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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of
similar datapoints.

Question: When and why would we want to do this?
Useful for:

- Automatically organizing data.
- Understanding hidden structure in data.

* Preprocessing for further analysis.

* Representing high-dimensional data in a low-dimensional space
(e.g., for visualization purposes).



ApplicaTions (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.

Cluster protein sequences by function or genes according to expression
profile. —
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ApplicaTions (Clustering comes up everywhere...)

» Cluster customers according to purchase history.

- Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

- And many many more applications....



Clustering

Today:

« Objective based clustering
« K-means clustering

« Hierarchical clustering



Objective Based Clustering

Input: A set S of n points, also a distance/dissimilarity
measure specifying the distance d(x,y) between pairs (x,y).

E.g., # keywords in common, edit distance, wavelets coef., etc.

Goal: output a partition of the data.

- k-means: find center pts cq, ¢y, ..., ¢ 10

- k-median: find center pts cq, ¢y, ..., ¢ TO

- K-center: find partition fo minimize the maxim radius



Euclidean k-means Clustering

Input: A set of n datapoints x1,x2, ..., x™ in R4
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € R to minimize
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Euclidean k-means Clustering

Input: A set of n datapoints x1,x2, ..., x™ in R4
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € R to minimize

_ 2
Yzt MiNjefq,. k) “Xl — Cj”

Natural assignment: each point assigned to s
closest center, leads to a Voronoi partition.




Euclidean k-means Clustering

Input: A set of n datapoints x1,x2,...,x™ in RY
target #clusters k

Output: k representatives ¢4, ¢y, ..., ¢ € RY

Objective: choose ¢y, ¢y, ..., ¢, € R to minimize

_ 2
Yiz1 MiNjefq,. k) ||Xl — Cj||

Computational complexity:

NP hard: even for k = 2 [Dagupta08] OF A
d = 2 [Mahajan-Nimbhorkar-Varadarajan09] o

There are a couple of easy cases...



An Easy Case for k-means: k=1

Input: A set of n datapoints x1,x2, ..., x™ in R4

. 2
Output: ¢ € R? to minimize T, [|x' - ||

Solution: The optimal choice is p = %Zi“:l X!

Idea: bias/variance like decomposition

1 : 2 1 : 2
~yi I =l = [Ir—ell + -2k, |Ix - ]

Avg k-means cost wrt ¢ Avg k-means cost wrt p

So, the optimal choice for cis .



Another Easy Case for k-means: d=1

Input: A set of n datapoints x1,x2, ..., x™ in R4

. 2
Output: ¢ € R? to minimize T, [|x' - ||

Extra-credit homework question
Hint: dynamic programming in time O(n“k).



Common Heuristic in Practice:
The Lloyd's method

[Least squares quantization in PCM, Lloyd, TEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints x1,x2, ..., x™" in R4

Initialize centers ¢4, ¢y, ..., c;, € RY and
clusters Cy,C,, ..., Cx in any way.

Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «<mean of C;



Common Heuristic in Practice:
The Lloyd's method

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints x1,x2, ..., x" in R4

Initialize centers ¢4, cy, ..., ¢, € R4 and
clusters Cy,C,, ..., Cx in any way.

Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «mean of C;

Holding ¢4, 3, ..., ¢i fixed, Holding C4, C, ..., Cx fixed,
pick optimal Cq,C,, ..., Cx pick optimal ¢q,¢5, ..., ¢y



Common Heuristic: The Lloyd's method

Input: A set of n datapoints x1,x2, ..., x" in R4

Initialize centers cq, ¢y, ..., cx € RY and
clusters C,C,, ..., Cx in any way.
Repeat until there is no further change in the cost.

* For each j: Cj <{x € S whose closest center is c;}

* For each j: ¢; «<mean of C;

Note: it always converges.

* the cost always drops and

* there is only a finite #s of Voronoi partitions
(so a finite # of values the cost could take)



Initialization for the Lloyd's method

Input: A set of n datapoints x1,x2,...,x" in R¢

Initialize centers cq, ¢y, ..., ¢ € RY and
clusters Cy,C,, ..., C in any way.
Repeat until there is no further change in the cost.

