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MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X =(X;, X5 .., Xg)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X =(X;, X5 ., Xg)
— Predict a structure: Y=0p,V s V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {a™),y"} L,
Sample 1: ‘ ‘ @ ‘ '
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
G & @
Sample 4: ' ‘ ‘ ' ‘




Dataset for Supervised
Handwriting Recognition
st D = {2y},

000 POOOOO 1

ANEEHEEEEN -
T QROO00000 I
{11 4171 [C
T 90000000 | I
IIIIE o

Sample 1:

Figures from (Chatzis & Demiris, 201



Dataset for Supervised
Phoneme (Speech) Recognition

Data: D = {z\™ ym 1V

Sample 1
COO OOOQQOO b
v '
—

Figures from (Jansen & Niyogi, 2013)



* Variables (boolean):

— For each (Chinese phrase,
English phrase) pair,
are they linked?

* Interactions:

— Word fertilities

— Few “jumps” (discontinuities)

— Syntactic reorderings

— “ITG contraint” on alignment

— Phrases are disjoint (?)

Wor! Alignment / Phrase Extraction
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Congressional Voting

 Variables:

— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

* Interactions: o

— Words used by ¢
representative and their

vote B

— Pairs of representatives
and their local context -

5 \‘. 'K\:
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Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit alatent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit alatent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

* zisnotobserved at
train or test time
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Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

19



Structured Prediction




Machine Learning




Machine Learning
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MBR DECODING



Inference for HMMs

co¥
— Ihrélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given aloss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he (w) — argmin ﬂpre('lCB) [6(:&7 y)]
Yy

argmin Y pe(y | )((§,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




BAYESIAN NETWORKS



Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

— Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

—  (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution

—  Gibbs Sampling



DIRECTED GRAPHICAL MODELS



Example: Tornado Alarms

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Example: Tornado Alarms

Hacking Attack Woke Up Dallas
With Emergency Sirens, Officials Say

By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?

33

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: Tornado Alarms

— Writing Joint Distributions
* |dea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* Idea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network

(%) - p(X1, X2, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
) () p(X3)p(X2| X1)p(X1)



Bayesian Network

Definition:

(4
(X, & P(X,...X )= ﬁP(X,. | parents(X;))

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply link a certain architecture (e.g. a
layered graph)



Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

P(a,b,c.d) =

a0 |0.75 b° |0.33 P(a)P(b)P(c|a,b)P(d|c)

a' |0.25 b' |]0.67

a’h? a’b’ a'b? a'b’
c? 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
c? c’
‘ 0.3 |05
07 0.5

© Eric Xing @ CMU, 2006-2011



Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
AN(U, Z,)  B-N(iy Zy) P(a)P(b)P(cla,b)P(d]c)

C~N(A+B, )

Yl &2‘ &~ |

&

OIS

‘ D~N(ug+C, Zy) 5 C

© Eric Xing @ CMU, 2006-2011




Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

P(a,b,c.d) =

2° 1075 b 10.33 P(a)P(b)P(CIa;b)P(dIC)

a' [0.25 b' |0.67

C~N(A+B, )

‘ D~N(ug+C, Zy)

© Eric Xing @ CMU, 2006-2011



Directed Graphical Models

(Bayes Nets)
Whiteboard

— Observed Variables in Graphical Model

— Familiar Models as Bayes Nets
* Bernoulli Naive Bayes
* Gaussian Naive Bayes
* Gaussian Mixture Model (GMM)
* Gaussian Discriminant Analysis
* Logistic Regression
* Linear Regression
* 1D Gaussian



GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES

Slide from William Cohen



What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

* This follows from <
P(X,..X )= HP(XZ. | parents(X.,))
i=1

-l [Pxiix,.. X))
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Whiteboard

Proof of

conditional
independence @ e

(The other two
cases can be
shown just as
easily.)

46



The “Burglar Alarm” example

* Your house has a twitchy burglar - S —
alarm that is also sometimes Burglar .Eart quake
triggered by earthquakes.

* Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the @

node’s parents, children, and @ @

co-parents.

Thm: a node is conditionally @ @ @ @

independent of every other
node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X, is

Def: the Markov Blanket of a WX Xy X5 Xy Koo X0}

node is the set containing the @

node’s parents, children, and @ @

co-parents.

