

10-715 Advanced Intro. to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Networks

Matt Gormley Guest Lecture 1 Oct. 29, 2018

MOTIVATION: STRUCTURED PREDICTION

Structured Prediction

 Most of the models we've seen so far were for classification

- Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
- Predict a (binary) label: y
- Many real-world problems require structured prediction
 - Given observations: $\mathbf{x} = (x_1, x_2, ..., x_K)$
 - Predict a structure: $y = (y_1, y_2, ..., y_J)$
- Some classification problems benefit from latent structure

Structured Prediction Examples

Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

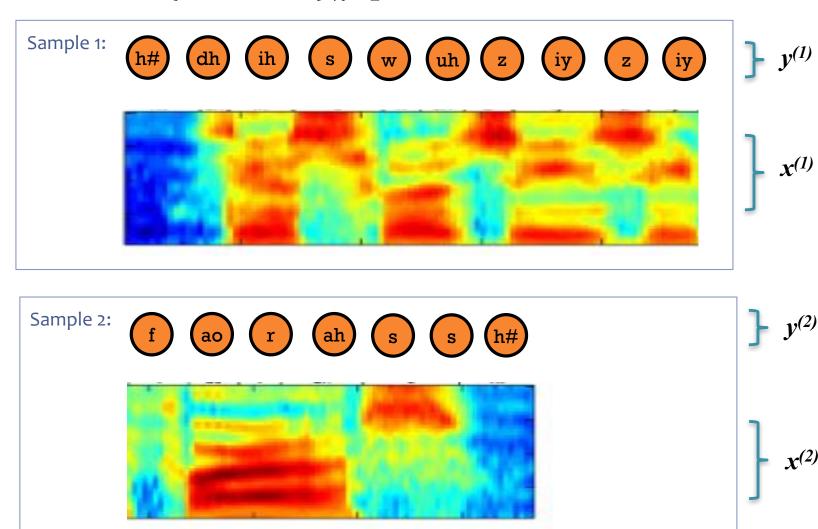
Sample 1:	n	flies	p like	an	n }	$y^{(1)}$ $x^{(1)}$
Sample 2:	n	n	like	an	n }	$y^{(2)}$ $x^{(2)}$
Sample 3:	n	fily	with	n	n }	$y^{(3)}$ $x^{(3)}$
Sample 4:	with	n	you	will	v }	$y^{(4)}$ $x^{(4)}$

Dataset for Supervised Handwriting Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

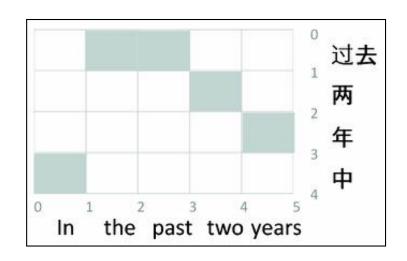


Application:

Word Alignment / Phrase Extraction

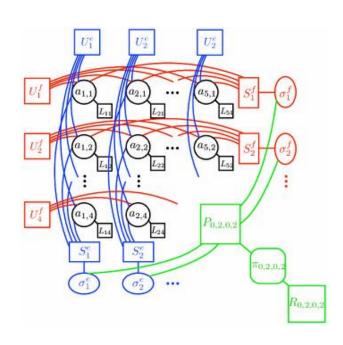
Variables (boolean):

For each (Chinese phrase, English phrase) pair, are they linked?

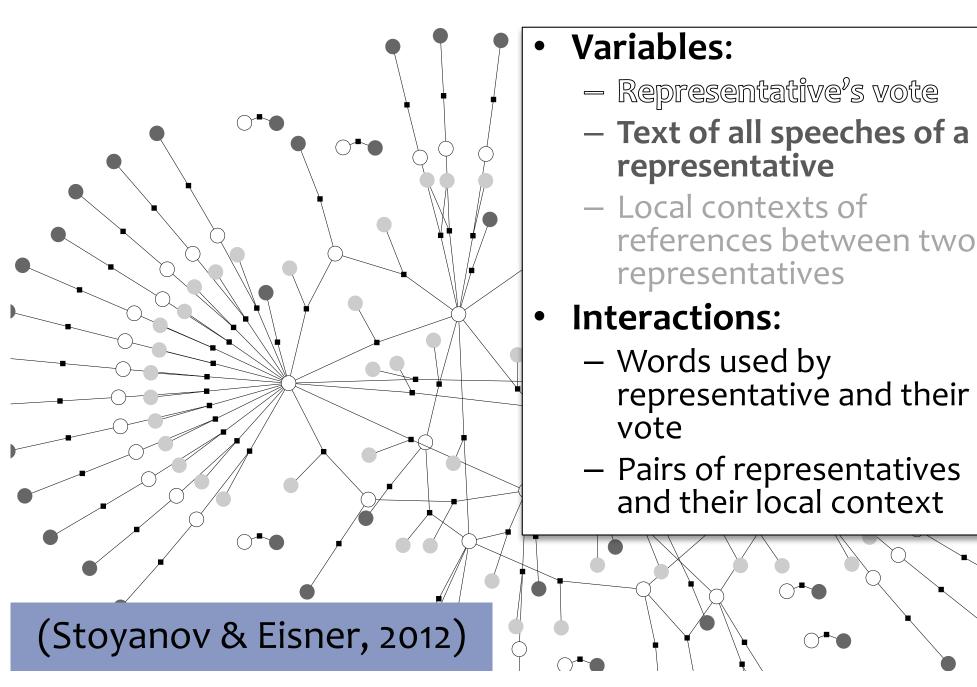


Interactions:

- Word fertilities
- Few "jumps" (discontinuities)
- Syntactic reorderings
- "ITG contraint" on alignment
- Phrases are disjoint (?)



Congressional Voting



Structured Prediction Examples

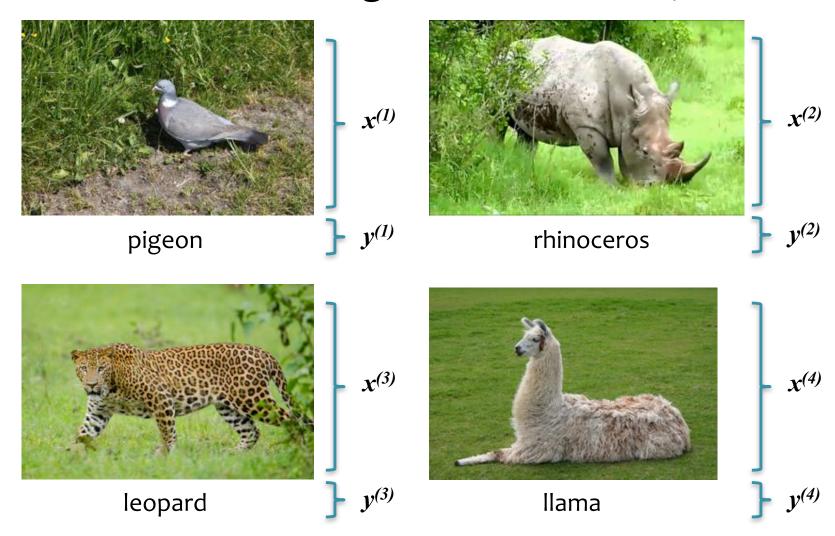
Examples of structured prediction

- Part-of-speech (POS) tagging
- Handwriting recognition
- Speech recognition
- Word alignment
- Congressional voting

Examples of latent structure

Object recognition

Data consists of images x and labels y.



