Maria-Florina Balcan 10/03/2018

Recap from last time: Boosting

- General method for improving the accuracy of any given learning algorithm.
- Works by creating a series of challenge datasets s.t. even modest performance on these can be used to produce an overall high-accuracy predictor.

- Adaboost one of the top 10 ML algorithms.
 - Works well in practice.
 - Backed up by solid foundations.

Adaboost (Adaptive Boosting)

Input: S={
$$(x_1, y_1), ..., (x_m, y_m)$$
}; $x_i \in X, y_i \in Y = \{-1, 1\}$

weak learning algo A (e.g., Naïve Bayes, decision stumps)

- For t=1,2, ..., T
 - Construct D_t on $\{x_1, ..., x_m\}$
 - Run A on D_t producing $h_t: X \to \{-1,1\}$

Output
$$H_{final}(x) = sign(\sum_{t=1}^{n} \alpha_t h_t(x))$$

- D_1 uniform on $\{x_1, ..., x_m\}$ [i.e., $D_1(i) = \frac{1}{m}$]
- Given D_t and h_t set

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{-\alpha_t\}} \text{ if } y_i = h_t(x_i)$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{\alpha_t\}} \text{ if } y_i \neq h_t(x_i)$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{\alpha_t\}} \text{ if } y_i \neq h_t(x_i)$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{\{-\alpha_t y_i h_t(x_i)\}}$$

 D_{t+1} puts half of weight on examples x_i where h_t is incorrect & half on examples where h_t is correct

Nice Features of Adaboost

- Very general: a meta-procedure, it can use any weak learning algorithm!!! (e.g., Naïve Bayes, decision stumps)
- Very fast (single pass through data each round) & simple to code, no parameters to tune.
- Grounded in rich theory.

Analyzing Training Error

Theorem $\epsilon_t = 1/2 - \gamma_t$ (error of h_t over D_t)

$$err_S(H_{final}) \le \exp\left[-2\sum_t \gamma_t^2\right]$$

So, if $\forall t, \gamma_t \geq \gamma > 0$, then $err_S(H_{final}) \leq \exp[-2 \gamma^2 T]$

The training error drops exponentially in T!!!

To get
$$err_{S}(H_{final}) \leq \epsilon$$
, need only $T = O\left(\frac{1}{\gamma^{2}}\log\left(\frac{1}{\epsilon}\right)\right)$ rounds

Adaboost is adaptive

- Does not need to know γ or T a priori
- Can exploit $\gamma_t \gg \gamma$

Theorem
$$err_S(H_{final}) \le \exp \left[-2\sum_t \gamma_t^2\right]$$
 where $\epsilon_t = 1/2 - \gamma_t$

How about generalization guarantees?

Original analysis [Freund&Schapire'97]

H space of weak hypotheses; d=VCdim(H)

 H_{final} is a weighted vote, so the hypothesis class is:

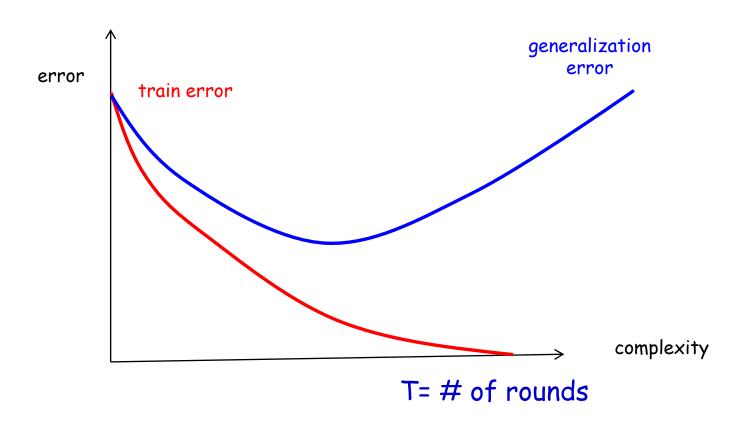
G={all fns of the form sign($\sum_{t=1}^{T} \alpha_t h_t(x)$)}