* Foreach j: C; <{x € S whose closest center is c;}

* For each j: ¢; «mean of ;

« TInitialization is crucial (how fast it converges, quality of solution output)
* Discuss techniques commonly used in practice

« Random centers from the datapoints (repeat a few times)
* Furthest traversal

« K-means ++ (works well and has provable guarantees)



Lloyd's method: Random Initialization



Lloyd's method: Random Initialization

Example: Given a set of datapoints

O



Lloyd's method: Random Initialization

Select initial centers at random

O



Lloyd's method: Random Initialization

Assign each point to its nearest center

N




Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering



Lloyd's method: Random Initialization

Assign each point to its nearest center



Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering

N
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Lloyd's method: Random Initialization

Assigh each point to its nearest center

o
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Lloyd's method: Random Initialization

Recompute optimal centers given a fixed clustering

oy S

J

Get a good quality solution in this example.



Lloyd's method: Performance

It always converges, but it may converge at a local optimum
that is different from the global optimum, and in fact could
be arbitrarily worse in terms of its score.



Lloyd's method: Performance

Local optimum: every point is assigned to its nearest center
and every center is the mean value of its points.



Lloyd's method: Performance




Lloyd's method: Performance
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Lloyd's method: Performance

This bad performance, can
happen even with well
separated Gaussian clusters.

Some Gaussian are ¢S
combined..... -
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Lloyd's method: Performance

« If we do random initialization, as k increases, it becomes
more likely we won't have perfectly picked one center per

Gaussian in our initialization (so Lloyd's method will output
a bad solution).

* For k equal-sized Gaussians, Pr[each initial center is ina

k!

. . 1
different GGUSSIGH] ~ ok ~ ok

« Becomes unlikely as k gets large.



Another Initialization Idea: Furthest
Point Heuristic

Choose c; arbitrarily (or at random).
« Forj=2, ..,k

» Pick ¢; among datapoints x',x?, ..., x4 that is
farthest from previously chosen ¢4, c;, ..., ¢j_4

Fixes the Gaussian problem. But it can be thrown
off by outliers....



Furthest point heuristic does well on
previous example
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Furthest point initialization heuristic
sensitive to outliers

Assume k=3
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Furthest point initialization heuristic
sensitive to outliers

Assume k=3
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K-means++ Initialization: D* sampling [avor:

Interpolate between random and furthest point initialization

Let D(x) be the distance between a point x and its nearest
center. Chose the next center proportional to D*(x).

* Choose ¢, at random.

e Forj=2, ..k

» Pick ¢; among x', x*

, ..., x4 according to the distribution

) ) 2
Pr(ci =X') & minir<j “x‘ o c]-r|| DZ(Xi)

Theorem: K-means++ always attains an O(log k) approximation to
optimal k-means solution in expectation.

Running Lloyd's can only further improve the cost.



K-means++ Idea: D* sampling

« Interpolate between random and furthest point initialization

« Let D(x) be the distance between a point x and its nearest
center. Chose the next center proportional to D%(x).

* a =0, random sampling

°* a = 0O, fUPThQST pOinT (Side note: it actually works well for k-center)

e a =2, k-means++

Side note: a = 1, works well for k-median



K-means ++ Fix
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K-means++/ Lloyd's Running Time

K-means ++ initialization: O(nd) and one pass over data to
select next center. So O(nkd) time in total.

Lloyd's method

Repeat until there is no change in the cost. Each round takes

For each j: C; «<{x € S whose closest centeris ¢} time O(nkd)

For each j: ¢; «mean of C;

Exponential # of rounds in the worst case [AVO7].

Expected polynomial tfime in the smoothed analysis (hon
worst-case) model!



K-means++/ Lloyd's Summary

K-means++ always attains an O(log k) approximation to optimal
k-means solution in expectation.

Running Lloyd's can only further improve the cost.

« Exponential # of rounds in the worst case [AVO7].

« Expected polynomial time in the smoothed analysis modell

« Does well in practice.



What value of k??2?

