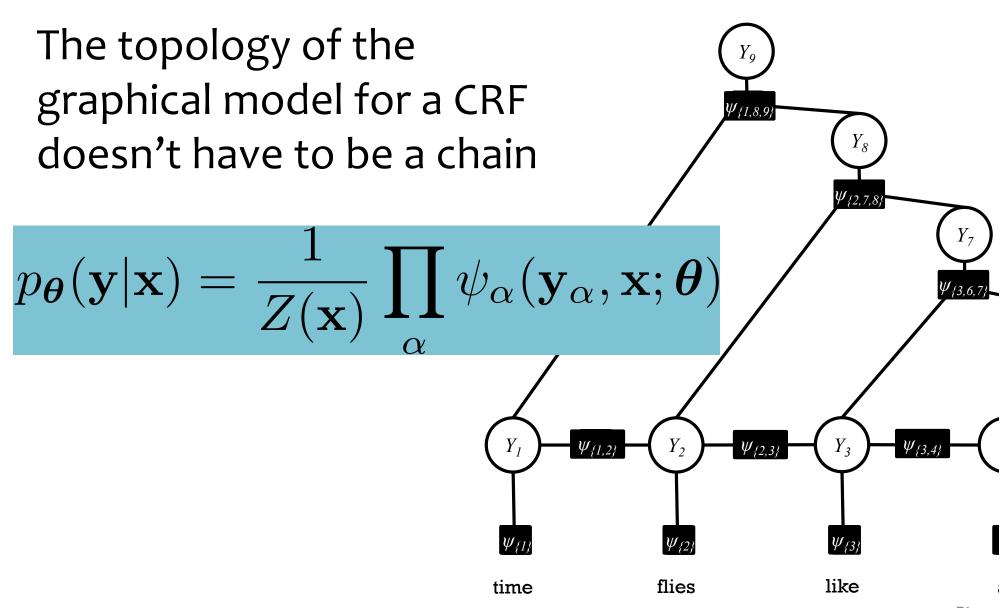
$$Y_5$$

Visual Notation: Usually we draw a CRF **without** showing the variable corresponding to **X**

Whiteboard

 Forward-backward algorithm for linear-chain CRF

General CRF



Standard CRF Parameterization

$$p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{\alpha} \psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta})$$

Define each potential function in terms of a fixed set of feature functions:

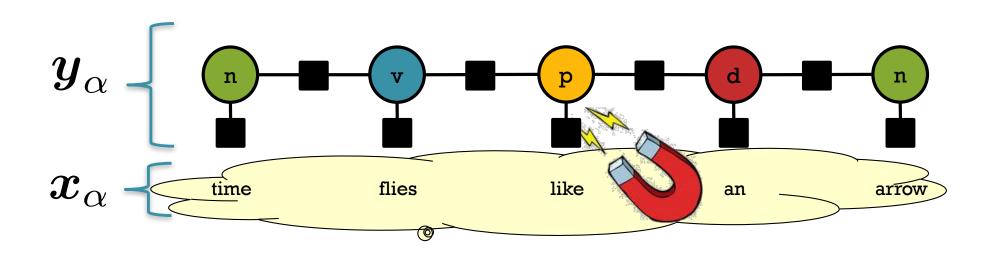
$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$

Predicted Observed variables variables

Standard CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

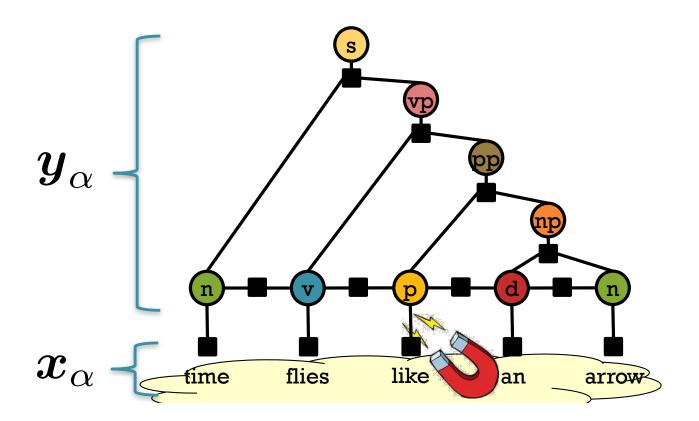
$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



Standard CRF Parameterization

Define each potential function in terms of a fixed set of feature functions:

$$\psi_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}; \boldsymbol{\theta}) = \exp(\boldsymbol{\theta} \cdot \mathbf{f}_{\alpha}(\mathbf{y}_{\alpha}, \mathbf{x}))$$



SUPERVISED LEARNING FOR CRFS

What is Training?

That's easy:

Training = picking **good** model parameters!

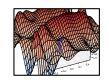
But how do we know if the model parameters are any "good"?