Theorem [Freund&Schapire'97]
$$\forall \ g \in G, err(g) \leq err_S(g) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\ \right) \ \text{T= \# of rounds}$$

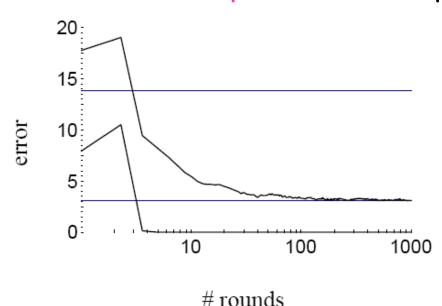
Key reason: $VCdim(G) = \tilde{O}(dT)$ plus typical VC bounds.

Theorem [Freund&Schapire'97]

$$\forall g \in G, err(g) \leq err_S(g) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$
 where d=VCdim(H)



- Experiments showed that the test error of the generated classifier usually does not increase as its size becomes very large.
- Experiments showed that continuing to add new weak learners after correct classification of the training set had been achieved could further improve test set performance!!!



- Experiments showed that the test error of the generated classifier usually does not increase as its size becomes very large.
- Experiments showed that continuing to ado the transition of the transing set had been achieved could further improve test set performance!!!
- These results seem to contradict FS'97 bound and Occam's razor in thieve good test error the Gier should be as simple as $G, err(g) \leq err_S(g) + O(\frac{7d}{m})$

How can we explain the experiments?

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in "Boosting the margin: A new explanation for the effectiveness of voting methods" a nice theoretical explanation.

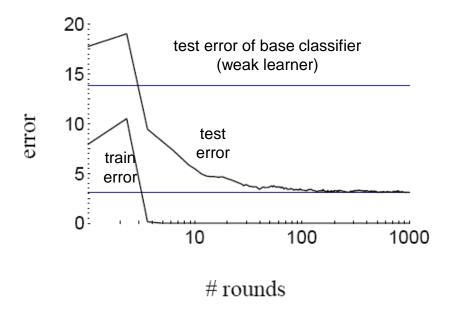
Key Idea:

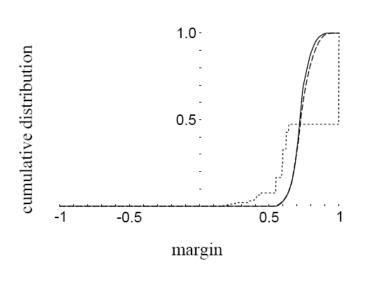
Training error does not tell the whole story.

We need also to consider the classification confidence!!

Boosting didn't seem to overfit...(!)

...because it turned out to be increasing the *margin* of the classifier





Error Curve, Margin Distr. Graph - Plots from [SFBL98]

Classification Margin

H space of weak hypotheses. The convex hull of H:

$$co(H) = \{ f = \sum_{t=1}^{T} \alpha_t h_t, \alpha_t \ge 0, \sum_{t=1}^{T} \alpha_t = 1, h_t \in H \}$$

• Let $f \in co(H)$, $f = \sum_{t=1}^{T} \alpha_t h_t$, $\alpha_t \ge 0$, $\sum_{t=1}^{T} \alpha_t = 1$.

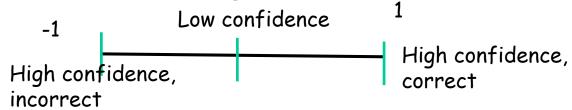
The majority vote rule H_f given by f (given by $H_f = sign(f(x))$) predicts wrongly on example (x, y) iff $yf(x) \le 0$.

Definition: margin of H_f (or of f) on example (x, y) to be yf(x).

$$yf(x) = y \sum_{t=1}^{T} [\alpha_t h_t(x)] = \sum_{t=1}^{T} [y \alpha_t h_t(x)] = \sum_{t: y = h_t(x)} \alpha_t - \sum_{t: y \neq h_t(x)} \alpha_t$$

The margin is positive iff $y = H_f(x)$.

