
Hidden Markov Models
+

Conditional Random Fields

1

10-715 Advanced Intro. to Machine Learning

Matt Gormley
Guest Lecture 2

Oct. 31, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University

2

1. Data 2. Model

4. Learning5. Inference

3. Objective
`(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤
= argmax

✓
`(✓;D)p(xC) =

X

x

0:x0
C=xC

p(x0 | ✓)

Z(✓) =
X

x

Y

C2C
 C(xC)

D = {x(n)}Nn=1

n n v d nSample
2:

time likeflies an arrow

n v p d n
Sample 1:

time likeflies an arrow

p n n v vSample
4:

with youtime will see

n v p n nSample
3:

flies withfly their wings

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

1. Marginal Inference

2. Partition Function

ˆ

x = argmax

x

p(x | ✓)
3. MAP Inference

HIDDEN MARKOV MODEL (HMM)

3

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

4

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

time flies like an arrow

n v p d n

Naïve Bayes for Time Series Data

5

We could treat each word-tag pair (i.e. token) as independent. This
corresponds to a Naïve Bayes model with a single feature (the word).

v .1
n .8
p .2
d .2

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .1 * .5 * …)

v .1
n .8
p .2
d .2

time flies like an arrow

n v p d n<START>

Hidden Markov Model

6

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * …)

HMM:

“Naïve Bayes”:

From Mixture Model to HMM

7

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

HMM:

“Naïve Bayes”:

From Mixture Model to HMM

8

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

SUPERVISED LEARNING FOR
HMMS

10

HMM Parameters:

Hidden Markov Model

12

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O .8
S .1
C .1

HMM Parameters:

Assumption:
Generative Story:

Hidden Markov Model

13X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational

convenience, we fold the
initial probabilities C into
the transition matrix B by

our assumption.

Joint Distribution:

Hidden Markov Model

14X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

y0 = START

Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM

15

Supervised Learning for HMMs
Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

16

Yt Yt+1

Xt

Yt

Supervised Learning for HMMs
Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

17

Yt Yt+1

Xt

Yt

HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler (major player in

learning theory in 80’s) began to use HMMs for
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web

using logic programs, grammar induction, etc.
– McCallum: multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

19
Slide from William Cohen

Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

20

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

BACKGROUND: MESSAGE PASSING

21

Great Ideas in ML: Message Passing

3
behind
you

2
behind
you

1
behind
you

4
behind
you

5
behind
you

1
before
you

2
before
you

there's
1 of me

3
before
you

4
before
you

5
before
you

Count the soldiers

22
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

3
behind
you

2
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of
us

only see
my incoming
messages

2 31

Count the soldiers

23
adapted from MacKay (2003) textbook

2
before
you

Great Ideas in ML: Message Passing

4
behind
you

1 before
you

there's
1 of me

only see
my incoming
messages

Count the soldiers

24
adapted from MacKay (2003) textbook

Belief:
Must be
2 + 1 + 3 = 6 of
us
2 31

Belief:
Must be
1 + 1 + 4 = 6 of
us

1 41

Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of tree

25
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of tree

26
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of tree

27
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of tree

28
adapted from MacKay (2003) textbook

Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of tree

7 here

3 here

3 here

Belief:
Must be
14 of us

29
adapted from MacKay (2003) textbook

THE FORWARD-BACKWARD
ALGORITHM

30

Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Decoding: Find the most-likely sequence of hidden
states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

31

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

32

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

time flies like an arrow

n v p d n<START>

Hidden Markov Model

34

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m

e
fli

es
lik

e
…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 * .8 * .2 * .5 * …)

X3X2X1

Y2 Y3Y1

35

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Forward-Backward Algorithm

36

Y2 Y3Y1

X3X2X1
find preferred tags

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

37

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

38

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

39

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

40

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

41

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
fin

d
p

re
f.

ta
g

s
…

v 3 5 3
n 4 5 2
a 0.1 0.2 0.1

v n a
v 1 6 4
n 8 4 0.1
a 0.1 8 0

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

42

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(a,END)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

43

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path

B(a,END)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

44

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

45

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

46

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

47

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

48

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

49

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals

50

b2(n)
(a + b + c) (x + y + z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

51

total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path
through a state also

includes a weight at that
state.