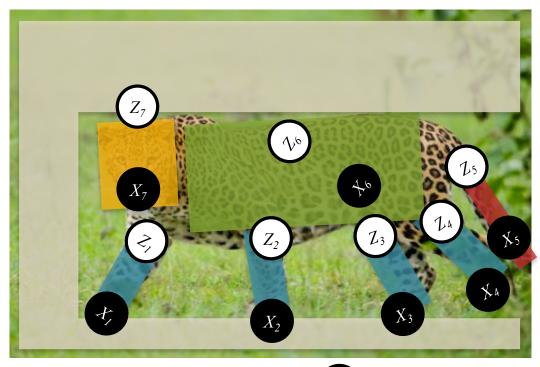
Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z
 describing the object's
 parts (e.g. head, leg,
 tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time

leopard

Data consists of images x and labels y.

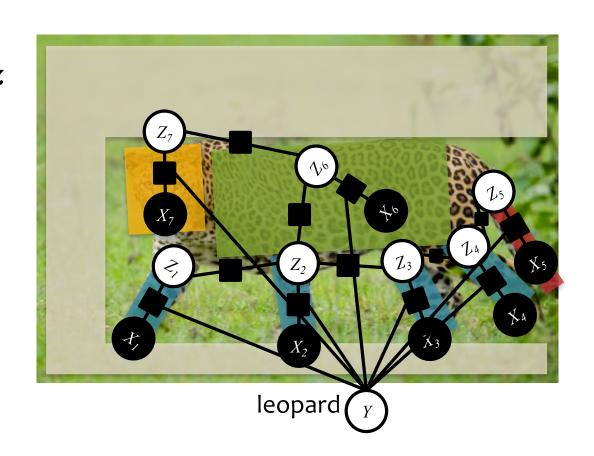
- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



leopard (Y)

Data consists of images x and labels y.

- Preprocess data into "patches"
- Posit a latent labeling z describing the object's parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time



Structured Prediction

Preview of challenges to come...

 Consider the task of finding the most probable assignment to the output

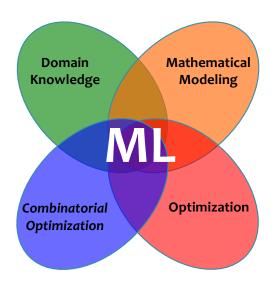
Classification
$$\hat{y} = \operatorname*{argmax}_y p(y|\mathbf{x})$$
 where $y \in \{+1, -1\}$

Structured Prediction
$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

$$\mathbf{y}$$
 where $\mathbf{y} \in \mathcal{Y}$ and $|\mathcal{Y}|$ is very large

Machine Learning

The data inspires
the structures
we want to
predict



Our **model**defines a score
for each structure

It also tells us what to optimize

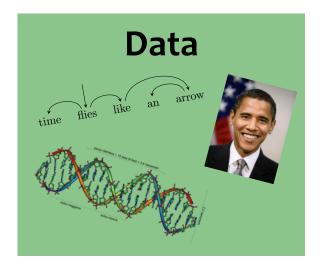
Inference finds

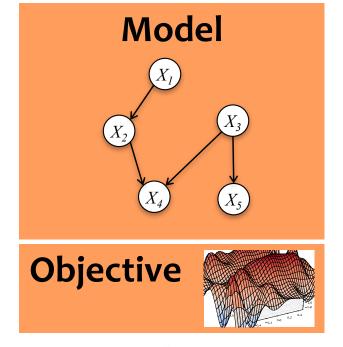
{best structure, marginals, partition function} for a new observation

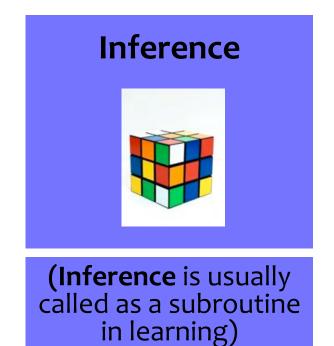
(Inference is usually called as a subroutine in learning)

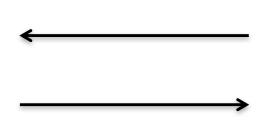
Learning tunes the parameters of the model

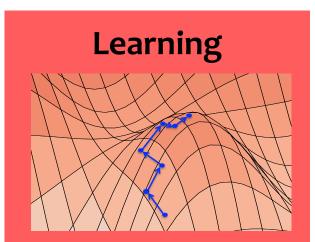
Machine Learning











MBR DECODING

Inference for HMMs

FOUR

- Three Inference Problems for an HMM
 - Evaluation: Compute the probability of a given sequence of observations
 - 2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
 - 4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$egin{aligned} h_{m{ heta}}(m{x}) &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \mathbb{E}_{m{y} \sim p_{m{ heta}(\cdot \mid m{x})}}[\ell(\hat{m{y}}, m{y})] \ &= \underset{\hat{m{y}}}{\operatorname{argmin}} & \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y}) \end{aligned}$$

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

BAYESIAN NETWORKS

Bayes Nets Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Writing Joint Distributions
- Definition: Bayesian Network
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

Learning

- Fully Observed Bayes Net
- (Partially Observed Bayes Net)

Inference

- Background: Marginal Probability
- Sampling directly from the joint distribution
- Gibbs Sampling

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: Tornado Alarms

- Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

Example: Tornado Alarms

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

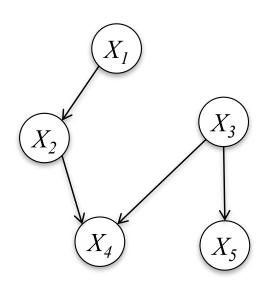
- Imagine that you work at the 911 call center in Dallas
- 2. You receive six calls informing you that the Emergency Weather Sirens are going off
- 3. What do you conclude?

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: Tornado Alarms
- Writing Joint Distributions
 - Idea #1: Giant Table
 - Idea #2: Rewrite using chain rule
 - Idea #3: Assume full independence
 - Idea #4: Drop variables from RHS of conditionals
- Definition: Bayesian Network

Bayesian Network



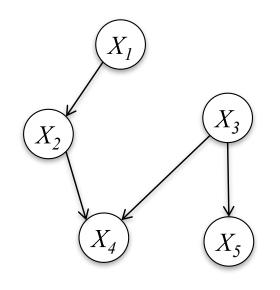
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

Qualitative Specification

 Where does the qualitative specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data (i.e. structure learning)
- We simply link a certain architecture (e.g. a layered graph)

— ...

