
Bayesian Networks

1

10-715 Advanced Intro. to Machine Learning

Matt Gormley
Guest Lecture 1

Oct. 29, 2018

Machine Learning Department
School of Computer Science
Carnegie Mellon University



MOTIVATION: STRUCTURED 
PREDICTION
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Structured Prediction

• Most of the models we’ve seen so far were 
for classification
– Given observations: x = (x1, x2, …, xK) 
– Predict a (binary) label: y

• Many real-world problems require 
structured prediction
– Given observations: x = (x1, x2, …, xK) 
– Predict a structure: y = (y1, y2, …, yJ) 

• Some classification problems benefit from 
latent structure
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Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

9



n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:
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Dataset for Supervised 
Handwriting Recognition
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D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.
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TABLE 3
Activity-Based Segmentation of Skateboard: Push and Turn

Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.

TABLE 4
Handwriting Recognition: Error Rates Obtained

by the Evaluated Methods
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Dataset for Supervised 
Phoneme (Speech) Recognition
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D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping
was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not
required to obtain good performance in the experiments in Section VII in which
we randomly selected examples from the entire corpus (ignoring class).
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Word Alignment / Phrase Extraction

• Variables (boolean):
– For each (Chinese phrase, 

English phrase) pair, 
are they linked?

• Interactions:
– Word fertilities
– Few “jumps” (discontinuities)
– Syntactic reorderings
– “ITG contraint” on alignment
– Phrases are disjoint (?)

13(Burkett & Klein, 2012)

Application:



Figure 1: An example of a debate structure from the Con-
Vote corpus. Each black square node represents a factor
and is connected to the variables in that factor, shown
as round nodes. Unshaded variables correspond to the
representatives’ votes and depict the output variables that
we learn to jointly predict. Shaded variables correspond
to the observed input data— the text of all speeches of a
representative (in dark gray) or all local contexts of refer-
ences between two representatives (in light gray).

and that ERMA further significantly improves per-
formance, particularly when it properly trains with
the same inference algorithm (max-product vs. sum-
product) to be used at test time.

Baseline. As an exact baseline, we compare
against the results of Thomas et al. (2006). Their
test-time Min-Cut algorithm is exact in this case: bi-
nary variables and a two-way classification.

4.2 Information Extraction from
Semi-Structured Text

We utilize the CMU seminar announcement corpus
of Freitag (2000) consisting of emails with seminar
announcements. The task is to extract four fields that
describe each seminar: speaker, location, start time
and end time. The corpus annotates the document
with all mentions of these four fields.

Sequential CRFs have been used successfully for
semi-structured information extraction (Sutton and
McCallum, 2005; Finkel et al., 2005). However,
they cannot model non-local dependencies in the
data. For example, in the seminar announcements
corpus, if “Sutner” is mentioned once in an email
in a context that identifies him as a speaker, it is

Figure 2: Skip-chain CRF for semi-structured informa-
tion extraction.

likely that other occurrences of “Sutner” in the same
email should be marked as speaker. Hence Finkel et
al. (2005) and Sutton and McCallum (2005) propose
adding non-local edges to a sequential CRF to repre-
sent soft consistency constraints. The model, called
a “skip-chain CRF” and shown in Figure 2, contains
a factor linking each pair of capitalized words with
the same lexical form. The skip-chain CRF model
exhibits better empirical performance than its se-
quential counterpart (Sutton and McCallum, 2005;
Finkel et al., 2005).

The non-local skip links make exact inference
intractable. To train the full model, Finkel et al.
(2005) estimate the parameters of a sequential CRF
and then manually select values for the weights of
the non-local edges. At test time, they use Gibbs
sampling to perform inference. Sutton and McCal-
lum (2005) use max-product loopy belief propaga-
tion for test-time inference, and compare a train-
ing procedure that uses a piecewise approximation
of the partition function against using sum-product
loopy belief propagation to compute output variable
marginals. They find that the two training regimens
perform similarly on the overall task. All of these
training procedures try to approximately maximize
conditional likelihood, whereas we will aim to mini-
mize the empirical loss of the approximate inference
and decoding procedures.

