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Boosting

• Works by creating a series of challenge datasets s.t. even 
modest performance on these can be used to produce an 
overall high-accuracy predictor.

• Backed up by solid foundations.

• Works well in practice  (Adaboost and its variations 
one of the top 10 algorithms).

• General method for improving the accuracy of any given 
learning algorithm.



Readings: 

• The Boosting Approach to Machine Learning: An 
Overview.  Rob Schapire, 2001

• Theory and Applications of Boosting. NIPS tutorial.  

http://www.cs.princeton.edu/~schapire/talks/nips-tutorial.pdf

Plan for today: 

• Motivation.

• A bit of history.

• Adaboost: algo, guarantees, discussion.

• Focus on supervised classification.



An Example: Spam Detection

Key observation/motivation:

• Easy to find rules of thumb that are often correct.

• Harder to find single rule that is very highly accurate.

• E.g., “If buy now in the message, then predict spam.”

Not spam spam

• E.g., “If say good-bye to debt in the message, then predict spam.”

• E.g., classify which emails are spam and which are important.



• Boosting: meta-procedure that takes in an algo for finding rules 
of thumb (weak learner). Produces a highly accurate rule, by calling 
the weak learner repeatedly on cleverly chosen datasets.

An Example: Spam Detection

• apply weak learner to a subset of emails, obtain rule of thumb

• apply to 2nd subset of emails, obtain 2nd rule of thumb

• apply to 3rd subset of emails, obtain 3rd rule of thumb

• repeat T times; combine weak rules into a single highly accurate rule.

𝒉𝟏

𝒉𝟐

𝒉𝟑

𝒉𝑻

…
E

m
ai

ls



Boosting: Important Aspects

How to choose examples on each round?

How to combine rules of thumb into single 
prediction rule?

• take (weighted) majority vote of rules of thumb

• Typically, concentrate on “hardest” examples (those most 
often misclassified by previous rules of thumb)



Historically….



Weak Learning vs Strong/PAC Learning

• [Kearns & Valiant ’88]:  defined weak learning:
being able to predict better than random guessing 

(error ≤
1

2
− 𝛾) , consistently.

• Posed an open pb: “Does there exist a boosting algo that 
turns a weak learner into a strong PAC learner (that can 

produce arbitrarily accurate hypotheses)?”

• Informally, given “weak” learning algo that can consistently 

find classifiers of error ≤
1

2
− 𝛾, a boosting algo would 

provably construct a single classifier with error ≤ 𝜖.



Weak Learning vs Strong/PAC Learning

Strong (PAC) Learning

• ∃ algo A

• ∀ 𝑐 ∈ 𝐻

• ∀𝐷

• ∀ 𝜖 > 0

• ∀ 𝛿 > 0

• A produces h s.t.:

Weak Learning

• ∃ algo A

• ∃𝛾 > 0

• ∀ 𝑐 ∈ 𝐻

• ∀𝐷

• ∀ 𝜖 >
1

2
− 𝛾

• ∀ 𝛿 > 0

• A produces h s.t.Pr 𝑒𝑟𝑟 ℎ ≥ 𝜖 ≤ 𝛿

Pr 𝑒𝑟𝑟 ℎ ≥ 𝜖 ≤ 𝛿

h

• [Kearns & Valiant ’88]:  defined weak learning & 
posed an open pb of finding a boosting algo.



Surprisingly….

Weak Learning =Strong (PAC) Learning

Original Construction [Schapire ’89]:

• poly-time boosting algo, exploits that we can 
learn a little on every distribution.

• A modest booster obtained via calling the weak learning 
algorithm on 3 distributions.

• Cool conceptually and technically, not very practical.

• Then amplifies the modest boost of accuracy by 
running this somehow recursively.

Error = 𝛽 <
1

2
− 𝛾 → error 3𝛽2 − 2𝛽3



An explosion of subsequent work



Adaboost (Adaptive Boosting)

[Freund-Schapire, JCSS’97]

Godel Prize winner 2003 

“A Decision-Theoretic Generalization of On-Line 
Learning and an Application to Boosting”



Informal Description Adaboost

• For t=1,2, … ,T

• Construct Dt on {x1, …, xm}

• Run A on Dt producing ht: 𝑋 → {−1,1} (weak classifier)

xi ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {−1,1}

+
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• Boosting: turns a weak algo into a strong (PAC) learner.