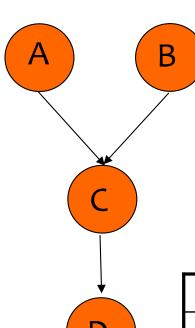
Quantitative Specification

Example: Conditional probability tables (CPTs) for discrete random variables

a^0	0.75
a ¹	0.25

b^0	0.33	
b ¹	0.67	

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



	a ⁰ b ⁰	a ⁰ b ¹	a ¹ b ⁰	a¹b¹
\mathbf{c}_0	0.45	1	0.9	0.7
C ¹	0.55	0	0.1	0.3

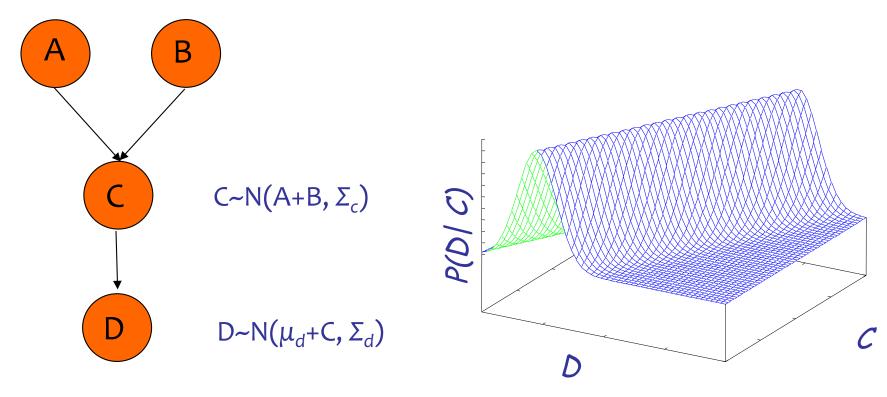
	\mathbf{c}_0	C ¹
d^0	0.3	0.5
d¹	07	0.5

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

$$A \sim N(\mu_a, \Sigma_a)$$
 $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

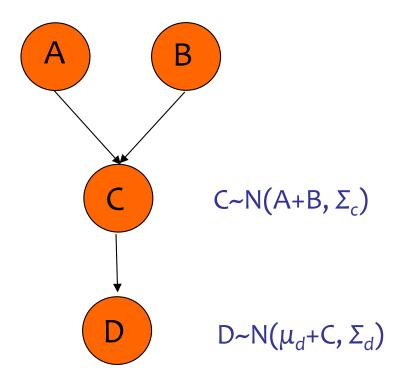


Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

a^0	0.75
a ¹	0.25

b^0	0.33	
b ¹	0.67	



Directed Graphical Models (Bayes Nets)

Whiteboard

- Observed Variables in Graphical Model
- Familiar Models as Bayes Nets
 - Bernoulli Naïve Bayes
 - Gaussian Naïve Bayes
 - Gaussian Mixture Model (GMM)
 - Gaussian Discriminant Analysis
 - Logistic Regression
 - Linear Regression
 - 1D Gaussian

GRAPHICAL MODELS: DETERMINING CONDITIONAL INDEPENDENCIES

What Independencies does a Bayes Net Model?

 In order for a Bayesian network to model a probability distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents.

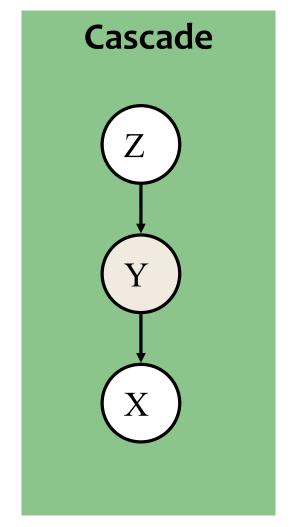
This follows from

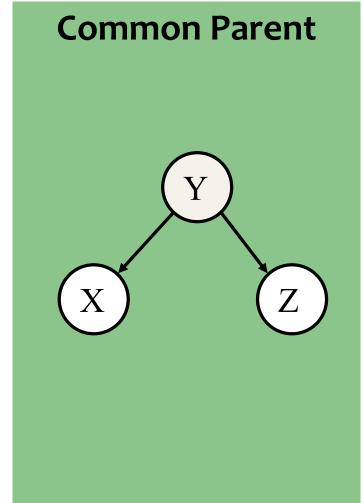
$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$
$$= \prod_{i=1}^n P(X_i \mid X_1...X_{i-1})$$

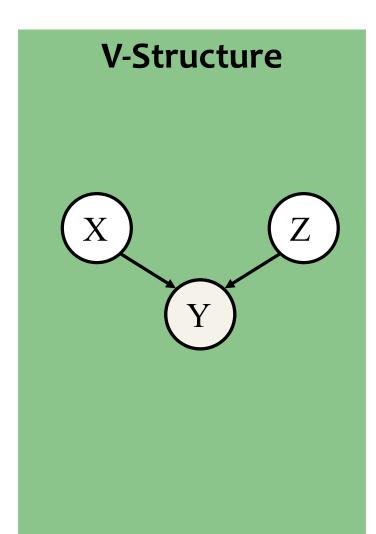
But what else does it imply?

What Independencies does a Bayes Net Model?

Three cases of interest...

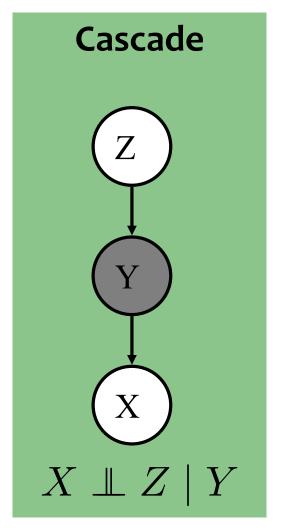


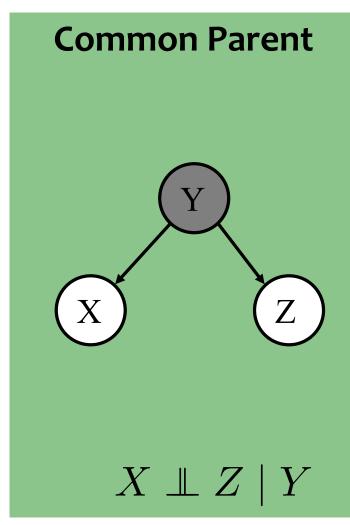


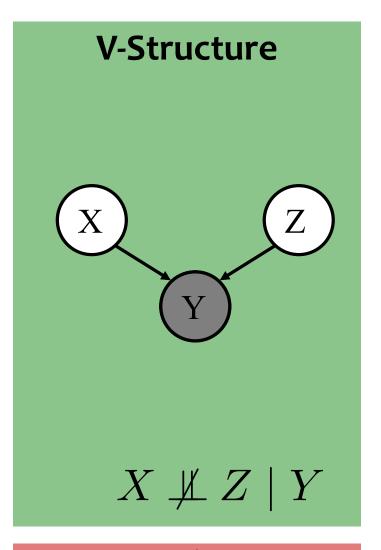


What Independencies does a Bayes Net Model?

Three cases of interest...