Baseline. As an exact (non-loopy) baseline, we
train a model without the skip chains. We give two
baseline numbers in Table 1—for training the exact
CRF with MLE and with ERM. The ERM setting re-
sulted in a statistically significant improvement even
in the exact case, thanks to the use of the loss func-
tion at training time.

4.3 Multi-Label Classification

Multi-label classification is the problem of assign-
ing multiple labels to a document. For example, a
news article can be about both “Libya” and “civil

125

Congressional Voting

14(Stoyanov & Eisner, 2012)

Application:

• Variables:

– Text of all speeches of a 
representative 

– Local contexts of 
references between two 
representatives

• Interactions:
– Words used by 

representative and their 
vote

– Pairs of representatives 
and their local context



Structured Prediction Examples

• Examples of structured prediction
– Part-of-speech (POS) tagging
– Handwriting recognition
– Speech recognition
– Word alignment
– Congressional voting

• Examples of latent structure
– Object recognition

15



Case Study: Object Recognition

Data consists of images x and labels y.

16

pigeon

leopard llama

rhinocerosy(1)

x(1)

y(2)

x(2)

y(4)

x(4)

y(3)

x(3)



Case Study: Object Recognition

Data consists of images x and labels y.

17

• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

X2

Z2

X7

Z7

Y



Case Study: Object Recognition

Data consists of images x and labels y.
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• Preprocess data into 
“patches”

• Posit a latent labeling z
describing the object’s 
parts (e.g. head, leg, 
tail, torso, grass)

leopard

• Define graphical 
model with these 
latent variables in 
mind

• z is not observed at 
train or test time

ψ2
ψ4

X2

Z2

ψ3

X7

Z7

ψ1

ψ4

ψ4

Y



Structured Prediction

20

Preview of challenges to come…
• Consider the task of finding the most probable 

assignment to the output 

Classification Structured Prediction
ŷ =

y
p(y| )

where y � {+1, �1}

ˆ = p( | )

where � Y
and |Y| is very large



Machine Learning
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The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)
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MBR DECODING
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Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)

24



Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

25

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)



The 0-1 loss function returns 1 only if the two assignments 
are identical and 0 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

26

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin

ŷ

X

y

p✓(y | x)(1� I(ˆy,y))

= argmax

ŷ
p✓(ˆy | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

27

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax

ŷi

p✓(ŷi | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)



BAYESIAN NETWORKS
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Bayes Nets Outline
• Motivation

– Structured Prediction
• Background

– Conditional Independence
– Chain Rule of Probability

• Directed Graphical Models
– Writing Joint Distributions
– Definition: Bayesian Network
– Qualitative Specification
– Quantitative Specification
– Familiar Models as Bayes Nets

• Conditional Independence in Bayes Nets
– Three case studies
– D-separation
– Markov blanket

• Learning
– Fully Observed Bayes Net
– (Partially Observed Bayes Net)

• Inference
– Background: Marginal Probability
– Sampling directly from the joint distribution
– Gibbs Sampling

30



DIRECTED GRAPHICAL MODELS
Bayesian Networks

31



Example: Tornado Alarms

1. Imagine that 
you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?

32
Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Directed Graphical Models 
(Bayes Nets)

Whiteboard
– Example: Tornado Alarms
– Writing Joint Distributions
• Idea #1: Giant Table
• Idea #2: Rewrite using chain rule
• Idea #3: Assume full independence
• Idea #4: Drop variables from RHS of conditionals

– Definition: Bayesian Network

34



Bayesian Network
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p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

36

X1

X3X2

X4 X5

Definition:

P(X1…Xn ) = P(Xi | parents(Xi ))
i=1

n

∏



Qualitative Specification

• Where does the qualitative specification 
come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply link a certain architecture (e.g. a 

layered graph) 
– …
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification
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Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification
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Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

40© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Directed Graphical Models 
(Bayes Nets)

Whiteboard
– Observed Variables in Graphical Model
– Familiar Models as Bayes Nets
• Bernoulli Naïve Bayes
• Gaussian Naïve Bayes
• Gaussian Mixture Model (GMM)
• Gaussian Discriminant Analysis
• Logistic Regression
• Linear Regression
• 1D Gaussian

41



GRAPHICAL MODELS:
DETERMINING CONDITIONAL 
INDEPENDENCIES

Slide from William Cohen



What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability 
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants 
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

P(X1…Xn ) = P(Xi | parents(Xi ))
i=1

n

∏

= P(Xi | X1…Xi−1)
i=1

n

∏

Slide from William Cohen



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

44

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

45

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y 
decouples X and Z

Knowing Y 
couples X and Z

Three cases of interest…



Whiteboard

(The other two 
cases can be 
shown just as 
easily.)

46

Common Parent

Y

X Z

X �� Z | Y

Proof of 
conditional 
independence



The �Burglar Alarm� example

• Your house has a twitchy burglar 
alarm that is also sometimes 
triggered by earthquakes.

• Earth arguably doesn’t care 
whether your house is currently 
being burgled

• While you are on vacation, one of 
your neighbors calls and tells you 
your home’s burglar alarm is 
ringing.  Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?  

Burglar �� Earthquake | PhoneCall



Markov Blanket

49

Def: the Markov Blanket of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

Thm: a node is conditionally 
independent of every other 
node in the graph given its 
Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Markov Blanket

50

Def: the Markov Blanket of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

Theorem: a node is 
conditionally independent of 
every other node in the graph 
given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
Blanket of X6 is 
{X3, X4, X5, X8, X9, X10}



Markov Blanket

51

Def: the Markov Blanket of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

Theorem: a node is 
conditionally independent of 
every other node in the graph 
given its Markov blanket

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
Blanket of X6 is 
{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents



D-Separation

Definition #1: 
Variables X and Z are d-separated given a set of evidence variables E 
iff every path from X to Z is “blocked”.

A path is “blocked” whenever:
1. �Y on path s.t. Y � E and Y is a “common parent”

2. �Y on path s.t. Y � E and Y is in a “cascade”

3. �Y on path s.t. {Y, descendants(Y)}  � E and Y is in a “v-structure”

52

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …



D-Separation

Definition #2: 
Variables X and Z are d-separated given a set of evidence variables E iff there does 
not exist a path in the undirected ancestral moral graph with E removed.

1. Ancestral graph: keep only X, Z, E and their ancestors
2. Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
4. Givens Removed: delete any nodes in E

53

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

�A and B connected
� not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:
Example Query: A ⫫ B | {D, E}



SUPERVISED LEARNING FOR 
BAYES NETS

54



Machine Learning

55

The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning

56

Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)
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X1

X3X2

X4 X5



Learning Fully Observed BNs

57

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

58

X1

X3X2

X4 X5



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and 
marginal distributions for a Bayes Net?

59

X1

X3X2

X4 X5



Learning Fully Observed BNs

60

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed 
Bayesian Network is 
equivalent to learning five 
(small / simple) independent 
networks from the same data



Learning Fully Observed BNs

61

X1

X3X2

X4 X5

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax

✓1

log p(X1|✓1)

✓⇤2 = argmax

✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax

✓3

log p(X3|✓3)

✓⇤4 = argmax

✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax

✓5

log p(X5|X3, ✓5)

✓⇤
= argmax

✓
log p(X1, X2, X3, X4, X5)

= argmax

✓
log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these 
conditional and marginal

distributions for a Bayes Net?



Learning Fully Observed BNs

Whiteboard
– Example: Learning for Tornado Alarms

62



INFERENCE FOR BAYESIAN 
NETWORKS

65



A Few Problems for Bayes Nets
Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c � P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a � P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

66

Can we 
use 

samples
?