Log-likelihood Training

Choose model

$$p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{y}_{\alpha})$$

$$L(\theta) = \sum_{\boldsymbol{y} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$



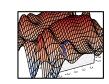
$$\frac{dL(\theta)}{d\theta_j} = \sum_{\boldsymbol{y} \in \mathcal{D}} \left(\sum_{\alpha} \left[f_{\alpha,j}(\boldsymbol{y}_{\alpha}) - \sum_{\boldsymbol{y}'} p_{\theta}(\boldsymbol{y}_{\alpha}') f_{\alpha,j}(\boldsymbol{y}_{\alpha}') \right] \right)$$

Machine Learning

Log-likelihood Training

- Choose model
 Such that derivative in #3 is easy
- $p_{\theta}(\boldsymbol{y}) = \frac{1}{Z} \prod_{\alpha} \exp(\theta \cdot \boldsymbol{f}_{\alpha}(\boldsymbol{y}_{\alpha}))$
- 2. Choose **objective:**Assign high probability to the things we observe and low probability to everything else

$$L(\theta) = \sum_{\boldsymbol{y} \in \mathcal{D}} \log p_{\theta}(\boldsymbol{y})$$



3. Compute derivative by hand using the chain rule

$$egin{equation} rac{dL(heta)}{d heta_j} = \sum_{oldsymbol{y} \in \mathcal{D}} \left(\sum_{lpha} \left[f_{lpha,j}(oldsymbol{y}_lpha) - \sum_{oldsymbol{y}'} p_{ heta}(oldsymbol{y}'_lpha) f_{lpha,j}(oldsymbol{y}'_lpha)
ight]
ight) \end{aligned}$$

4. Compute the marginals by exact inference

Note that these are **factor marginals** which are just the (normalized) **factor beliefs** from BP!

Recipe for Gradient-based Learning

- 1. Write down the objective function
- Compute the partial derivatives of the objective (i.e. gradient, and maybe Hessian)
- Feed objective function and derivatives into black box

4. Retrieve optimal parameters from black box

Optimization Algorithms

What is the black box?

- Newton's method
- Hessian-free / Quasi-Newton methods
 - Conjugate gradient
 - L-BFGS
- Stochastic gradient methods
 - Stochastic gradient descent (SGD)
 - Stochastic meta-descent
 - AdaGrad

Stochastic Gradient Descent

- Suppose we have N training examples s.t. $f(x) = \sum_{i=1}^{N} f_i(x)$.
- This implies that $\nabla f(x) = \sum_{i=1}^{N} \nabla f_i(x)$.

SGD Algorithm:

- 1. Choose a starting point x.
- 2. While not converged:
 - \circ Choose a step size t.
 - Choose i so that it sweeps through the training set.
 - Update

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + t \nabla f_i(\vec{x})$$

Whiteboard

- CRF model
- CRF data log-likelihood
- CRF derivatives

Practical Considerations for Gradient-based Methods

- Overfitting
 - L2 regularization
 - L1 regularization
 - Regularization by early stopping
- For SGD: Sparse updates

"Empirical" Comparison of Parameter Estimation Methods

- Example NLP task: CRF dependency parsing
- Suppose: Training time is dominated by inference
- Dataset: One million tokens
- Inference speed: 1,000 tokens / sec
- → 0.27 hours per pass through dataset

	# passes through data to converge	# hours to converge
GIS	1000+	270
L-BFGS	100+	27
SGD	10	~3

Exact inference for tree-structured factor graphs

BELIEF PROPAGATION

Inference for HMMs

- Sum-product BP on an HMM is called the forward-backward algorithm
- Max-product BP on an HMM is called the Viterbi algorithm

Inference for CRFs

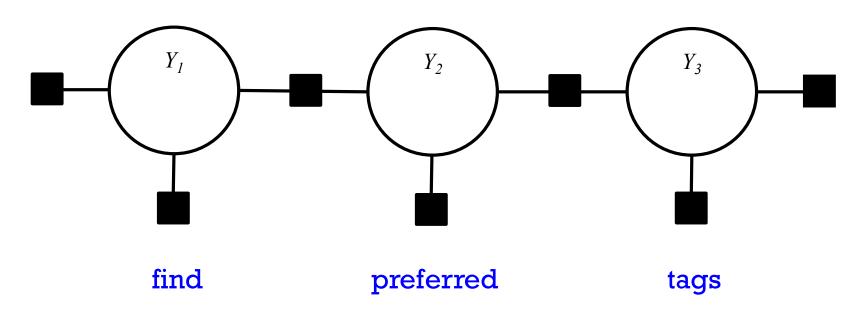
- Sum-product BP on a CRF is called the forward-backward algorithm
- Max-product BP on a CRF is called the Viterbi algorithm