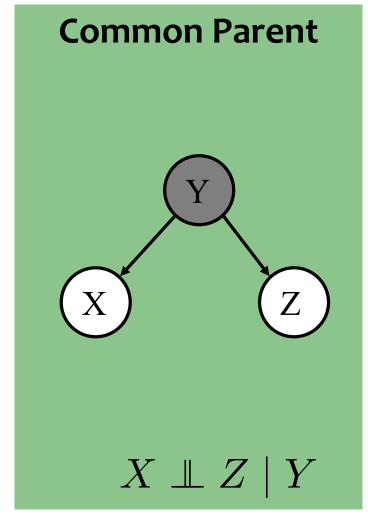


Knowing Y **decouples** X and Z

Knowing Y couples X and Z

Whiteboard

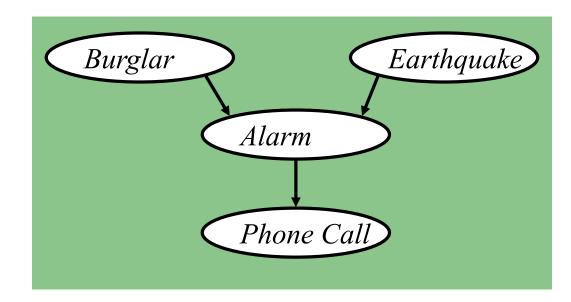
Proof of conditional independence



(The other two cases can be shown just as easily.)

The "Burglar Alarm" example

- Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.
- Earth arguably doesn't care whether your house is currently being burgled
- While you are on vacation, one of your neighbors calls and tells you your home's burglar alarm is ringing. Uh oh!



Quiz: True or False?

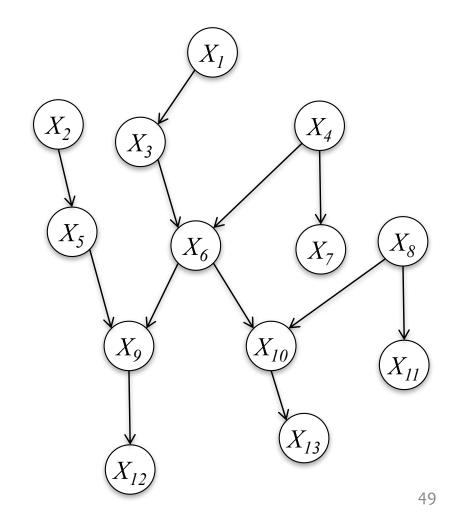
 $Burglar \perp\!\!\!\perp Earthquake \mid Phone Call$

Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Thm: a node is conditionally independent of every other node in the graph given its Markov blanket



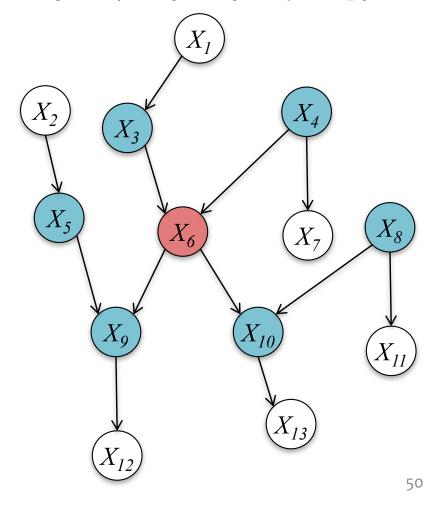
Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Theorem: a node is **conditionally independent** of every other node in the graph given its **Markov blanket**

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$



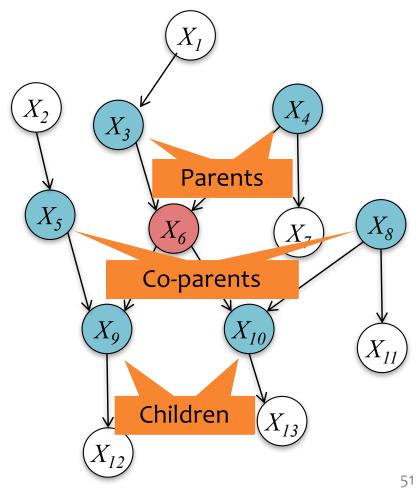
Markov Blanket

Def: the **co-parents** of a node are the parents of its children

Def: the **Markov Blanket** of a node is the set containing the node's parents, children, and co-parents.

Theorem: a node is **conditionally independent** of every other node in the graph given its **Markov blanket**

Example: The Markov Blanket of X_6 is $\{X_3, X_4, X_5, X_8, X_9, X_{10}\}$



D-Separation

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition #1:

Variables X and Z are **d-separated** given a **set** of evidence variables E iff every path from X to Z is "blocked".

A path is "blocked" whenever:

1. \exists Y on path s.t. Y \in E and Y is a "common parent"

2. \exists Y on path s.t. Y \in E and Y is in a "cascade"

3. \exists Y on path s.t. {Y, descendants(Y)} \notin E and Y is in a "v-structure"

D-Separation

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition #2:

Variables X and Z are d-separated given a set of evidence variables E iff there does not exist a path in the undirected ancestral moral graph with E removed.

- **1. Ancestral graph:** keep only X, Z, E and their ancestors
- 2. Moral graph: add undirected edge between all pairs of each node's parents
- 3. Undirected graph: convert all directed edges to undirected
- 4. Givens Removed: delete any nodes in E

Example Query: A \perp B | {D, E}



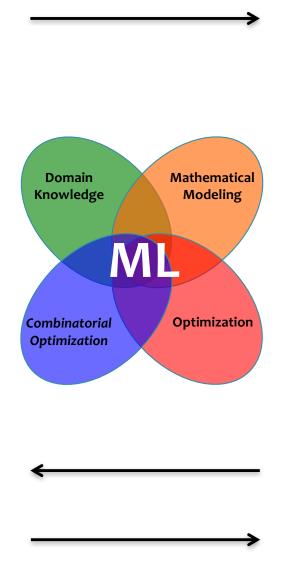
SUPERVISED LEARNING FOR BAYES NETS

Machine Learning

The data inspires
the structures
we want to
predict

{best structure, marginals, partition function} for a new observation

(Inference is usually called as a subroutine in learning)

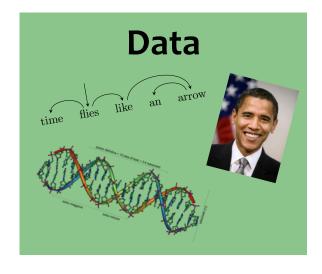


Our **model**defines a score
for each structure

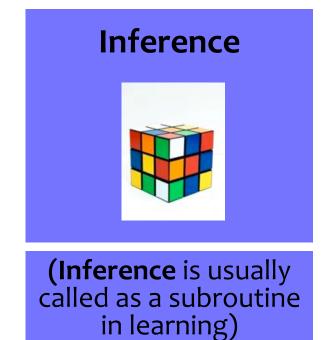
It also tells us what to optimize

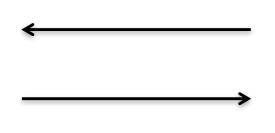
Learning tunes the parameters of the model