Inference for Bayes Nets

Whiteboard
– Background: Marginal Probability
– Sampling from a joint distribution
– Gibbs Sampling

67



Sampling from a Joint Distribution

68

T H A C

We can use 
these samples 

to estimate 
many different 
probabilities!



Gibbs Sampling

69

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x

(t)
x

(t+1)



Gibbs Sampling
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370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

p(x2|x(t+1)
1 )

x

(t)



Gibbs Sampling
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(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

x

(t)

x

(t+3)

x

(t+4)



Gibbs Sampling
Question:
How do we draw samples from a conditional distribution? 
y1, y2, …, yJ � p(y1, y2, …, yJ | x1, x2, …, xJ )

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1) � p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ )

• y2
(t+1) � p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ )
• y3

(t+1) � p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ )
• …
• yJ

(t+1) � p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ )

Properties:
– This will eventually yield samples from 

p(y1, y2, …, yJ | x1, x2, …, xJ )
– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods
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Gibbs Sampling

Full conditionals 
only need to 
condition on the 
Markov Blanket

73

• Must be “easy” to sample from 
conditionals

• Many conditionals are log-concave 
and are amenable to adaptive 
rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Learning Objectives
Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative 

story or a specification of a joint distribution
2. Draw a Bayesian network given a set of conditional independence 

assumptions
3. Define the joint distribution specified by a Bayesian network
4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem
5. Depict familiar models as Bayesian networks
6. Use d-separation to prove the existence of conditional independencies in a 

Bayesian network
7. Employ a Markov blanket to identify conditional independence assumptions 

of a graphical model
8. Develop a supervised learning algorithm for a Bayesian network
9. Use samples from a joint distribution to compute marginal probabilities
10. Sample from the joint distribution specified by a generative story
11. Implement a Gibbs sampler for a Bayesian network
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TOPIC MODELING

75



Topic Modeling
Motivation:
Suppose you’re given a massive corpora and asked to carry out the 
following tasks
• Organize the documents into thematic categories
• Describe the evolution of those categories over time
• Enable a domain expert to analyze and understand the content
• Find relationships between the categories
• Understand how authorship influences the content



Topic Modeling
Motivation:
Suppose you’re given a massive corpora and asked to carry out the 
following tasks
• Organize the documents into thematic categories
• Describe the evolution of those categories over time
• Enable a domain expert to analyze and understand the content
• Find relationships between the categories
• Understand how authorship influences the content

Topic Modeling:
A method of (usually unsupervised) discovery of latent or hidden structure 
in a corpus
• Applied primarily to text corpora, but techniques are more general
• Provides a modeling toolbox
• Has prompted the exploration of a variety of new inference methods to 

accommodate large-scale datasets



Topic Modeling

http:// www.cs.umass.edu/~mimno/icml100.html

Dirichlet-multinomial regression (DMR) topic model on ICML 
(Mimno & McCallum, 2008)



Topic Modeling

• Map of NIH Grants

https://app.nihmaps.org/

(Talley et al., 2011)



LDA for Topic Modeling

80

The	54/40'	boundary	dispute	is	
still	unresolved,	and	Canadian	
and	US	Coast	Guard	vessels	
regularly	if	infrequently	detain	
each	other's	fish	boats	in	the	
disputed	waters	off	Dixon…

In	the	year	before	
Lemieux	came,	Pittsburgh	
finished	with	38	points.		
Following	his	arrival,	the	
Pens	finished…

The	Orioles'	pitching	staff	
again	is	having	a	fine	
exhibition	season.	Four	
shutouts,	low	team	ERA,	
(Well,	I	haven't	gotten	any	
baseball…

θ1= θ2= θ3=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S.	gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words
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0.
00
0

0.
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6
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ab
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00
0
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00
6

words
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00
0
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00
6
0.
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words
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00
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words
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0.
00
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words
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0.
00
0
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00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)



Extensions to the LDA Model

• Correlated topic models
– Logistic normal prior over 

topic assignments

• Dynamic topic models
– Learns topic changes over 

time

• Polylingual topic models
– Learns topics aligned 

across multiple languages

…
the contents of collections in unfamiliar languages
and identify trends in topic prevalence.