So α(n)·β(n) isn’t enough.

The extra weight is the
opinion of the emission

probability at this variable.

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

52

total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)

n

v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

53

total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide
by Z=0.5

to get
marginal

probs

X3X2X1

Y2 Y3Y1

54

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Inference for HMMs

Whiteboard
– Derivation of Forward algorithm
– Forward-backward algorithm
– Viterbi algorithm

55

Inference in HMMs
What is the computational complexity of
inference for HMMs?

• The naïve (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

59

LINEAR-CHAIN CRFS
Conditional Random Fields (CRFs) for time series data

60

Shortcomings of
Hidden Markov Models

• HMM models capture dependences between each state and only its
corresponding observation

– NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

• Mismatch between learning objective function and prediction objective
function

– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 61

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START

Conditional Random Field (CRF)

62time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

Conditional distribution over tags Xi given words wi.
The factors and Z are now specific to the sentence w.

p(n, v, p, d, n | time, flies, like, an, arrow) = (4 * 8 * 5 * 3 * …)

Conditional Random Field (CRF)

63

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v 5
n 5
p 0.1
d 0.2

X1 X2 X3 X4 X5

Recall: Shaded nodes in a graphical model are observed

Conditional Random Field (CRF)

64

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

X1 X2 X3 X4 X5

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

p(|) =
1

Z()

K�

k=1

�em(yk, xk)�tr(yk, yk�1)

=
1

Z()

K�

k=1

(� · em(yk, xk)) (� · tr(yk, yk�1))

Exercise

Multiple Choice: Which model does the above
distribution share the most in common with?

A. Hidden Markov Model
B. Bernoulli Naïve Bayes
C. Gaussian Naïve Bayes
D. Logistic Regression

65

p(|) =
1

Z()

K�

k=1

�em(yk, xk)�tr(yk, yk�1)

=
1

Z()

K�

k=1

(� · em(yk, xk)) (� · tr(yk, yk�1))

Conditional Random Field (CRF)

66

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

X1 X2 X3 X4 X5

This linear-chain CRF is just like an HMM, except that its factors
are not necessarily probability distributions

p(|) =
1

Z()

K�

k=1

�em(yk, xk)�tr(yk, yk�1)

=
1

Z()

K�

k=1

(� · em(yk, xk)) (� · tr(yk, yk�1))

Conditional Random Field (CRF)

67

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

v 3
n 4
p 0.1
d 0.1

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

v n p d
v 1 6 3 4
n 8 4 2 0.1
p 1 3 1 3
d 0.1 8 0 0

X

• That is the vector X
• Because it’s observed, we can condition on it for free
• Conditioning is how we converted from the MRF to the CRF

(i.e. when taking a slice of the emission factors)

v 5
n 5
p 0.1
d 0.2

Conditional Random Field (CRF)

68

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

X

• This is the standard linear-chain CRF definition
• It permits rich, overlapping features of the vector X

p(|) =
1

Z()

K�

k=1

�em(yk,)�tr(yk, yk�1,)

=
1

Z()

K�

k=1

(� · em(yk,)) (� · tr(yk, yk�1,))

Conditional Random Field (CRF)

69

Y1 ψ2 Y2 ψ4 Y3 ψ6 Y4 ψ8 Y5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0<START>

• This is the standard linear-chain CRF definition
• It permits rich, overlapping features of the vector X

p(|) =
1

Z()

K�

k=1

�em(yk,)�tr(yk, yk�1,)

=
1

Z()

K�

k=1

(� · em(yk,)) (� · tr(yk, yk�1,))

Visual Notation: Usually we
draw a CRF without showing
the variable corresponding to X

Whiteboard

• Forward-backward algorithm
for linear-chain CRF

70

General CRF

71

The topology of the
graphical model for a CRF
doesn’t have to be a chain

Y1

ψ1

ψ2 Y2

ψ3

Y3

ψ5

Y

ψ

time likeflies an

Y8

Y7

Y9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

p�(|) =
1

Z()

�

�

��(�, ; �)

Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

72

p�(|) =
1

Z()

�

�

��(�, ; �)

Predicted
variables

Observed
variables

��(�, ; �) = (� · �(�,))

Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

73

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

��(�, ; �) = (� · �(�,))

Standard CRF Parameterization

Define each potential function in terms of a
fixed set of feature functions:

74

n

ψ1

ψ2 v

ψ3

ψ4 p

ψ5

ψ6 d

ψ7

ψ8 n

ψ9

time likeflies an arrow

np
ψ10

vp
ψ12

pp
ψ11

s
ψ13

��(�, ; �) = (� · �(�,))

SUPERVISED LEARNING FOR CRFS

75

What is Training?

That’s easy:

Training = picking good model parameters!

But how do we know if the
model parameters are any “good”?

76

Machine
Learning

Log-likelihood Training
1. Choose model

Such that derivative in #3 is ea

2. Choose objective:
Assign high probability to the
things we observe and low
probability to everything else

77

3. Compute
derivative by
hand using the
chain rule

4. Replace exact
inference by
approximate
inference

Log-likelihood Training
1. Choose model

Such that derivative in #3 is easy

2. Choose objective:
Assign high probability to the
things we observe and low
probability to everything else

78

3. Compute
derivative by
hand using the
chain rule

4. Compute the
marginals by
exact inference

Machine
Learning

Note that these are factor marginals
which are just the (normalized)
factor beliefs from BP!

Recipe for Gradient-based Learning

1. Write down the objective function
2. Compute the partial derivatives of the

objective (i.e. gradient, and maybe Hessian)
3. Feed objective function and derivatives into

black box

4. Retrieve optimal parameters from black
box

79

Optimization

Optimization Algorithms

What is the black box?
• Newton’s method
• Hessian-free / Quasi-Newton methods

– Conjugate gradient
– L-BFGS

• Stochastic gradient methods
– Stochastic gradient descent (SGD)
– Stochastic meta-descent
– AdaGrad

80

Optimization

Stochastic Gradient Descent

81

• Gradient Descent:

~x(k+1)

= ~x(k) + tOf(~x) = ~x(k) + t
NX

i=1

Of
i

(x)

• SGD Algorithm:
1. Choose a starting point x.
2. While not converged:

� Choose a step size t.
� Choose i so that it sweeps through the training set.
� Update

~x(k+1)

= ~x(k) + tOf
i

(~x)

• For CRF training Stochastic Meta Descent is even better (Vishwanathan, 2006).

2.2 Additional readings

• PGM Appendix A.5: Continuous Optimization
• Boyd & Vandenberghe “Convex Optimization” http://www.stanford.edu/b̃oyd/cvxbook/

� Chapter 9: Unconstrained Minimization
⌅ 9.3 Gradient Descent
⌅ 9.4 Steepest Descent
⌅ 9.5 Newton’s Method

• Intuitive explanation of Lagrange Multipliers (without the assumption of differentiability):
http://www.umiacs.umd.edu/r̃esnik/ling848_fa2004/lagrange.html

2.3 Advanced readings

• “Overview of Quasi-Newton optimization methods” http://homes.cs.washington.edu/g̃alen/files/quasi-
newton-notes.pdf

• Shewchuk (1994) “An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain” http://www.cs.cmu.edu/q̃uake-papers/painless-conjugate-gradient.pdf

• Conjugate Gradient Method: http://www.cs.iastate.edu/c̃s577/handouts/conjugate-gradient.pdf

3 Third Review Session

3.1 Continuous Optimization (constrained)

3.1.1 Running example: MLE of a Multinomial

• Recall the pdf of the Categorical distribution:
� support: X 2 {0, . . . , k}
� pmf: p(X = k) = ✓

k

• Let X
i

⇠ Categorical(~✓) for 1  i  N .
• The likelihood of all these is:

Q
N

i=1

✓
X

i

=

Q
k

l=1

✓Nl

l

where N
l

is the number of X
i

= l.
• The log-likelihood is then: LL(~✓) =

P
k

l=1

N
l

log(✓
l

)

• Suppose we want to find the maximum likelihood parameters: ~✓
MLE

= argmin

~

✓

LL(~✓) subject
to the constraints

P
k

l=1

✓
l

= 1 and 0  ✓
l

8l.