Theorem: a node is @ @ @ @

conditionally independent of

every other node in the graph
given its Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

Example: The Markov

Blanket of X is
X Xy X5 Xy Xo, X}

Parents
(X, IX,
& (o

X]Z

Co-parents

Children @



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from X to Z is “blocked”.

A path is “blocked” whenever:
1.  dYonpaths.t.Y € Eand Y is a “common parent”

@ -O-@Or -

2. dYonpaths.t.Y € EandYisina “cascade”

®-O-@O O

3. dYonpaths.t. {Y, descendants(Y)} € Eand Y isina “v-structure”

@ -O-0-O @

52



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A L B|{D, E}
Original: Moral: Undirected:

T O T 0T 0T O
= not d-separated

53



SUPERVISED LEARNING FOR
BAYES NETS



Machine Learning




Machine Learning
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Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) (%) p(X3)p(X2|X1)p(X1)



Learning Fully Observed BNs

a p(X17X27X37X47X5) —
p(X5]X3)p(X4| X2, X3)

x) (%) p(X3)p(X2| X1)p(X1)
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Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5]X3)p(X4| X2, X3)
O p(X3)p(Xa2| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?

59



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(X17 X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent p(X3)p(X2| X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argimax 10g p(Xl, XQ, Xg, X4, X5)
0

e = argznaxlogp(X5|X3,95) + log p(X4| X2, X3, 04)
+ log p(X3]03) + log p(X2| X1, 05)

@ @ + log p(X11601)

07 = argmaxlog p(X1|01)

01
@ @ 65 = argmaxlog p(Xo| X1, 05)

02

05 = argmaxlog p(X3|03)
03

0, = argmaxlog p(X4[ X2, X3, 04)
04

0: = argmaxlog p(X5| X3, 05)

95 61



Learning Fully Observed BNs

Whiteboard
— Example: Learning for Tornado Alarms



INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

How do we compute marginal probabilities?

P(A)=...
<:' Can we

How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=c¢)
samples
How do we compute conditional marginal probabilities? 2

P(H|C=¢)=... <:'




Inference for Bayes Nets

Whiteboard
— Background: Marginal Probability
— Sampling from a joint distribution
— Gibbs Sampling



Sampling from a Joint Distribution

Ex_: Tornele T &MN"‘( ‘t) A

C‘T{ /® HN&“‘“"‘(@ =5 1.4 7
?" A~ Bl (xyr s T [
2 91 (N

C~ Uidle),..c3) + A#UuR(i1, -, 63)
t/ln S

T | H A C

We can use
these samples

to estimate
many different
probabilities!

68



Gibbs Sampling




Gibbs Sampling

2 (t+1)




Gibbs Sampling




Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?

y1’ yz’ °°°y yJ - p(y1’ yz’ e yJ l X1’ XZ’ e XJ )

(Approximate) Solution:
— Initialize y,(®), y.,©©), ..., y () to arbitrary values
— Fort=1,2,...:
¢ Y1(t+1) ~p(y, I YZ(t)’ XX yJ(t)) Xpp Xop eeey Xy )
¢ yz(tH) - p(yz | y1(t+1)’ y3(t)' *c yJ(t)’ Xiy Xyy eeey Xy )
y Y3(t+1) N p(Ys I Y1(t+1): Yz(t+1), Y4(t)’ ceey YJ(t): Xiy Xy eeey Xy )

y YJ(t+1) ~ p(y, | Y1(t+1)f Yz(t+1); ceey YJ-1(t+1)r Xpp Xy weey X))

Properties:

— This will eventually yield samples from
P(Yor Yor o Y3 | X0 X5 005 %))

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods

72



Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

o 7

11.