2 Related Work

Bilingual topic models for parallel texts with
word-to-word alignments have been studied pre-
viously using the HM-bitam model (Zhao and
Xing, 2007). Tam, Lane and Schultz (Tam et
al., 2007) also show improvements in machine
translation using bilingual topic models. Both
of these translation-focused topic models infer
word-to-word alignments as part of their inference
procedures, which would become exponentially
more complex if additional languages were added.
We take a simpler approach that is more suit-
able for topically similar document tuples (where
documents are not direct translations of one an-
other) in more than two languages. A recent ex-
tended abstract, developed concurrently by Ni et
al. (Ni et al., 2009), discusses a multilingual topic
model similar to the one presented here. How-
ever, they evaluate their model on only two lan-
guages (English and Chinese), and do not use the
model to detect differences between languages.
They also provide little analysis of the differ-
ences between polylingual and single-language
topic models. Outside of the field of topic mod-
eling, Kawaba et al. (Kawaba et al., 2008) use
a Wikipedia-based model to perform sentiment
analysis of blog posts. They find, for example,
that English blog posts about the Nintendo Wii of-
ten relate to a hack, which cannot be mentioned in
Japanese posts due to Japanese intellectual prop-
erty law. Similarly, posts about whaling often
use (positive) nationalist language in Japanese and
(negative) environmentalist language in English.

3 Polylingual Topic Model

The polylingual topic model (PLTM) is an exten-
sion of latent Dirichlet allocation (LDA) (Blei et
al., 2003) for modeling polylingual document tu-
ples. Each tuple is a set of documents that are
loosely equivalent to each other, but written in dif-
ferent languages, e.g., corresponding Wikipedia
articles in French, English and German. PLTM as-
sumes that the documents in a tuple share the same
tuple-specific distribution over topics. This is un-
like LDA, in which each document is assumed to
have its own document-specific distribution over
topics. Additionally, PLTM assumes that each
“topic” consists of a set of discrete distributions
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Figure 1: Graphical model for PLTM.

over words—one for each language l = 1, . . . , L.
In other words, rather than using a single set of
topics � = {⇥1, . . . ,⇥T }, as in LDA, there are L
sets of language-specific topics, �1, . . . ,�L, each
of which is drawn from a language-specific sym-
metric Dirichlet with concentration parameter ⇥l.

3.1 Generative Process
A new document tuple w = (w1, . . . ,wL) is gen-
erated by first drawing a tuple-specific topic dis-
tribution from an asymmetric Dirichlet prior with
concentration parameter � and base measure m:

� � Dir (�,�m). (1)

Then, for each language l, a latent topic assign-
ment is drawn for each token in that language:

zl � P (zl |�) =
�

n ⇤zl
n
. (2)

Finally, the observed tokens are themselves drawn
using the language-specific topic parameters:

wl � P (wl |zl,�l) =
�

n ⌅l
wl

n|zl
n
. (3)

The graphical model is shown in figure 1.

3.2 Inference
Given a corpus of training and test document
tuples—W and W �, respectively—two possible
inference tasks of interest are: computing the
probability of the test tuples given the training
tuples and inferring latent topic assignments for
test documents. These tasks can either be accom-
plished by averaging over samples of �1, . . . ,�L

and �m from P (�1, . . . ,�L,�m |W �,⇥) or by
evaluating a point estimate. We take the lat-
ter approach, and use the MAP estimate for �m
and the predictive distributions over words for
�1, . . . ,�L. The probability of held-out docu-
ment tuples W � given training tuples W is then
approximated by P (W � |�1, . . . ,�L,�m).