7

2.1.5 Newton-Raphson (Newton’s method, a second-order method)

• From our introductory example, we know that we can find the solution to a quadratic function
analytically. Yet gradient descent may take many steps to converge to that optimum. The
motivation behind Newton’s method is to use a quadratic approximation of our function to
make a good guess where we should step next.

• Definition: the Hessian of an n-dimensional function is the matrix of partial second derivatives
with respect to each pair of dimensions.

O2f(~x) =

2

664

d

2
f(~x)

dx

2
1

d

2
f(~x)

dx1dx2
...

d

2
f(~x)

dx2dx1

d

2
f(~x)

dx

2
2

... ...

3

775

• Consider the secord order Taylor series expansion of f at x.

ĝ(v) = ˆf(x+ v) = f(x) + Of(x)T v + 1

2

vTO2f(x)v

• We want to find the v that maximizes ĝ(v). This maximizer is called Newton’s step. Ox
nt

=

argmax

v

ĝ(v).
• Algorithm:

1. Choose a starting point x.
2. While not converged:

� Compute Newton’s step Ox
nt

= (O2f(x))�1Of(x)
� Update x(k+1)

= x(k) + Ox
nt

• Intuition:
� If f(x) is quadratic, x+ Ox

nt

exactly maximizes f .
� ĝ(v) is a good quadratic approximation to the function f near the point x. So if f(x) is

locally quadratic, then f(x) is locally well approximated by ĝ(v).
� See Figure 9.17 in Boyd and Vandenberghe.

• In most presentations, Newton-Raphson would be presented a minimization algorithm, for
which we would negate the definition of Newton’s step from above.

2.1.6 Quasi-Newton methods (L-BFGS)

• What if we have n = millions of features?
• The Hessian matrix H = O2f(x) is too large: n2 entries.
• quasi-Newton methods approximate the Hessian.
• Limited memory BFGS stores only a history of the last k updates to ~x and Of(~x). k is usually

small (e.g. k = 10).
• This history is used to approximate the Hessian-vector product.
• Optimization has nearly become a technology. Almost every language has many generic

optimization routines built in that you can use out of the box.

2.1.7 Stochastic Gradient Descent

• Suppose we have N training examples s.t. f(x) =
P

N

i=1

f
i

(x).
• This implies that Of(x) =

P
N

i=1

Of
i

(x).

6

Whiteboard

• CRF model
• CRF data log-likelihood
• CRF derivatives

82

Practical Considerations
for Gradient-based Methods

• Overfitting
– L2 regularization
– L1 regularization
– Regularization by early stopping

• For SGD: Sparse updates

83

“Empirical” Comparison of
Parameter Estimation Methods

84

• Example NLP task: CRF dependency parsing
• Suppose: Training time is dominated by inference
• Dataset: One million tokens
• Inference speed: 1,000 tokens / sec
• è 0.27 hours per pass through dataset

passes through
data to converge

hours to
converge

GIS 1000+ 270

L-BFGS 100+ 27

SGD 10 ~3

BELIEF PROPAGATION
Exact inference for tree-structured factor graphs

85

Inference for HMMs

• Sum-product BP on an HMM is called the
forward-backward algorithm

• Max-product BP on an HMM is called the
Viterbi algorithm

86

Inference for CRFs

• Sum-product BP on a CRF is called the
forward-backward algorithm

• Max-product BP on a CRF is called the
Viterbi algorithm

87

THE FORWARD-BACKWARD
ALGORITHM

88

Learning and Inference Summary

For discrete variables:

89

Learning Marginal
Inference

MAP
Inference

HMM Forward-
backward

Viterbi

Linear-chain
CRF

Forward-
backward

Viterbi

Y2 Y3Y1

90

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Y2 Y3Y1

Forward-Backward Algorithm

91

v

n

a

v

n

a

v

n

a

START END

• Show the possible values for each variable
find preferred tags

Y2 Y3Y1

92

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment

find preferred tags

Forward-Backward Algorithm

Y2 Y3Y1

93

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

find preferred tags

Forward-Backward Algorithm

Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment

94

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

ψ{3,4}(a,END)