THE FORWARD-BACKWARD ALGORITHM

Learning and Inference Summary

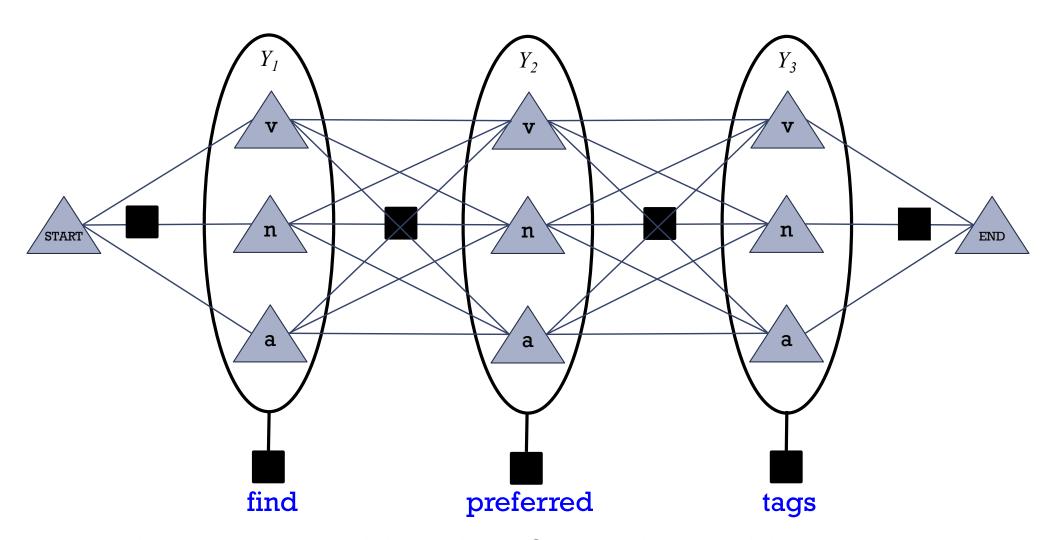
For discrete variables:

	Learning	Marginal Inference	MAP Inference
НММ		Forward- backward	Viterbi
Linear-chain CRF		Forward- backward	Viterbi

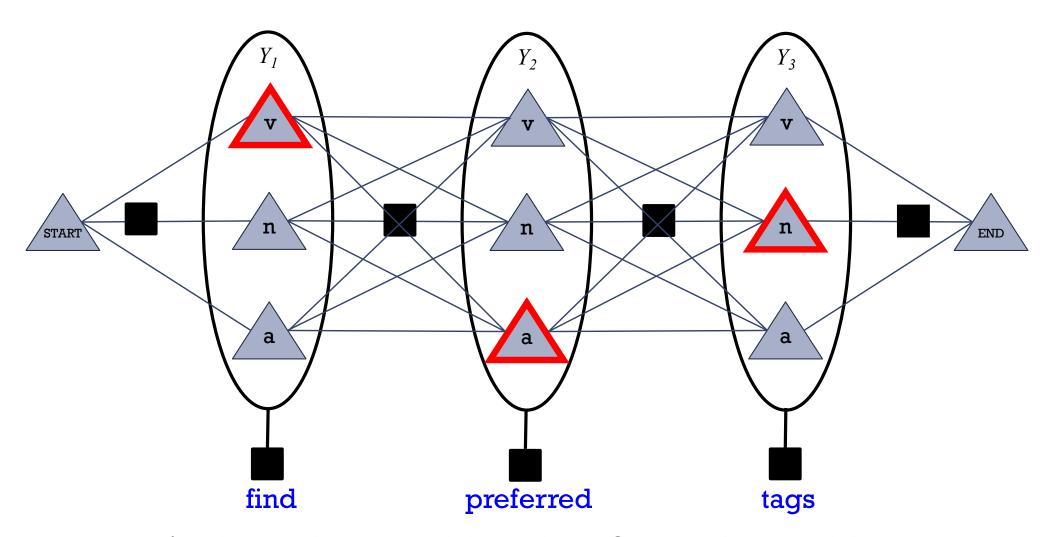


Could be verb or noun

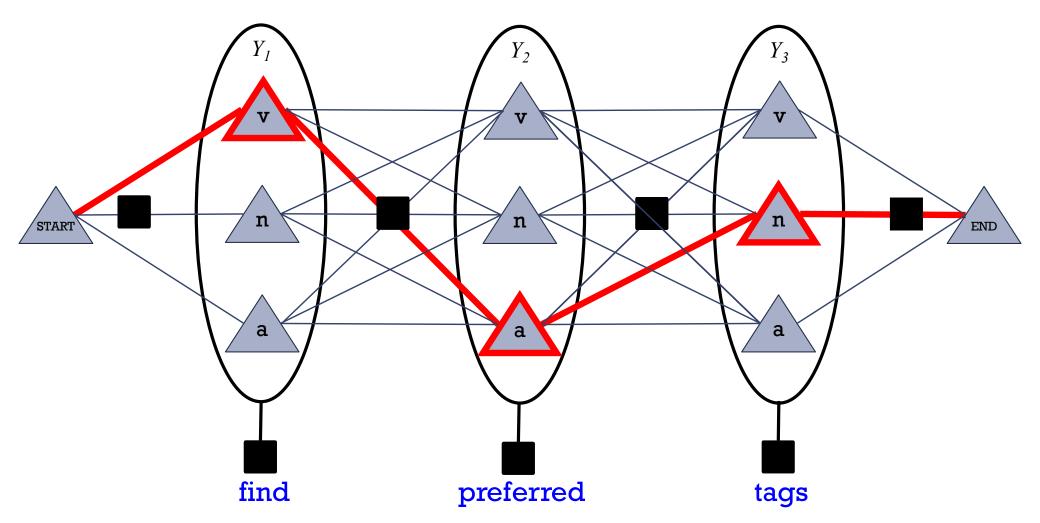
Could be adjective or verb Could be noun or verb