Topic assignments for a test document tuple
w = (w1, . . . ,wL) can be inferred using Gibbs

Zd,n Wd,n
N

D K

⌃

µ

⌘d

�k

Figure 1: Top: Graphical model representation of the correlated topic model. The logistic
normal distribution, used to model the latent topic proportions of a document, can represent
correlations between topics that are impossible to capture using a single Dirichlet. Bottom:
Example densities of the logistic normal on the 2-simplex. From left: diagonal covariance
and nonzero-mean, negative correlation between components 1 and 2, positive correlation
between components 1 and 2.

The logistic normal distribution assumes that ⇥ is normally distributed and then mapped
to the simplex with the inverse of the mapping given in equation (3); that is, f(⇥i) =
exp ⇥i/

�
j exp ⇥j . The logistic normal models correlations between components of the

simplicial random variable through the covariance matrix of the normal distribution. The
logistic normal was originally studied in the context of analyzing observed compositional
data such as the proportions of minerals in geological samples. In this work, we extend its
use to a hierarchical model where it describes the latent composition of topics associated
with each document.

Let {µ,�} be a K-dimensional mean and covariance matrix, and let topics �1:K be K
multinomials over a fixed word vocabulary. The correlated topic model assumes that an
N -word document arises from the following generative process:

1. Draw ⇥ | {µ,�} � N (µ,�).
2. For n ⇥ {1, . . . , N}:

(a) Draw topic assignment Zn | ⇥ from Mult(f(⇥)).
(b) Draw wordWn | {zn,�1:K} from Mult(�zn).

This process is identical to the generative process of LDA except that the topic proportions
are drawn from a logistic normal rather than a Dirichlet. The model is shown as a directed
graphical model in Figure 1.

The CTM is more expressive than LDA. The strong independence assumption imposed
by the Dirichlet in LDA is not realistic when analyzing document collections, where one
may find strong correlations between topics. The covariance matrix of the logistic normal
in the CTM is introduced to model such correlations. In Section 3, we illustrate how the
higher order structure given by the covariance can be used as an exploratory tool for better
understanding and navigating a large corpus of documents. Moreover, modeling correlation
can lead to better predictive distributions. In some settings, such as collaborative filtering,
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Dynamic Topic Models
High-level idea:
• Divide the 

documents 
up by year

• Start with a 
separate 
topic model 
for each 
year

• Then add a 
dependence 
of each year 
on the 
previous 
one
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Probabilistic topic models
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the contents of collections in unfamiliar languages
and identify trends in topic prevalence.

2 Related Work

Bilingual topic models for parallel texts with
word-to-word alignments have been studied pre-
viously using the HM-bitam model (Zhao and
Xing, 2007). Tam, Lane and Schultz (Tam et
al., 2007) also show improvements in machine
translation using bilingual topic models. Both
of these translation-focused topic models infer
word-to-word alignments as part of their inference
procedures, which would become exponentially
more complex if additional languages were added.
We take a simpler approach that is more suit-
able for topically similar document tuples (where
documents are not direct translations of one an-
other) in more than two languages. A recent ex-
tended abstract, developed concurrently by Ni et
al. (Ni et al., 2009), discusses a multilingual topic
model similar to the one presented here. How-
ever, they evaluate their model on only two lan-
guages (English and Chinese), and do not use the
model to detect differences between languages.
They also provide little analysis of the differ-
ences between polylingual and single-language
topic models. Outside of the field of topic mod-
eling, Kawaba et al. (Kawaba et al., 2008) use
a Wikipedia-based model to perform sentiment
analysis of blog posts. They find, for example,
that English blog posts about the Nintendo Wii of-
ten relate to a hack, which cannot be mentioned in
Japanese posts due to Japanese intellectual prop-
erty law. Similarly, posts about whaling often
use (positive) nationalist language in Japanese and
(negative) environmentalist language in English.