• Output Hfinal 𝑥 = sign σ𝑡=1𝛼𝑡ℎ𝑡 𝑥

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Roughly speaking Dt+1 increases weight on xi if ht incorrect on xi ; 
decreases it on xi if ht correct.

weak learning algo A (e.g., Naïve Bayes, decision stumps)

ϵt = Pxi ~Dt(ht xi ≠ yi) error of ht over Dt



Adaboost (Adaptive Boosting)

• For t=1,2, … ,T

• Construct 𝐃𝐭 on {𝐱𝟏, …, 𝒙𝐦}

• Run A on Dt producing ht

Dt+1 puts half of weight on examples
xi where ht is incorrect & half on
examples where ht is correct

• Weak learning algorithm A.

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡 if 𝑦𝑖 = ℎ𝑡 𝑥𝑖

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e 𝛼𝑡 if 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖

Constructing 𝐷𝑡

[i.e., D1 𝑖 =
1

𝑚
]

• Given Dt and ht set

𝛼𝑡 =
1

2
ln

1 − 𝜖𝑡
𝜖𝑡

> 0

Final hyp: Hfinal 𝑥 = sign σ𝑡 𝛼𝑡ℎ𝑡 𝑥

• D1 uniform on {x1, …, xm}

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡𝑦𝑖 ℎ𝑡 𝑥𝑖



Adaboost: A toy example

Weak classifiers:  vertical or horizontal half-planes (a.k.a. decision stumps)



Adaboost: A toy example



Adaboost: A toy example



Adaboost (Adaptive Boosting)

• For t=1,2, … ,T

• Construct 𝐃𝐭 on {𝐱𝟏, …, 𝒙𝐦}

• Run A on Dt producing ht

Dt+1 puts half of weight on examples
xi where ht is incorrect & half on
examples where ht is correct

• Weak learning algorithm A.

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡 if 𝑦𝑖 = ℎ𝑡 𝑥𝑖

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e 𝛼𝑡 if 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖

Constructing 𝐷𝑡

[i.e., D1 𝑖 =
1

𝑚
]

• Given Dt and ht set

𝛼𝑡 =
1

2
ln

1 − 𝜖𝑡
𝜖𝑡

> 0

Final hyp: Hfinal 𝑥 = sign σ𝑡 𝛼𝑡ℎ𝑡 𝑥

• D1 uniform on {x1, …, xm}

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡𝑦𝑖 ℎ𝑡 𝑥𝑖



Nice Features of Adaboost

• Very general: a meta-procedure, it can use any weak learning 
algorithm!!! 

• Very fast (single pass through data each round) & simple to 
code, no parameters to tune.

• Grounded in rich theory.

• Shift in mindset: goal is now just to find classifiers a 
bit better than random guessing.

• Relevant for big data age: quickly focuses on “core 
difficulties”, well-suited to distributed settings, where data 
must be communicated efficiently [Balcan-Blum-Fine-Mansour COLT’12].

(e.g., Naïve Bayes, decision stumps)



Analyzing Training Error

Theorem 𝜖𝑡 = 1/2 − 𝛾𝑡 (error of ℎ𝑡 over 𝐷𝑡)

𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp −2 ෍

𝑡

𝛾𝑡
2

So, if ∀𝑡, 𝛾𝑡 ≥ 𝛾 > 0, then 𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp −2 𝛾2𝑇

Adaboost is adaptive

• Does not need to know 𝛾 or T a priori

• Can exploit 𝛾𝑡 ≫ 𝛾

The training error drops exponentially in T!!!

To get 𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ 𝜖, need only 𝑇 = 𝑂
1

𝛾2
log

1

𝜖
rounds 



Understanding the Updates & Normalization

Pr
𝐷𝑡+1

𝑦𝑖 = ℎ𝑡 𝑥𝑖 = ෍

𝑖:𝑦𝑖=ℎ𝑡 𝑥𝑖

𝐷𝑡 𝑖

𝑍𝑡
𝑒−𝛼𝑡 =

1 − 𝜖𝑡
𝑍𝑡

𝑒−𝛼𝑡 =
1 − 𝜖𝑡
𝑍𝑡

𝜖𝑡
1 − 𝜖𝑡

=
1 − 𝜖𝑡 𝜖𝑡
𝑍𝑡

Pr
𝐷𝑡+1

𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖 = ෍

𝑖:𝑦𝑖≠ℎ𝑡 𝑥𝑖

𝐷𝑡 𝑖

𝑍𝑡
𝑒𝛼𝑡 =

Probabilities are equal!  

𝑍𝑡 = ෍

𝑖:𝑦𝑖=ℎ𝑡 𝑥𝑖

𝐷𝑡 𝑖 𝑒
−𝛼𝑡𝑦𝑖 ℎ𝑡 𝑥𝑖

Claim: Dt+1 puts half of the weight on xi where ht was incorrect  and 
half of the weight on xi where ht was correct.