• Show the possible values for each variable

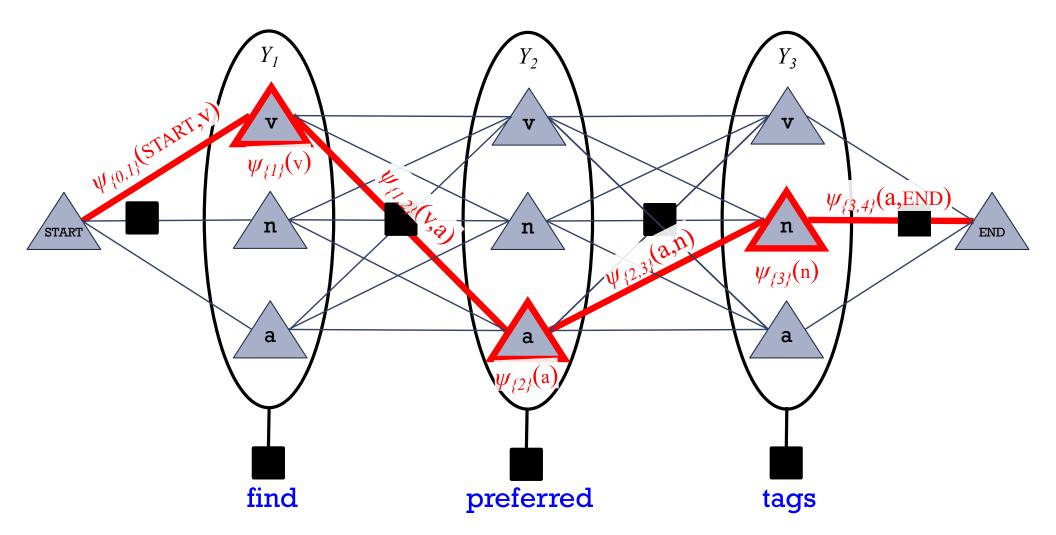


- Let's show the possible values for each variable
- One possible assignment



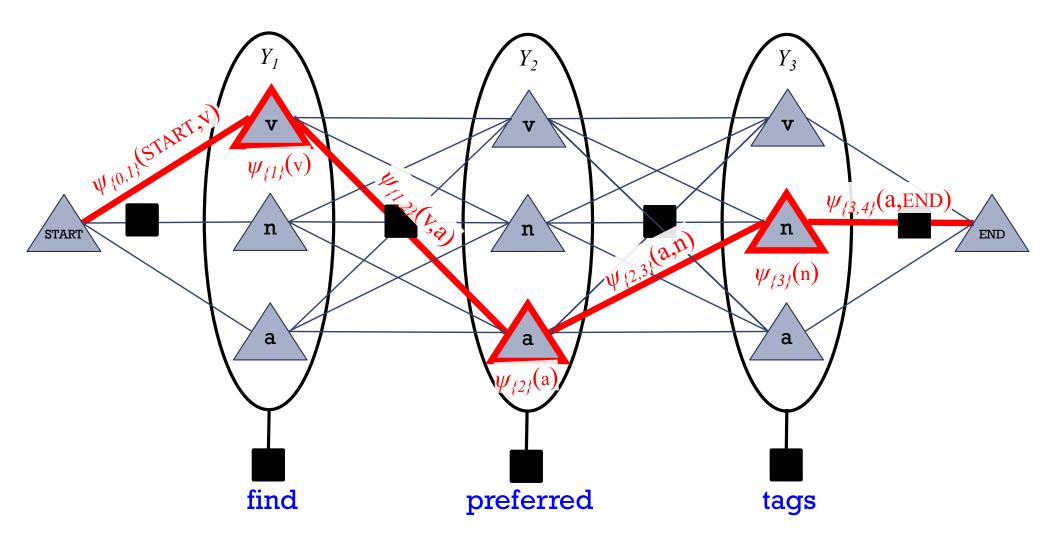
- Let's show the possible values for each variable
- One possible assignment
- And what the 7 factors think of it ...