3 Polylingual Topic Model

The polylingual topic model (PLTM) is an exten-
sion of latent Dirichlet allocation (LDA) (Blei et
al., 2003) for modeling polylingual document tu-
ples. Each tuple is a set of documents that are
loosely equivalent to each other, but written in dif-
ferent languages, e.g., corresponding Wikipedia
articles in French, English and German. PLTM as-
sumes that the documents in a tuple share the same
tuple-specific distribution over topics. This is un-
like LDA, in which each document is assumed to
have its own document-specific distribution over
topics. Additionally, PLTM assumes that each
“topic” consists of a set of discrete distributions
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Figure 1: Graphical model for PLTM.

over words—one for each language l = 1, . . . , L.
In other words, rather than using a single set of
topics � = {⇥1, . . . ,⇥T }, as in LDA, there are L
sets of language-specific topics, �1, . . . ,�L, each
of which is drawn from a language-specific sym-
metric Dirichlet with concentration parameter ⇥l.

3.1 Generative Process
A new document tuple w = (w1, . . . ,wL) is gen-
erated by first drawing a tuple-specific topic dis-
tribution from an asymmetric Dirichlet prior with
concentration parameter � and base measure m:

� � Dir (�,�m). (1)

Then, for each language l, a latent topic assign-
ment is drawn for each token in that language:

zl � P (zl |�) =
�

n ⇤zl
n
. (2)

Finally, the observed tokens are themselves drawn
using the language-specific topic parameters:

wl � P (wl |zl,�l) =
�

n ⌅l
wl

n|zl
n
. (3)

The graphical model is shown in figure 1.

3.2 Inference
Given a corpus of training and test document
tuples—W and W �, respectively—two possible
inference tasks of interest are: computing the
probability of the test tuples given the training
tuples and inferring latent topic assignments for
test documents. These tasks can either be accom-
plished by averaging over samples of �1, . . . ,�L

and �m from P (�1, . . . ,�L,�m |W �,⇥) or by
evaluating a point estimate. We take the lat-
ter approach, and use the MAP estimate for �m
and the predictive distributions over words for
�1, . . . ,�L. The probability of held-out docu-
ment tuples W � given training tuples W is then
approximated by P (W � |�1, . . . ,�L,�m).

Topic assignments for a test document tuple
w = (w1, . . . ,wL) can be inferred using Gibbs

Polylingual Topic Models
• Data Setting: Comparable versions of each 

document exist in multiple languages 
(e.g. the Wikipedia article for “Barak Obama” in 
twelve languages)

• Model: Very similar to LDA, except that the topic 
assignments, z, and words, w, are sampled separately 
for each language.
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently
Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently
Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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spaziale missione programma space sojuz stazione 

misja kosmicznej stacji misji space nasa 

космический союз космического спутник станции
uzay soyuz ay uzaya salyut sovyetler 

sbaen madrid el la josé sbaeneg 

de spanischer spanischen spanien madrid la 

ισπανίας ισπανία de ισπανός ντε μαδρίτη 

de spanish spain la madrid y 

دیردام ابو3 ییایناپسا ایناپسا  de نیرت  

espanja de espanjan madrid la real 

espagnol espagne madrid espagnole juan y 

הבוק תידרפסה דירדמ הד תידרפס דרפס  

de spagna spagnolo spagnola madrid el 

de hiszpański hiszpanii la juan y 

де мадрид испании испания испанский de 

ispanya ispanyol madrid la küba real 

bardd gerddi iaith beirdd fardd gymraeg 

dichter schriftsteller literatur gedichte gedicht werk 

ποιητής ποίηση ποιητή έργο ποιητές ποιήματα 

poet poetry literature literary poems poem 

راثآ یبدا یسراف تایبدا رعش رعاش  

runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi 

poète écrivain littérature poésie littéraire ses 

ררושמה םיריש רפוס הריש תורפס ררושמ

poeta letteratura poesia opere versi poema 

poeta literatury poezji pisarz in jego 

поэт его писатель литературы поэзии драматург 
şair edebiyat şiir yazar edebiyatı adlı 
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently
Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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