Recall 𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
e −𝛼𝑡𝑦𝑖 ℎ𝑡 𝑥𝑖

= 1 − 𝜖𝑡 𝑒
−𝛼𝑡 + 𝜖𝑡𝑒

𝛼𝑡 = 2 𝜖𝑡 1 − 𝜖𝑡

= ෍

𝑖:𝑦𝑖=ℎ𝑡 𝑥𝑖

𝐷𝑡 𝑖 𝑒
−𝛼𝑡 + ෍

𝑖:𝑦𝑖≠ℎ𝑡 𝑥𝑖

𝐷𝑡 𝑖 𝑒
𝛼𝑡

𝜖𝑡
1

𝑍𝑡
𝑒𝛼𝑡 = 𝜖𝑡

𝑍𝑡

1 − 𝜖𝑡
𝜖𝑡

=
𝜖𝑡 1 − 𝜖𝑡

𝑍𝑡



• If 𝐻𝑓𝑖𝑛𝑎𝑙 incorrectly classifies 𝑥𝑖,

Analyzing Training Error: Proof Intuition

- Then 𝑥𝑖 incorrectly classified by (wtd) majority of ℎ𝑡 ’s.

• On round 𝑡, we increase weight of 𝑥𝑖 for which ℎ𝑡 is wrong.  

- Which implies final prob. weight of 𝑥𝑖 is large.

Can show probability ≥
1

𝑚

1

ς𝑡 𝑍𝑡

• Since sum of prob. = 1, can’t have too many of high weight.  

And (ς𝑡 𝑍𝑡) → 0 .

Can show # incorrectly classified ≤ 𝑚 ς𝑡 𝑍𝑡 . 

Theorem 𝜖𝑡 = 1/2 − 𝛾𝑡 (error of ℎ𝑡 over 𝐷𝑡)

𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp −2 ෍

𝑡

𝛾𝑡
2



Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 𝐷𝑇+1 𝑖 =
1

𝑚

exp −𝑦𝑖𝑓 𝑥𝑖

ς𝑡 𝑍𝑡

where 𝑓 𝑥𝑖 = σ𝑡 𝛼𝑡ℎ𝑡 𝑥𝑖 .

Step 2: errS 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ ς𝑡 𝑍𝑡 .

Step 3: ς𝑡 𝑍𝑡 = ς𝑡 2 𝜖𝑡 1 − 𝜖𝑡 = ς𝑡 1 − 4𝛾𝑡
2 ≤ 𝑒−2 σ𝑡 𝛾𝑡

2

[Unthresholded weighted vote of ℎ𝑖 on 𝑥𝑖 ]



Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 𝐷𝑇+1 𝑖 =
1

𝑚

exp −𝑦𝑖𝑓 𝑥𝑖

ς𝑡 𝑍𝑡

where 𝑓 𝑥𝑖 = σ𝑡 𝛼𝑡ℎ𝑡 𝑥𝑖 .

Recall 𝐷1 𝑖 =
1

𝑚
and 𝐷𝑡+1 𝑖 = 𝐷𝑡 𝑖

exp −𝑦𝑖𝛼𝑡ℎ𝑡 𝑥𝑖

𝑍𝑡

𝐷𝑇+1 𝑖 =
exp −𝑦𝑖𝛼𝑇ℎ𝑇 𝑥𝑖

𝑍𝑇
× 𝐷𝑇 𝑖

=
exp −𝑦𝑖𝛼𝑇ℎ𝑇 𝑥𝑖

𝑍𝑇
×

exp −𝑦𝑖𝛼𝑇−1ℎ𝑇−1 𝑥𝑖

𝑍𝑇−1
× 𝐷𝑇−1 𝑖

…… .

=
exp −𝑦𝑖𝛼𝑇ℎ𝑇 𝑥𝑖

𝑍𝑇
×⋯×

exp −𝑦𝑖𝛼1ℎ1 𝑥𝑖

𝑍1

1

𝑚

=
1

𝑚

exp −𝑦𝑖(𝛼1ℎ1 𝑥𝑖 +⋯+𝛼𝑇ℎ𝑇 𝑥𝑇 )

𝑍1⋯𝑍𝑇
=

1

𝑚

exp −𝑦𝑖𝑓 𝑥𝑖

ς𝑡 𝑍𝑡



Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 𝐷𝑇+1 𝑖 =
1

𝑚

exp −𝑦𝑖𝑓 𝑥𝑖

ς𝑡 𝑍𝑡

where 𝑓 𝑥𝑖 = σ𝑡 𝛼𝑡ℎ𝑡 𝑥𝑖 .

errS 𝐻𝑓𝑖𝑛𝑎𝑙 =
1

𝑚
෍

𝑖

1𝑦𝑖≠𝐻𝑓𝑖𝑛𝑎𝑙 𝑥𝑖

1

0

0/1 loss

exp loss

=
1

𝑚
෍

𝑖

1𝑦𝑖𝑓 𝑥𝑖 ≤0

≤
1

𝑚
෍

𝑖

exp −𝑦𝑖𝑓 𝑥𝑖

= ς𝑡 𝑍𝑡 .=෍

𝑖

𝐷𝑇+1 𝑖 ෑ

𝑡

𝑍𝑡

Step 2: errS 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ ς𝑡 𝑍𝑡 .



Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 𝐷𝑇+1 𝑖 =
1

𝑚

exp −𝑦𝑖𝑓 𝑥𝑖

ς𝑡 𝑍𝑡

where 𝑓 𝑥𝑖 = σ𝑡 𝛼𝑡ℎ𝑡 𝑥𝑖 .

Step 2: errS 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ ς𝑡 𝑍𝑡 .

Step 3: ς𝑡 𝑍𝑡 = ς𝑡 2 𝜖𝑡 1 − 𝜖𝑡 = ς𝑡 1 − 4𝛾𝑡
2 ≤ 𝑒−2 σ𝑡 𝛾𝑡

2

Note: recall 𝑍𝑡 = 1 − 𝜖𝑡 𝑒
−𝛼𝑡 + 𝜖𝑡𝑒

𝛼𝑡 = 2 𝜖𝑡 1 − 𝜖𝑡

𝛼𝑡 minimizer of 𝛼 → 1 − 𝜖𝑡 𝑒
−𝛼 + 𝜖𝑡𝑒

𝛼



• If 𝐻𝑓𝑖𝑛𝑎𝑙 incorrectly classifies 𝑥𝑖,

Analyzing Training Error: Proof Intuition

- Then 𝑥𝑖 incorrectly classified by (wtd) majority of ℎ𝑡 ’s.

• On round 𝑡, we increase weight of 𝑥𝑖 for which ℎ𝑡 is wrong.  

- Which implies final prob. weight of 𝑥𝑖 is large.

Can show probability ≥
1

𝑚

1

ς𝑡 𝑍𝑡

• Since sum of prob. = 1, can’t have too many of high weight.  

And (ς𝑡 𝑍𝑡) → 0 .

Can show # incorrectly classified ≤ 𝑚 ς𝑡 𝑍𝑡 . 

Theorem 𝜖𝑡 = 1/2 − 𝛾𝑡 (error of ℎ𝑡 over 𝐷𝑡)

𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp −2 ෍

𝑡

𝛾𝑡
2



Generalization Guarantees

G={all fns of the form sign(σ𝑡=1
𝑇 𝛼𝑡ℎ𝑡(𝑥)) }

𝐻𝑓𝑖𝑛𝑎𝑙 is a weighted vote, so the hypothesis class is: 

Theorem [Freund&Schapire’97]

∀ 𝑔 ∈ 𝐺, 𝑒𝑟𝑟 𝑔 ≤ 𝑒𝑟𝑟𝑆 𝑔 + ෨𝑂
𝑇𝑑

𝑚
T= # of rounds

Key reason: VCd𝑖𝑚 𝐺 = ෨𝑂 𝑑𝑇 plus typical VC bounds.

• H space of weak hypotheses; d=VCdim(H)

Theorem where 𝜖𝑡 = 1/2 − 𝛾𝑡𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp −2 ෍

𝑡

𝛾𝑡
2

How about generalization guarantees?

Original analysis [Freund&Schapire’97]



Generalization Guarantees
Theorem [Freund&Schapire’97]

∀ 𝑔 ∈ 𝑐𝑜(𝐻), 𝑒𝑟𝑟 𝑔 ≤ 𝑒𝑟𝑟𝑆 𝑔 + ෨𝑂
𝑇𝑑

𝑚
where d=VCdim(H)

error

complexity

train error

generalization
error

T= # of rounds



Generalization Guarantees

• Experiments with boosting showed that the test error of 
the generated classifier usually does not increase as its 
size becomes very large.

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!!



Generalization Guarantees

• Experiments with boosting showed that the test error of 
the generated classifier usually does not increase as its 
size becomes very large.

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!!

• These results seem to contradict FS’87 bound and Occam’s 
razor (in order achieve good test error the classifier should be as 

simple as possible)!



How can we explain the experiments?

Key Idea:

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in 
“Boosting the margin: A new explanation for the effectiveness 
of voting methods” a nice theoretical explanation.

Training error does not tell the whole story. 

We need also to consider the classification confidence!!


