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k-Fold Cross-Validation



Suppose you want to determine a good value for some hyperparameter (like 
number of nodes in a decision tree or the right level of complexity in a hierarchy 
or regularization parameter for SVM) 

Tuning Hyperparameters

• Partition available data into train and test set

One good approach: use a holdout set (the train and test method)

• For each hyperparameter value 𝑖, run learning algorithm on training set 
and evaluate on test set. 
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Idea: partition data into 𝑘 equal-size pieces.  Repeat the holdout process 
𝑘 times, where in round 𝑗, use piece 𝑗 as the test set.

𝑘-Fold Cross-Validation
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Now average the test curves and take the best value



For a given hyperparameter value 𝑖, our estimate of its quality is the 
average of 𝑘 experiments

Intuition

test test test test test

Averaging 𝑘 independent copies of a random variable has lower variance 
than a single copy.

If the hypotheses produced in the different experiments were always 
the same, these would be 𝑘 independent estimates of its error.

Of course, they might not be.  So this is just intuition not a theorem.

Note: in practice, once best 𝑖 is determined, then train on entire set.



[BKL’99]: 𝑘-fold CV, for 2 < 𝑘 < 𝑛 is always (a little) better than a single 
holdout (except in degenerate cases where both are perfect).

Theoretical Guarantees

• Suppose you use 𝑘-fold CV to produce 𝑘 hypotheses ℎ1, … , ℎ𝑘, with true 
errors 𝑒𝑟𝑟 ℎ1 , … , 𝑒𝑟𝑟(ℎ𝑘), and error estimates ෞ𝑒𝑟𝑟 ℎ1 , … , ෞ𝑒𝑟𝑟(ℎ𝑘).

• Define ℎ to be the function that randomly chooses among ℎ1, … , ℎ𝑘.  So, 

𝑒𝑟𝑟 ℎ =
𝑒𝑟𝑟 ℎ1 +⋯+𝑒𝑟𝑟 ℎ𝑘

𝑘
and our estimate is ෞ𝑒𝑟𝑟 ℎ =

ෞ𝑒𝑟𝑟 ℎ1 +⋯+ ෞ𝑒𝑟𝑟 ℎ𝑘

𝑘
.

• Then, for any power 𝑝 ≥ 2, 

𝐸 ෞ𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ 𝑝 < 𝐸 ෞ𝑒𝑟𝑟 ℎ1 − 𝑒𝑟𝑟 ℎ1
𝑝

(so long as RHS ≠ 0).

[KKV’11, KLVV’13]: significant variance reduction for learning algorithms that 
satisfy stability properties.