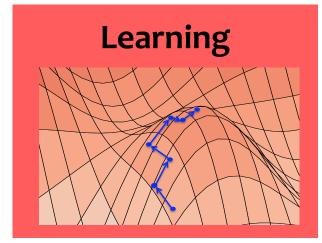
Machine Learning

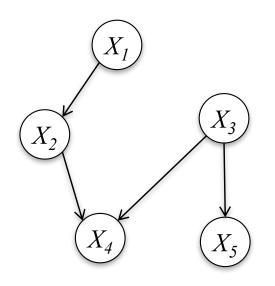








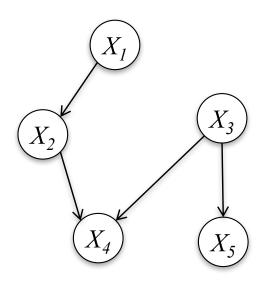




$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

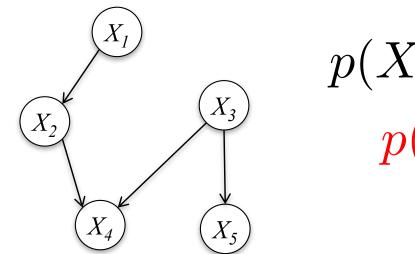
$$p(X_3)p(X_2|X_1)p(X_1)$$



$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$



$$p(X_1, X_2, X_3, X_4, X_5) =$$

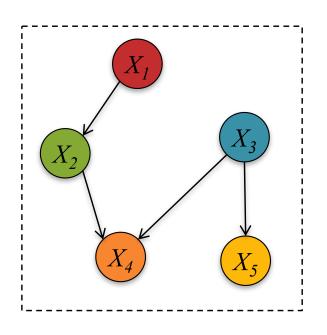
$$p(X_5|X_3)p(X_4|X_2, X_3)$$

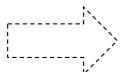
$$p(X_3)p(X_2|X_1)p(X_1)$$

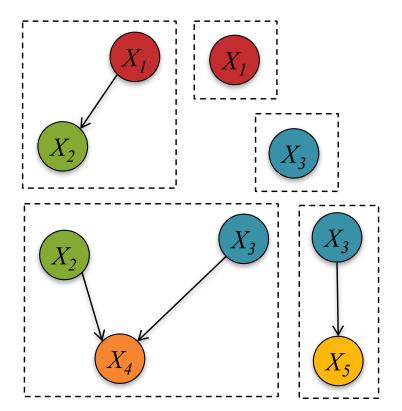
How do we learn these conditional and marginal distributions for a Bayes Net?

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data

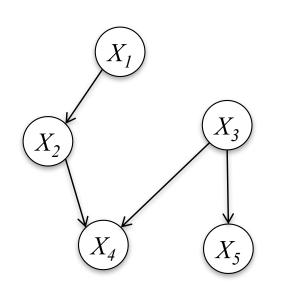
$$p(X_1, X_2, X_3, X_4, X_5) = p(X_5|X_3)p(X_4|X_2, X_3) p(X_3)p(X_2|X_1)p(X_1)$$







How do we **learn** these conditional and marginal distributions for a Bayes Net?



$$\theta^* = \underset{\theta}{\operatorname{argmax}} \log p(X_1, X_2, X_3, X_4, X_5)$$

$$= \underset{\theta}{\operatorname{argmax}} \log p(X_5 | X_3, \theta_5) + \log p(X_4 | X_2, X_3, \theta_4)$$

$$+ \log p(X_3 | \theta_3) + \log p(X_2 | X_1, \theta_2)$$

$$+ \log p(X_1 | \theta_1)$$

$$egin{aligned} heta_1^* &= rgmax \log p(X_1| heta_1) \ heta_2^* &= rgmax \log p(X_2|X_1, heta_2) \ heta_3^* &= rgmax \log p(X_3| heta_3) \ heta_4^* &= rgmax \log p(X_4|X_2,X_3, heta_4) \ heta_5^* &= rgmax \log p(X_5|X_3, heta_5) \ heta_5 \end{aligned}$$

Whiteboard

Example: Learning for Tornado Alarms

INFERENCE FOR BAYESIAN NETWORKS

A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

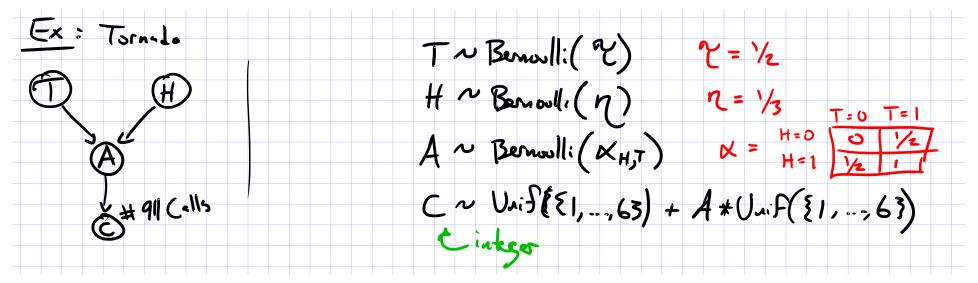
- How do we compute the probability of a specific assignment to the variables?
 P(T=t, H=h, A=a, C=c)
- 2. How do we draw a sample from the joint distribution? t,h,a,c ~ P(T, H, A, C)
- 3. How do we compute marginal probabilities? P(A) = ...
- 4. How do we draw samples from a conditional distribution? $t,h,a \sim P(T, H, A \mid C = c)$
- 5. How do we compute conditional marginal probabilities? $P(H \mid C = c) = ...$