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional independenciesin a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



TOPIC MODELING



Topic Modeling

Motivation:

Suppose you’re given a massive corpora and asked to carry out the
following tasks

* Organize the documents into thematic categories

* Describe the evolution of those categories over time

* Enable a domain expert to analyze and understand the content
* Find relationships between the categories

* Understand how authorship influences the content




Topic Modeling

Motivation:

Suppose you’re given a massive corpora and asked to carry out the
following tasks

* Organize the documents into thematic categories

* Describe the evolution of those categories over time

* Enable a domain expert to analyze and understand the content
* Find relationships between the categories

* Understand how authorship influences the content

Topic Modeling:

A method of (usually unsupervised) discovery of latent or hidden structure
in a corpus

* Applied primarily to text corpora, but techniques are more general

* Provides a modeling toolbox

* Has prompted the exploration of a variety of new inference methods to
accommodate large-scale datasets



Topic Modeling

Dirichlet-multinomial regression (DMR) topic model on ICML
(Mimno & McCallum, 2008)

Topic 0 [0.152]

2006 2007

Topic 54 [0.051]

1.0 2005 2006

2007 2008

Topic 99 [0.066]

1.0 [5pg4 2008 2006 12008

- 2007

problem, optimization, problems, convex, convex optimization,
linear, semidefinite programming, formulation, sets, constraints,
proposed, margin, maximum margin, optimization problem, linear
programming, programming, procedure, method, cutting plane,
solutions

decision trees, trees, tree, decision tree, decision, tree ensemble,
junction tree, decision tree learners, leaf nodes, arithmetic circuits,
ensembles modts, skewing, ensembles, anytime induction decision
trees, trees trees, random forests, objective decision trees, tree
learners, trees grove, candidate split

inference, approximate inference, exact inference, markov chain,
models, approximate, gibbs sampling, variational, bayesian,
variational inference, variational bayesian, approximation, sampling,
methods, exact, bayesian inference, dynamic bayesian, process,

mcmc, efficient

http:// www.cs.umass.edu/~mimno/icml100.html




Topic Modeling

* Map of NIH Grants

(Talley et al., 2011)
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet(8)

— -
{Japan}

Dirichlet(a)

Ce,-

—> 93: I
[ |

The 54/40'lboundary dispute is

still unresolved, and-
2 S COBSEGURHE vesels

regularly if infrequently
each other's fish boats in the

disputed waters off-...

In the year before

s
inished with 38 .

Following his arrival, the

-finished...

The|Orioles! pitching staff

again is having a fine

exhibition- Four

shutouts, low team ERA,
(Well, | haven't gotten any
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Extensions to the LDA Model

ON
* Correlated topic models %:% Z:d,n W:d; ) O
— Logistic normal prior over u D
topic assignments O O e
* Dynamic topic models O || O e
— Learns topic changes over O || C “r(
time e ||| e . W
* Polylingual topic models —— =
— Learns topics aligned w = 5”

across multiple languages

5 &




(Blei & Lafferty, 2004)

Correlated Topic Models

neurons
stimulus
motor

brain

memory isual
activated subjects Vliya | synapses
tyrosine phosphorylation left cortical Itp
activation
phosphorylation P53 _ task surface glutamate
kinase cell cycle proteins np synaptic
activity protein .
cyclin binding ma Image neurons
regulation domain Clina computer sample materials
/4 domains rna polymerase . organic
receptor ’ cleavage ; ;f)robletr_n device polymer
research science receptors amino acids site n ormat on polymers
: scientists - cdna computers lecul .
funding bl molecules/ / physicists
support says ligand sequence Proviems /7 | aser articles
nih research ligands isolated optical : hysics
program people tosi protein sequence light Ea)r/ticle
apoptosis sequences surface

electrons experiment

liquid
wild type gegr?:e sulr?:::es quantury stars
i fluid .
_ muent cmes | e\ mogel reaction astronomers
united states mutaTions reactions :
mUtaf:ltS active site universe
women cls mutation (eduction molecule galaxies
. iy cel
universities xprassion magnetic molecules galaxy
. magnetic 1ie
students | \osenas, {ansition stats
superconductivity

education

superconducting

pressure mantle
bacteria high pressure crust sun
bacterial pressures upper mantle solar wind
host fossil record core meteorites earth
resistance birds inner core ratios planets
mice parasite embryos fossils planet
ntigen - gene ; dinosaurs i
antige vir : drosophila species
us disease fossil
tcells hi . genes S forest
; v mutations >
antigens aids families expression forests rthquak 5
immune response infection A populations earthquake co.
fectio mutation ecosystems earthquakes carbon
viruses ont fault carbon dioxide
. ancien )
! genetc
disease cells opulation i
treatment i Pop : - impact ozone
d proteins populations million years ago volcanic atmospheric
rugs h differences africa . !
clinical researchers variation deposits climate measurements
. stratosphere
protein magma ocean phe
f d eruption ice concentrations
oun volcanism changes

climate change

Slide from David Blei, MLSS 2012



(Blei & Lafferty, 2006)