Viterbi Algorithm: Most Probable Assignment

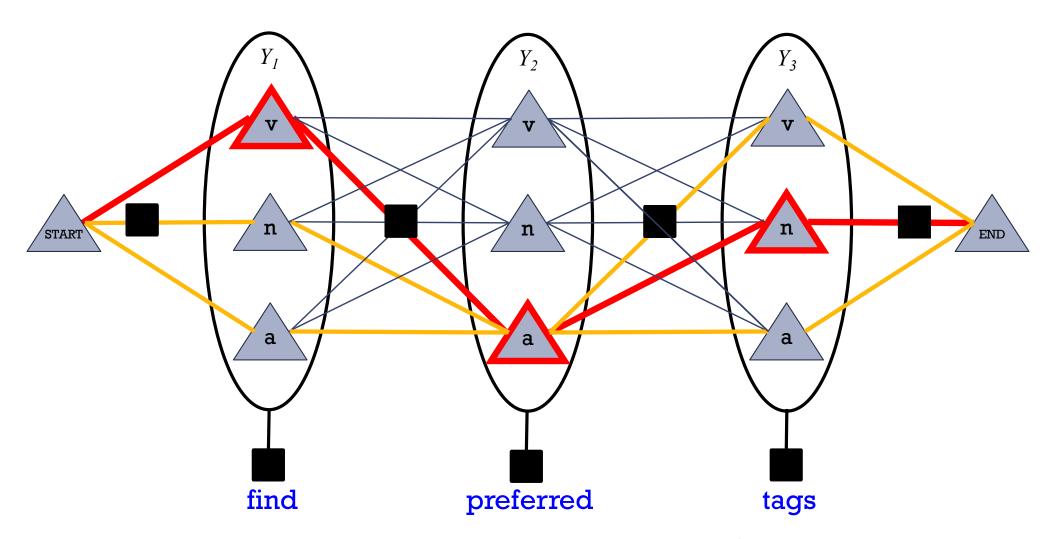


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product of 7 numbers$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

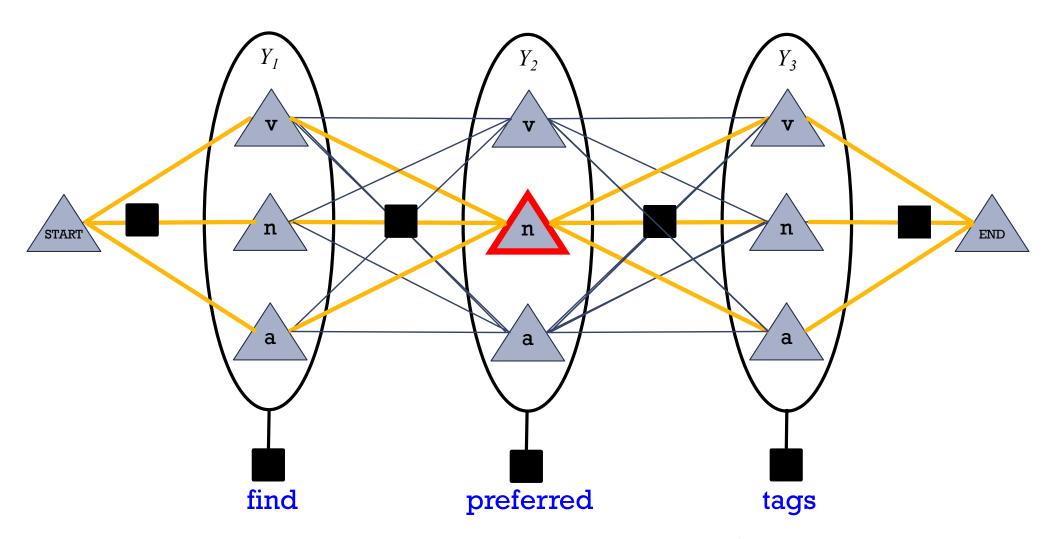
Viterbi Algorithm: Most Probable Assignment



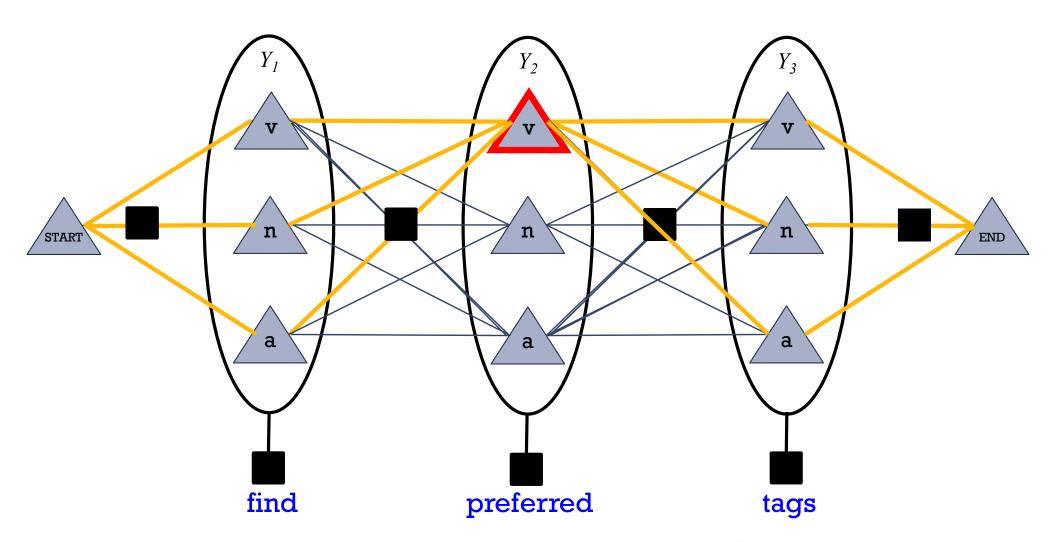
• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$