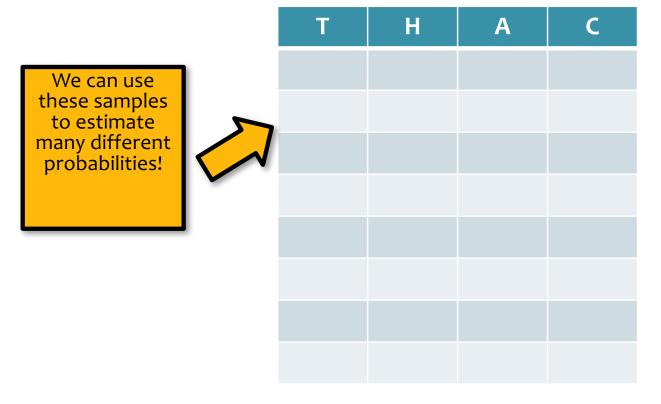
Inference for Bayes Nets

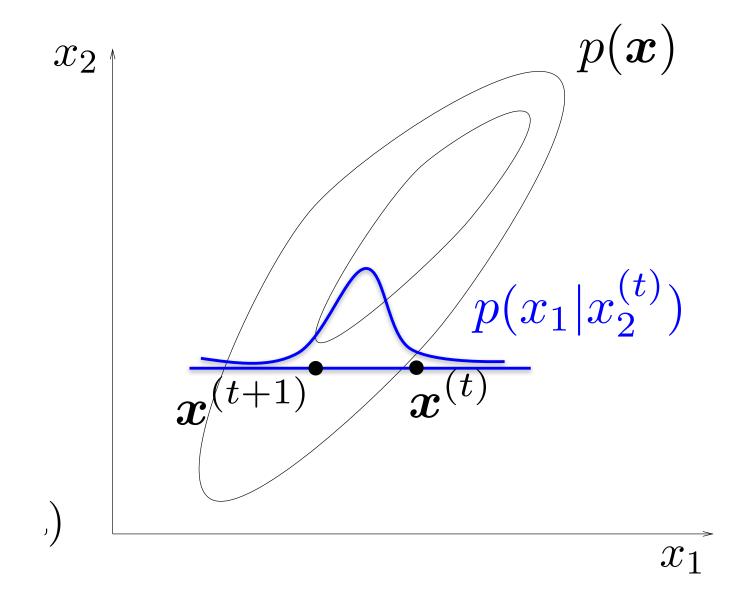
Whiteboard

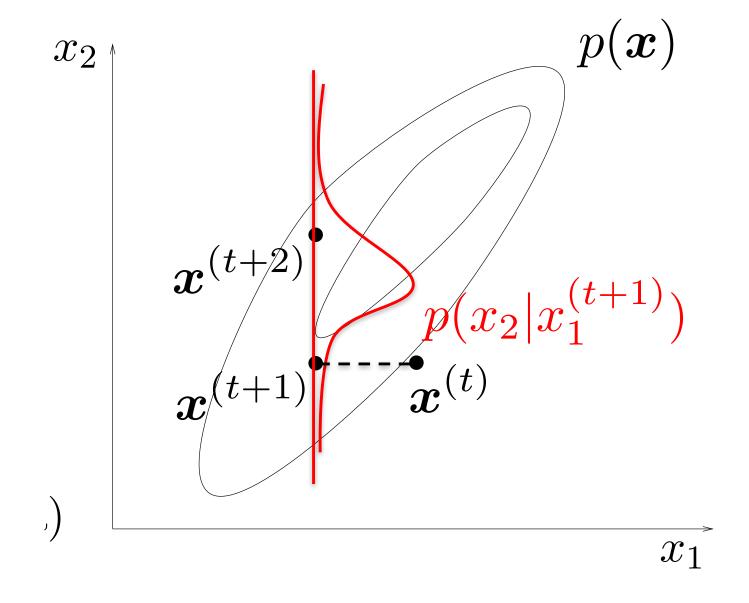
- Background: Marginal Probability
- Sampling from a joint distribution
- Gibbs Sampling

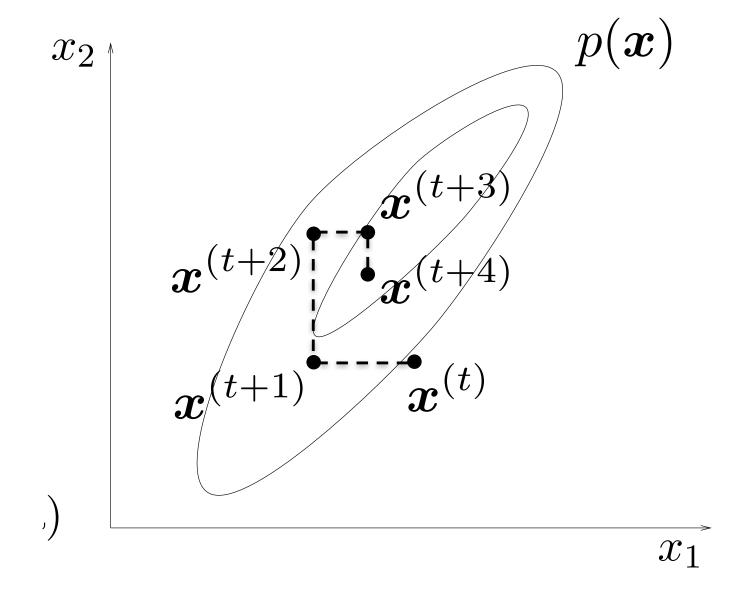
Sampling from a Joint Distribution











Question:

How do we draw samples from a conditional distribution?

```
y_1, y_2, ..., y_J \sim p(y_1, y_2, ..., y_J | x_1, x_2, ..., x_J)
```

(Approximate) Solution:

- Initialize $y_1^{(0)}$, $y_2^{(0)}$, ..., $y_1^{(0)}$ to arbitrary values
- For t = 1, 2, ...:

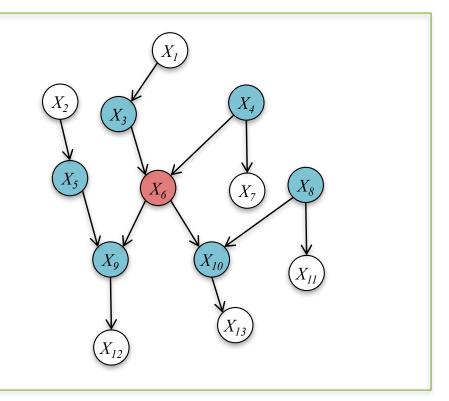
```
• y_1^{(t+1)} \sim p(y_1 | y_2^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)
```

- $y_2^{(t+1)} \sim p(y_2 | y_1^{(t+1)}, y_3^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)$
- $y_3^{(t+1)} \sim p(y_3 | y_1^{(t+1)}, y_2^{(t+1)}, y_4^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)$
- •
- $y_J^{(t+1)} \sim p(y_J | y_1^{(t+1)}, y_2^{(t+1)}, ..., y_{J-1}^{(t+1)}, x_1, x_2, ..., x_J)$

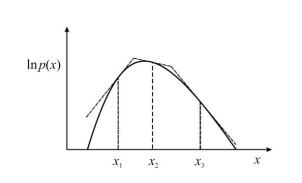
Properties:

- This will eventually yield samples from $p(y_1, y_2, ..., y_1 | x_1, x_2, ..., x_1)$
- But it might take a long time -- just like other Markov Chain Monte Carlo methods

Full conditionals only need to condition on the Markov Blanket



- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling



Learning Objectives

Bayesian Networks

You should be able to...

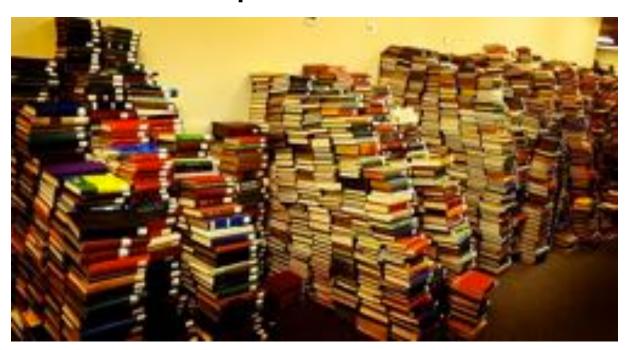
- 1. Identify the conditional independence assumptions given by a generative story or a specification of a joint distribution
- 2. Draw a Bayesian network given a set of conditional independence assumptions
- 3. Define the joint distribution specified by a Bayesian network
- 4. User domain knowledge to construct a (simple) Bayesian network for a realworld modeling problem
- 5. Depict familiar models as Bayesian networks
- 6. Use d-separation to prove the existence of conditional independencies in a Bayesian network
- 7. Employ a Markov blanket to identify conditional independence assumptions of a graphical model
- 8. Develop a supervised learning algorithm for a Bayesian network
- 9. Use samples from a joint distribution to compute marginal probabilities
- 10. Sample from the joint distribution specified by a generative story
- 11. Implement a Gibbs sampler for a Bayesian network

TOPIC MODELING

Motivation:

Suppose you're given a massive corpora and asked to carry out the following tasks

- Organize the documents into thematic categories
- Describe the evolution of those categories over time
- Enable a domain expert to analyze and understand the content
- Find **relationships** between the categories
- Understand how **authorship** influences the content



Motivation:

Suppose you're given a massive corpora and asked to carry out the following tasks

- Organize the documents into thematic categories
- Describe the evolution of those categories over time
- Enable a domain expert to analyze and understand the content
- Find **relationships** between the categories
- Understand how authorship influences the content