 Heuristic: Find large gap between k -1-means cost
and k-means cost.

 Hold-out validation/cross-validation on auxiliary
task (e.g., supervised learning task).

« Try hierarchical clustering.



Hierarchical Clustering

* A hierarchy might be more natural.

« Different users might care about different levels of
granularity or even prunings.



Hierarchical Clustering

Top-down (divisive)
* Partition data into 2-groups c.g. 2-means)

 Recursively cluster each group.

Bottom-Up (agglomerative)
Start with every point in its own cluster.

Repeatedly merge the "closest” two clusters.

Different defs of "closest” give dlffer'en’r
algorithms.



Bottom-Up (agglomerative)

Have a distance measure on pairs of objects. (ress )
d(x,y) - distance between x and y @ 5
E.g., # keywords in common, edit distance, etc ﬁ

‘ CORe®
« Single linkage: dist(A,B) = min dist(x,x")

xeA,x'eB’

« Complete linkage:  dist(A,B) = max  dist(x,x")

xeAx'eB’

« Average linkage:  dist(A,B) = avg dist(x,x")

xeAx'eB’



Single Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
« Repeatedly merge the "closest"” two clusters.

Single linkage: dist(A,B) = min dist(x,x")

xeAx'eB

Dendogram
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Single Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
« Repeatedly merge the "closest"” two clusters.

Single linkage: dist(A,B) = min dist(x,x")

xeAx'eB

One way to think of it: at any moment, we see connected components
of the graph where connect any two pts of distance < r.

Watch as r grows (only n-1 relevant values because we only we merge
at value of r corresponding to values of r in different clusters).

4 5
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Complete Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
« Repeatedly merge the "closest"” two clusters.

Complete linkage: dist(A,B) = max dist(x,x")

x€eAx'eB

One way to think of it: keep max diameter as small as possible at

any level.
5 CABCDEF




Complete Linkage

Bottom-up (agglomerative)
« Start with every point in its own cluster.
* Repeatedly merge the "closest” two clusters.

Complete linkage: dist(A,B) = max dist(x,x")

x€eAx'eB

One way to think of it: keep max diameter as small as possible.

5
1 3

4
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Running time

« Each algorithm starts with N clusters, and performs N-1 merges.

* For each algorithm, computing dist(C,C") can be done in time
O(|C| - |C']). (e.g., examining dist(x,x") for all x € C,x" € C")

« Time to compute all pairwise distances and take smallest is O(N?).
e Overall time is O(N?).

In fact, can run all these algorithms in time O(N“logN).

If curious, see: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schiitze, Introduction
to Information Retrieval, Cambridge University Press. 2008. http://www-nlp.stanford.edu/IR-
book/



Data Driven Clustering

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

[Balcan-Nagarajan-Vitercik-White, COLT'17] [Balcan-Dick-White, NIPS'18

Dynamic Programming

Large family F of algorithms

Farthest Location

Sample of typical inputs

Clustering:

Input m:
i

Input m:




Data Driven Clustering

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Approach: find A near optimal algorithm over the set of samples.

Key Question: Will A d% well on future i/ns'rances? Py
v v v
Seen:
?
New: [ E_ =
LE "

Sample Complexity: How large should our sample of typical instances be
in order to guarantee good performance on new instances?



Data Driven Clustering

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Approach: find A near optimal algorithm over the set of samples.

Key Question: Will A do well on future instances?

Key tool: uniform convergence, for any algo in F, average
performance over samples “close” to its expected performance.

« Imply that A has high expected performance.

Learning theory: N = 0(dim(F) /€?) instances suffice for e-close.



Data Driven Clustering

Clustering: Linkage + Dynamic Programming

[Balcan-Nagarajan-Vitercik-White, COLT'17]

CLUSTERING

Clustering: Greedy Seeding + Local Search

[Balcan-Dick-White, NIPS'18]

Parametrized Lloyds methods

CLUSTERING




What You Should Know

* Partitional Clustering. k-means and k-means ++

 Lloyd's method

 Initialization techniques (random, furthest
traversal, k-means++)

 Hierarchical Clustering.

 Single linkage, Complete linkage