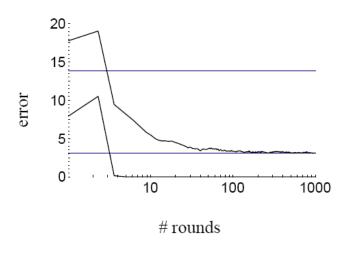
See |yf(x)| = |f(x)| as the strength or the confidence of the vote.

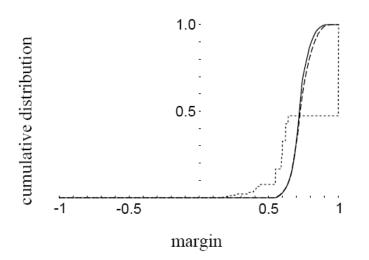


Theorem: VCdim(H) = d, then with prob. $\geq 1 - \delta$, $\forall f \in co(H)$, $\forall \theta > 0$,

$$\Pr_{D}[yf(x) \le 0] \le \Pr_{S}[yf(x) \le \theta] + O\left(\frac{1}{\sqrt{m}} \sqrt{\frac{d \ln^2 \frac{m}{d}}{\theta^2} + \ln \frac{1}{\delta}}\right)$$

Note: bound does **not** depend on T (the # of rounds of boosting), depends only on the complex. of the weak hyp space and the margin!

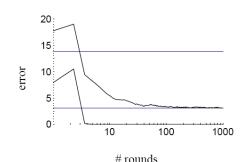




Theorem: VCdim(H) = d, then with prob. $\geq 1 - \delta$, $\forall f \in co(H)$, $\forall \theta > 0$,

$$\Pr_{D}[yf(x) \le 0] \le \Pr_{S}[yf(x) \le \theta] + O\left(\frac{1}{\sqrt{m}} \sqrt{\frac{d \ln^2 \frac{m}{d}}{\theta^2} + \ln \frac{1}{\delta}}\right)$$

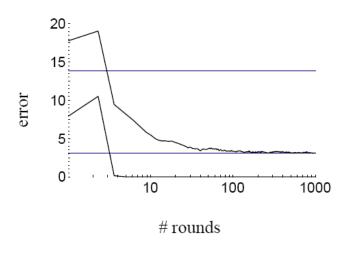
- If all training examples have large margins, then we can approximate the final classifier by a much smaller classifier.
- Can use this to prove that better margin → smaller test error, regardless of the number of weak classifiers.
- Can also prove that boosting tends to increase the margin of training examples by concentrating on those of smallest margin.
- Although final classifier is getting larger, margins are likely to be increasing, so the final classifier is actually getting closer to a simpler classifier, driving down test error.

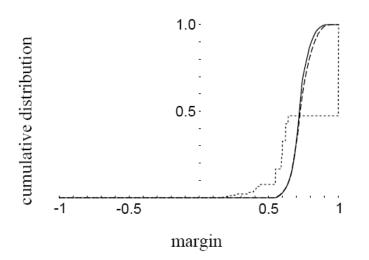


Theorem: VCdim(H) = d, then with prob. $\geq 1 - \delta$, $\forall f \in co(H)$, $\forall \theta > 0$,

$$\Pr_{D}[yf(x) \le 0] \le \Pr_{S}[yf(x) \le \theta] + O\left(\frac{1}{\sqrt{m}} \sqrt{\frac{d \ln^2 \frac{m}{d}}{\theta^2} + \ln \frac{1}{\delta}}\right)$$

Note: bound does **not** depend on T (the # of rounds of boosting), depends only on the complex. of the weak hyp space and the margin!





Boosting, Adaboost Summary

- Shift in mindset: goal is now just to find classifiers a bit better than random guessing.
- Backed up by solid foundations.
- Adaboost work and its variations well in practice with many kinds of data (one of the top 10 ML algos).
- · More about classic applications in Recitation.
- Relevant for big data age: quickly focuses on "core difficulties", so well-suited to distributed settings, where data must be communicated efficiently [Balcan-Blum-Fine-Mansour COLT'12].