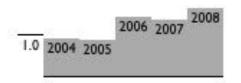
Topic Modeling:

A method of (usually unsupervised) discovery of latent or hidden structure in a corpus

- Applied primarily to text corpora, but techniques are more general
- Provides a modeling toolbox
- Has prompted the exploration of a variety of new inference methods to accommodate large-scale datasets

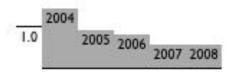
Dirichlet-multinomial regression (DMR) topic model on ICML (Mimno & McCallum, 2008)

Topic 0 [0.152]



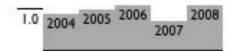
problem, optimization, problems, convex, convex optimization, linear, semidefinite programming, formulation, sets, constraints, proposed, margin, maximum margin, optimization problem, linear programming, programming, procedure, method, cutting plane, solutions

Topic 54 [0.051]



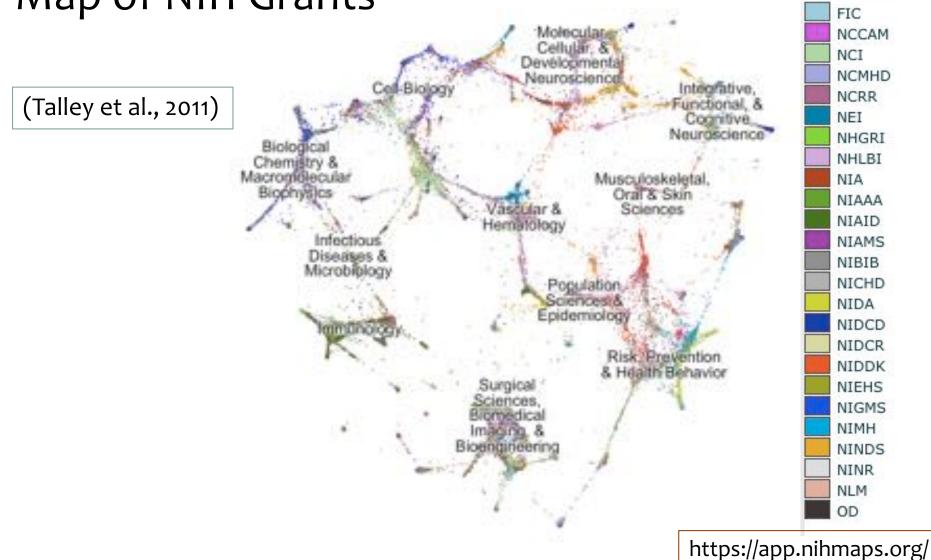
decision trees, trees, tree, decision tree, decision, tree ensemble, junction tree, decision tree learners, leaf nodes, arithmetic circuits, ensembles modts, skewing, ensembles, anytime induction decision trees, trees trees, random forests, objective decision trees, tree learners, trees grove, candidate split

Topic 99 [0.066]

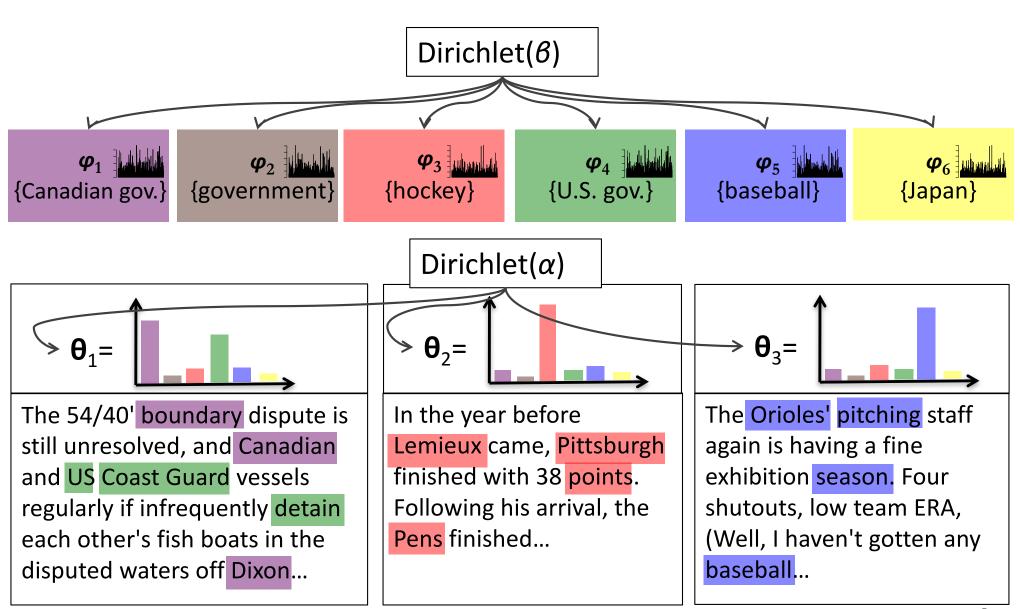


inference, approximate inference, exact inference, markov chain, models, approximate, gibbs sampling, variational, bayesian, variational inference, variational bayesian, approximation, sampling, methods, exact, bayesian inference, dynamic bayesian, process, mcmc, efficient http://www.cs.umass.edu/~mimno/icml100.html

Map of NIH Grants

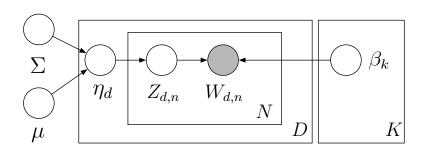


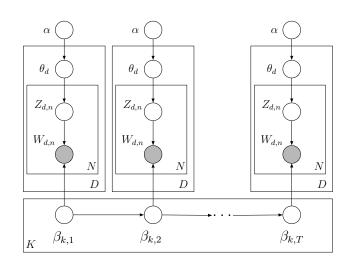
LDA for Topic Modeling

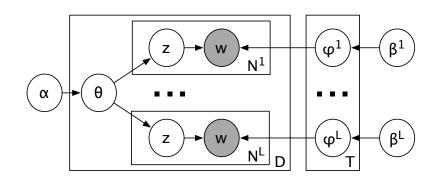


Extensions to the LDA Model

- Correlated topic models
 - Logistic normal prior over topic assignments
- Dynamic topic models
 - Learns topic changes over time
- Polylingual topic models
 - Learns topics aligned across multiple languages

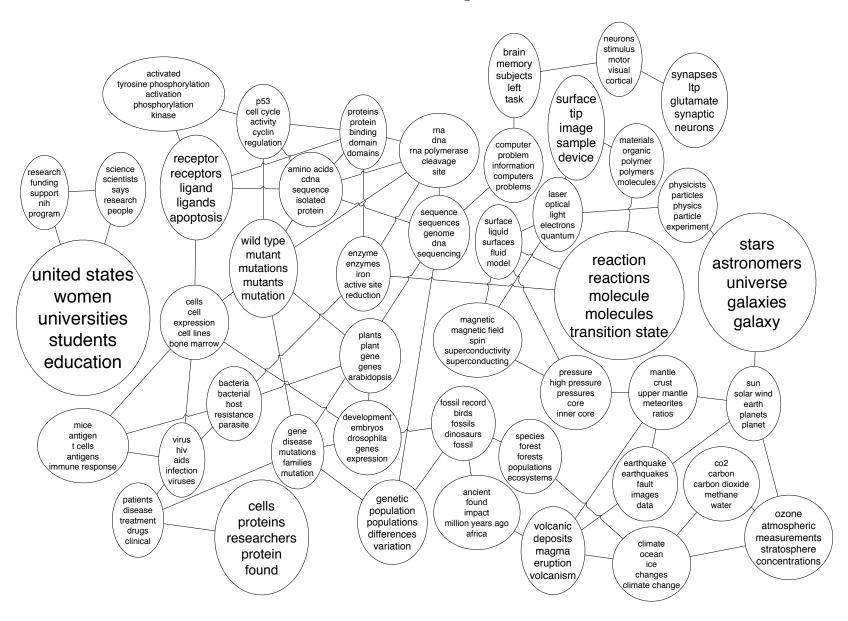






. . .