ψ{3}(n)

Y2 Y3Y1

Viterbi Algorithm: Most Probable Assignment

95

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path

ψ{3,4}(a,END)

ψ{3}(n)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

96

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

97

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

98

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through v

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

99

v

n

a

v

n

a

v

n

a

START END

find preferred tags

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through n

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

100

v

n

a

v

n

a

v

n

a

START END

find preferred tags

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

101

v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(found by dynamic programming: matrix-vector products)

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

102

v

n

a

v

n

a

v

n

a

START END

find preferred tags
b2(n)

(a + b + c) (x + y + z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

total weight of all paths through
= × ×

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

103

v

n

a

v

n

a

v

n

a

START END

find preferred tags

n

ψ{2}(n)

α2(n) b2(n
)

α2(n) ψ{2}(n) b2(n
)

“belief that Y2 = n”

Oops! The weight of a path
through a state also

includes a weight at that
state.

So α(n)·β(n) isn’t enough.

The extra weight is the
opinion of the unigram
factor at this variable.

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

104

v

n

a

n

a

v

n

a

START END

find preferred tags

ψ{2}(v)

α2(v) b2(v)

“belief that Y2 = v”v

“belief that Y2 = n”

total weight of all paths through
= × ×

v

α2(v) ψ{2}(v) b2(v)

Y2 Y3Y1

Forward-Backward Algorithm: Finds Marginals

105

v

n

a

v

n

a

v

n

a

START END

find preferred tags

ψ{2}(a)

α2(a) b2(a)

“belief that Y2 = a”

“belief that Y2 = v”

“belief that Y2 = n”

sum = Z
(total probability
of all paths)

v 1.8
n 0
a 4.2

v 0.3
n 0
a 0.7

divide
by Z=6 to

get
marginal

probs

total weight of all paths through
= × ×

a

α2(a) ψ{2}(a) b2(a)

Y2 Y3Y1

CRF Tagging Model

106

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Whiteboard

• Forward-backward algorithm
• Viterbi algorithm

107

108

……

find preferred tags

CRF Tagging by Belief Propagation

v 0.3
n 0
a 0.1

v 1.8
n 0
a 4.2

α βα

belief

message message

v 2
n 1
a 7

• Forward-backward is a message passing algorithm.
• It’s the simplest case of belief propagation.

v 7
n 2
a 1

v 3
n 1
a 6

β
v n a

v 0 2 1
n 2 1 0
a 0 3 1

v 3
n 6
a 1

v n a
v 0 2 1
n 2 1 0
a 0 3 1

Forward algorithm =
message passing
(matrix-vector products)

Backward algorithm =
message passing
(matrix-vector products)

HMMS VS CRFS

128

Generative vs. Discriminative
Liang & Jordan (ICML
2008) compares HMM
and CRF with identical
features
• Dataset 1: (Real)

– WSJ Penn Treebank
(38K train, 5.5K test)

– 45 part-of-speech tags
• Dataset 2: (Artificial)

– Synthetic data
generated from HMM
learned on Dataset 1
(1K train, 1K test)

• Evaluation Metric:
Accuracy

129

93.50%

89.80%

95.60%

87.90%

84%
86%
88%
90%
92%
94%
96%
98%

Dataset 1 Dataset 2

HMM
CRF

CRFs: some empirical results

• Parts of Speech tagging

– Using same set of features: HMM >=< CRF > MEMM
– Using additional overlapping features: CRF+ > MEMM+ >>

HMM

© Eric Xing @ CMU, 2005-2015 130

SUMMARY

131

Summary: Learning and Inference

For discrete variables:

132

Learning Marginal
Inference

MAP
Inference

HMM MLE by counting Forward-
backward

Viterbi

Linear-chain
CRF

Gradient based – doesn’t
decompose because of
Z(x) and requires
marginal inference

Forward-
backward

Viterbi

Summary: Models

Classification Structured
Prediction

Generative Naïve Bayes HMM

Discriminative Logistic
Regression

CRF

133