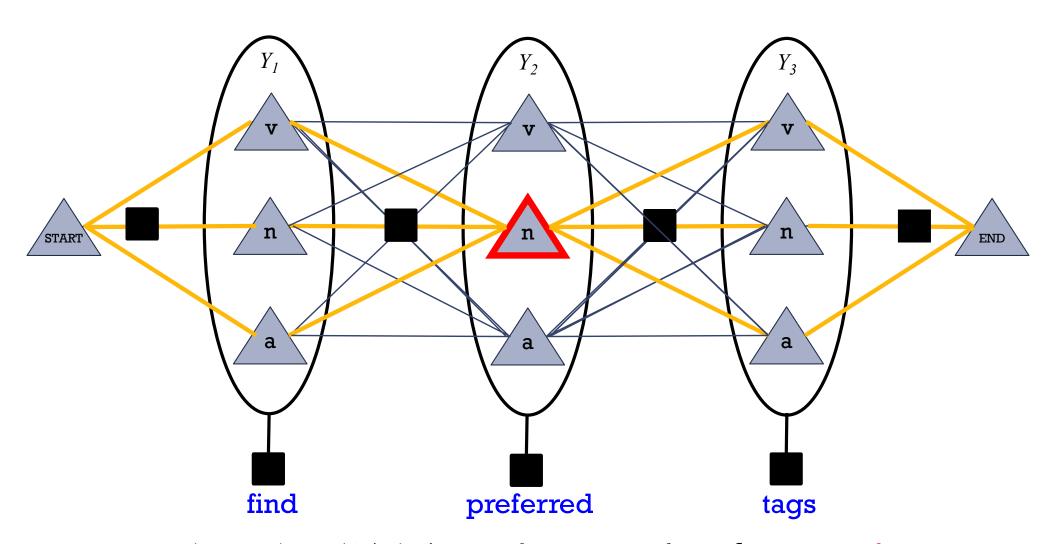
- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through a



- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through

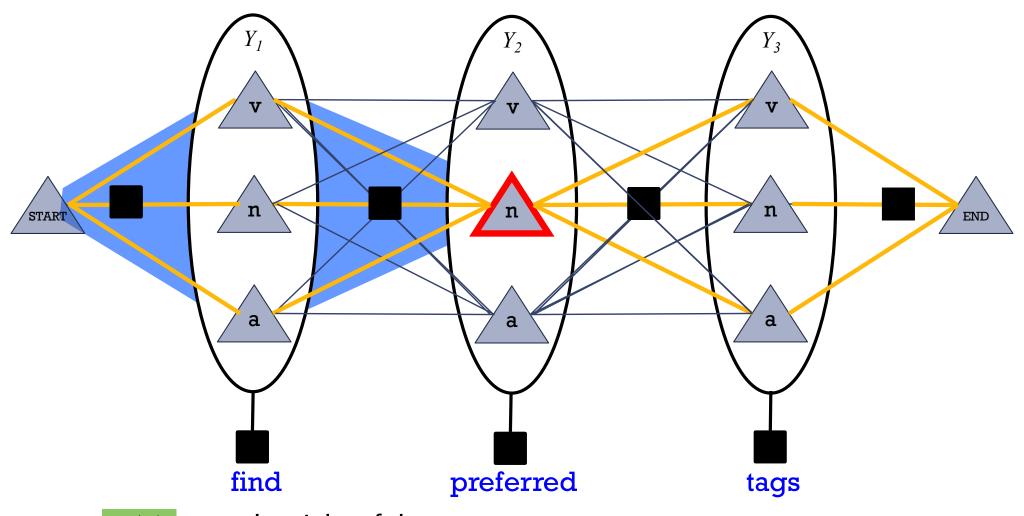


- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through

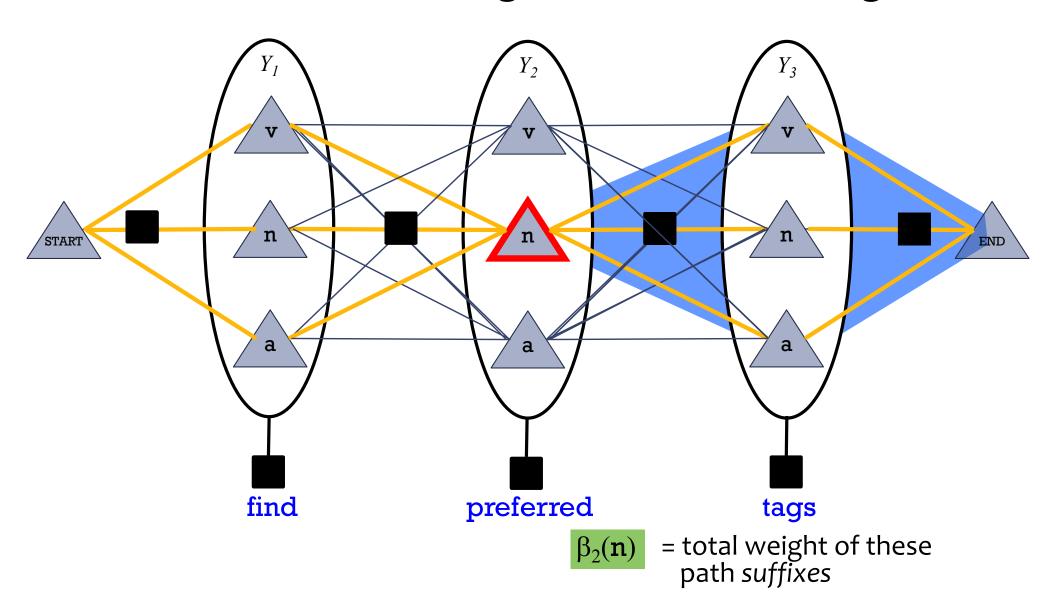


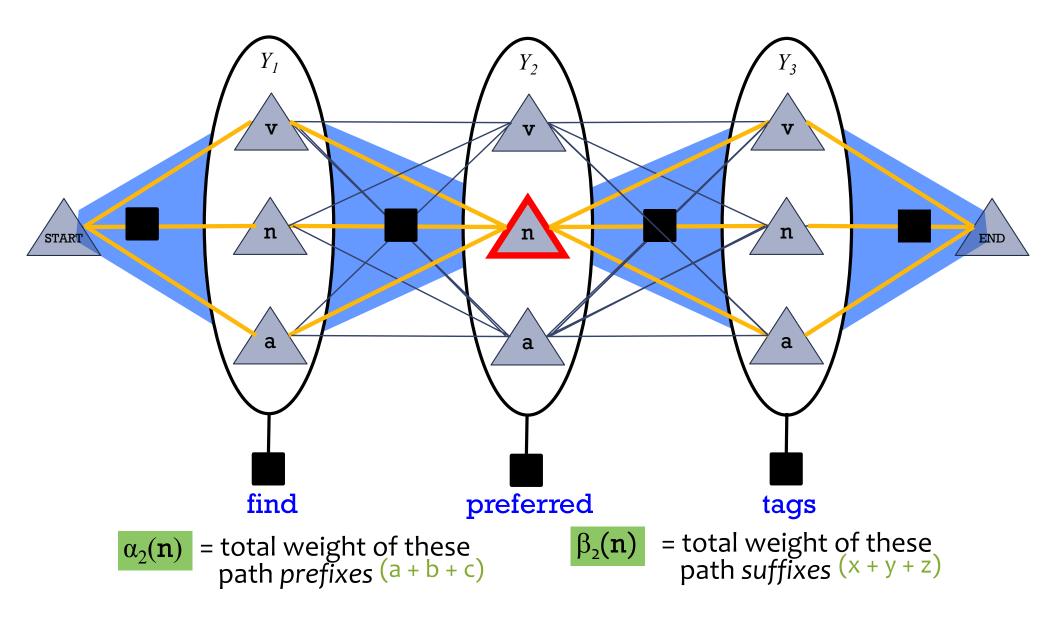
• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$

• Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through n



 $\alpha_2(\mathbf{n})$ = total weight of these path *prefixes*



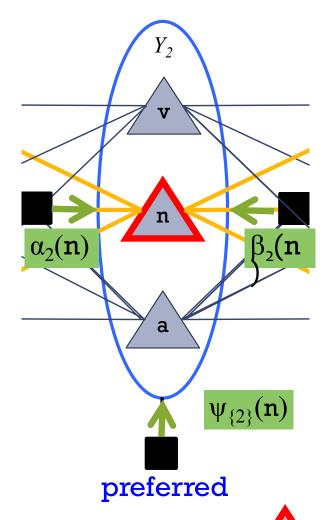


Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Oops! The weight of a path through a state also includes a weight at that state.

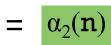
So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the unigram factor at this variable.



"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through



 $\psi_{\{2\}}(n)$

103



"belief that $Y_2 = \mathbf{v}$ "

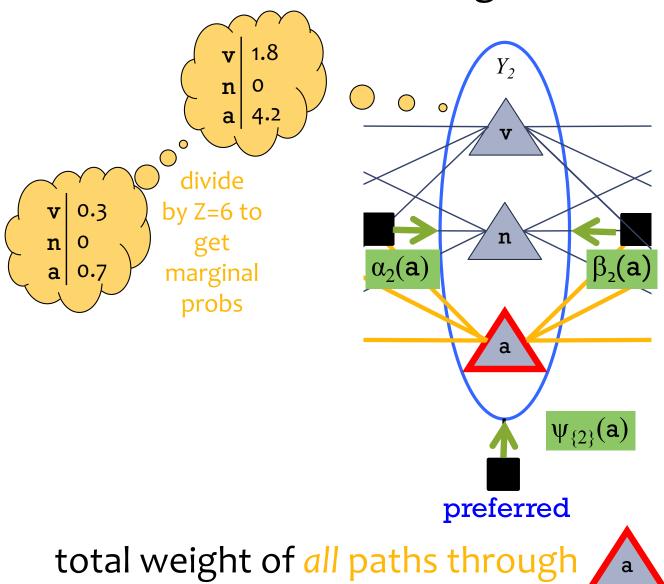
"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{v})$$

$$\psi_{\{2\}}(\mathbf{v})$$

$$\beta_2(\mathbf{v})$$



"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = \mathbf{a}$ "