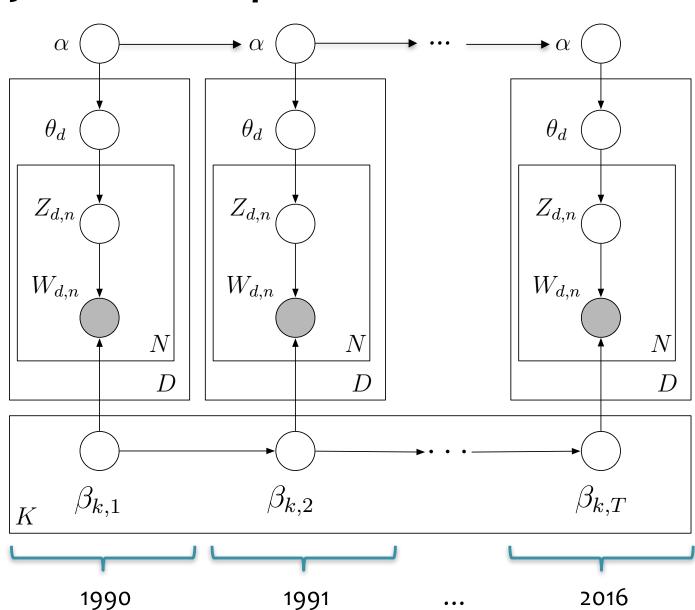
Correlated Topic Models



Dynamic Topic Models

High-level idea:

- Divide the documents up by year
- Start with a separate topic model for each year
- Then add a dependence of each year on the previous one

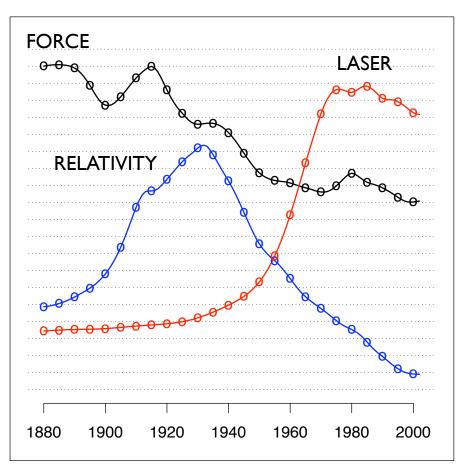


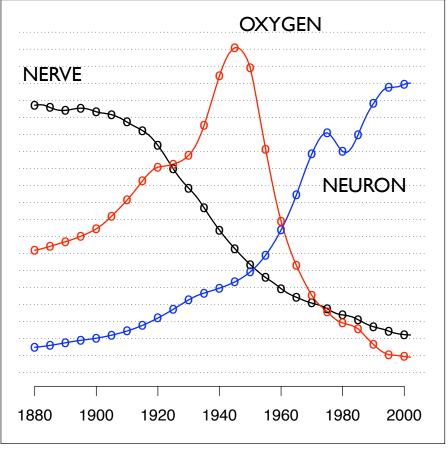
Dynamic Topic Models

Posterior estimate of word frequency as a function of year for three words each in two separate topics:

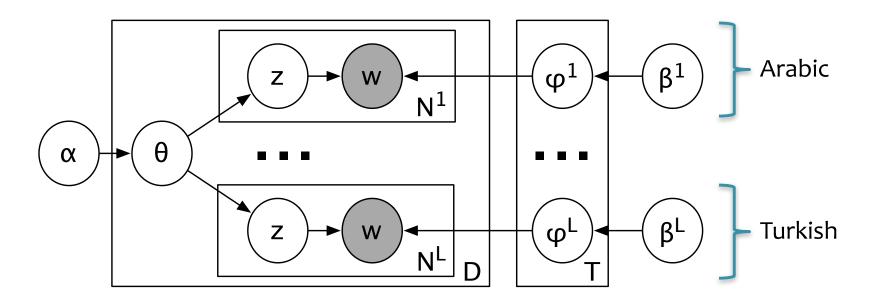
"Theoretical Physics"

"Neuroscience"





- Data Setting: Comparable versions of each document exist in multiple languages (e.g. the Wikipedia article for "Barak Obama" in twelve languages)
- **Model:** Very similar to LDA, except that the topic assignments, z, and words, w, are sampled separately for each language.



Topic 1 (twelve languages)

CY sadwrn blaned gallair at lloeren mytholeg

DE space nasa sojus flug mission

EL διαστημικό sts nasa αγγλ small

EN space mission launch satellite nasa spacecraft

فضایی ماموریت ناسا مدار فضانورد ماهواره FA

FI sojuz nasa apollo ensimmäinen space lento

FR spatiale mission orbite mars satellite spatial

HE החלל הארץ חלל כדור א תוכנית

IT spaziale missione programma space sojuz stazione

PL misja kosmicznej stacji misji space nasa

RU космический союз космического спутник станции

TR uzay soyuz ay uzaya salyut sovyetler

Topic 2 (twelve languages)

```
CY sbaen madrid el la josé sbaeneg
```

DE de spanischer spanischen spanien madrid la

EL ισπανίας ισπανία de ισπανός ντε μαδρίτη

EN de spanish spain la madrid y

ترین de اسیانیا اسیانیایی کوبا مادرید

FI espanja de espanjan madrid la real

FR espagnol espagne madrid espagnole juan y

ספרד ספרדית דה מדריד הספרדית קובה HE

IT de spagna spagnolo spagnola madrid el

PL de hiszpański hiszpanii la juan y

RU де мадрид испании испания испанский de

TR ispanya ispanyol madrid la küba real

Topic 3 (twelve languages)

```
bardd gerddi iaith beirdd fardd gymraeg
    dichter schriftsteller literatur gedichte gedicht werk
    ποιητής ποίηση ποιητή έργο ποιητές ποιήματα
EL
EN
     poet poetry literature literary poems poem
شاعر شعر ادبیات فارسی ادبی آثار FA
FI
     runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi
     poète écrivain littérature poésie littéraire ses
FR
HE
     משורר ספרות שירה סופר שירים המשורר
IT
     poeta letteratura poesia opere versi poema
    poeta literatury poezji pisarz in jego
PL
RU
     поэт его писатель литературы поэзии драматург
     şair edebiyat şiir yazar edebiyatı adlı
```

Other Applications of Topic Models

Spacial LDA

(Wang & Grimson, 2007)