Dynamic Topic Models

High-level idea:

Divide the
documents
up by year
Start with a
separate
topic model
for each
year

Thenadd a
dependence
of each year
on the
previous
one

Pp oo —’QQ

)
l l l
0, Q 0, Q 0, Q
Zd,n l Zd,n l Zd,n l
Wd,n? Wd,n? Wd,n?
@ @ @ .
D
O——O———0O
K 51:,1 ﬁk,Q 6l€,T
| Y J |\ Y | Y J
1990 1991 2016



(Blei & Lafferty, 2006)

Dynamic Topic Models

Posterior estimate of word frequency as a function of
year for three words each in two separate topics:

"Theoretical Physics"

"Neuroscience"

I
1900

I I I I
1920 1940 1960 1980

2000

.~

1880

1940 1960 1980 2000
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(Mimno et al., 2009)

Polylingual Topic Models

* Data Setting: Comparable versions of each
document exist in multiple languages
(e.g. the Wikipedia article for “Barak Obama” in

twelve languages)

* Model: Very similar to LDA, except that the topic
assignments, z, and words, w, are sampled separately
for each language.

(- @@ }Ambic
@*\. .. e
@_.®<NL @ :I»Turkish




CY
DE
EL
EN
FA
J

FR
HE
T

PL
RU
TR

(Mimno et al., 2009)

Polylingual Topic Models

Topic 1 (twelve languages)

sadwrn blaned gallair at lloeren mytholeg

space nasa sojus flug mission

OlaoTNUIKO sts nasa ayyA small

space mission launch satellite nasa spacecraft
s)lsale 3 9ilad Hlae Ll cujygele olas

sojuz nasa apollo ensimmainen space lento
spatiale mission orbite mars satellite spatial

NN X NT2 25N YINN DoNn

spaziale missione programma space sojuz stazione
misja kosmicznej stacji misji space nasa
KOCMWYECKUN COKO3 KOCMUYECKOrO CrMyTHUK CTaHUMK
uzay soyuz ay uzaya salyut sovyetler



CY
DE
EL
EN
FA
FI

FR
HE
IT

PL
RU
TR

(Mimno et al., 2009)

Polylingual Topic Models

Topic 2 (twelve languages)

sbaen madrid el la josé sbaeneg

de spanischer spanischen spanien madrid la
lortiaviag womavia de omavog vre padpitn
de spanish spain la madrid y

b LS plsbud) Libuul de oo

espanja de espanjan madrid la real
espagnol espagne madrid espagnole juany
NP NTI1aDN TN NTNT1aD T1ap

de spagna spagnolo spagnola madrid el

de hiszpanski hiszpanii la juan y

oe magpwug ncnaHuu ucrnaHuAa ncnaHckum de
ispanya ispanyol madrid la klba real



CY
DE
EL
EN
FA
FI

FR
HE
IT

PL
RU
TR

(Mimno et al., 2009)

Polylingual Topic Models

Topic 3 (twelve languages)

bardd gerddi iaith beirdd fardd gymraeg

dichter schriftsteller literatur gedichte gedicht werk
TOLNTNG TIOINOoN ToNTN £PYO TOINTEC TONUATA
poet poetry literature literary poems poem

ObT pul g8 olanl i seld

runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi
poete écrivain littérature poésie littéraire ses
TNMYNN DY 19D N1 MIAD 1wn

poeta letteratura poesia opere versi poema

poeta literatury poezji pisarz in jego

No3T ero nucaTtenb NnTepaTypbl N033uK apamaTypr
sair edebiyat siir yazar edebiyati adli



Other Applications of Topic Models

* Spacial LDA

(Wang & Grimson, 2007)