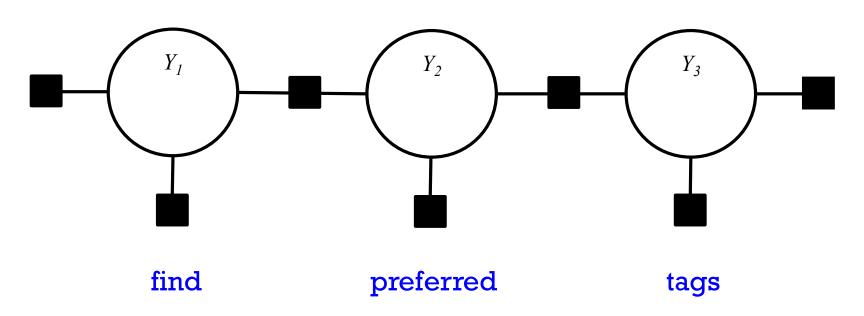
sum = Z(total probability of all paths)

$$= \alpha_2(\mathbf{a})$$

$$\psi_{\{2\}}(a)$$

$$\beta_2(a)$$

CRF Tagging Model



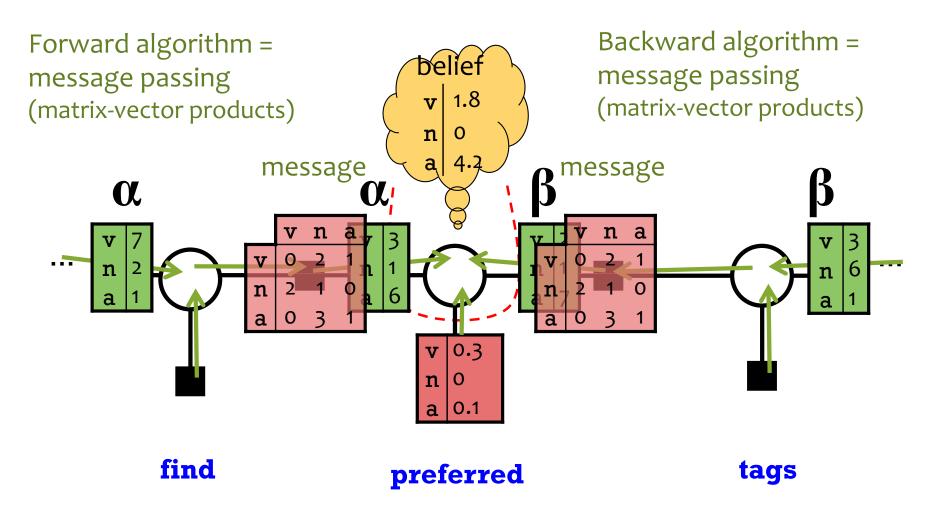
Could be verb or noun

Could be adjective or verb Could be noun or verb

Whiteboard

- Forward-backward algorithm
- Viterbi algorithm

CRF Tagging by Belief Propagation



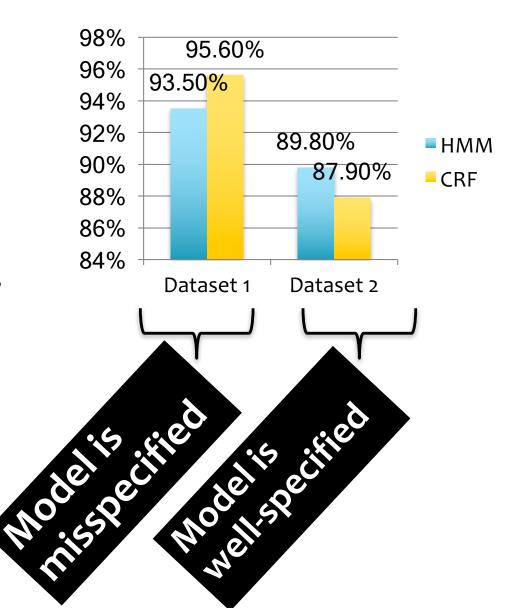
- Forward-backward is a message passing algorithm.
- It's the simplest case of belief propagation.

HMMS VS CRFS

Generative vs. Discriminative

Liang & Jordan (ICML 2008) compares **HMM** and **CRF** with **identical features**

- Dataset 1: (Real)
 - WSJ Penn Treebank(38K train, 5.5K test)
 - 45 part-of-speech tags
- Dataset 2: (Artificial)
 - Synthetic data
 generated from HMM
 learned on Dataset 1
 (1K train, 1K test)
- Evaluation Metric: Accuracy



CRFs: some empirical results

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM+	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF⁺ > MEMM⁺ >>

SUMMARY

Summary: Learning and Inference

For discrete variables:

	Learning	Marginal Inference	MAP Inference
НММ	MLE by counting	Forward- backward	Viterbi
Linear-chain CRF	Gradient based – doesn't decompose because of $Z(x)$ and requires marginal inference	Forward- backward	Viterbi

Summary: Models

	Classification	Structured Prediction
Generative	Naïve Bayes	HMM
Discriminative	Logistic Regression	CRF