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Two Core Aspects of Machine Learning

[Algor'i’rhm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

E.g.: logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization ] (Labeled) Data

Confidence for rule effectiveness on future data.



PAC/SLT models for Supervised Learning
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg.,X=R4orX=1{0,1}4
« Algo sees training sample S: (x;,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target ¢
- labels € {-1,1} - binary classification

» Algo does optimization over S, find hypothesis h. <

* Goal: h has small error over D. _ -
I X
errp(h) = Pr (h(x) # c*(x)) nstance space
x~

S Bias: fix hypOThZSiS space H [whose complexity is not too large]
A A )
& « Readlizable: ¢* € H.

e Agnostic: c* "close to" H.



PAC/SLT models for Supervised Learning

 Algo sees training sample S: (x,c*(xy)),..., (X,,,c*(x,,)), X; i.i.d. from D

Does optimization over S, find hypothesis h € H.

Goal: h has small error over D.
True error: errp(h) = PrD(h(x) * c* (X))
.

How often h(x) # c*(x) over future
instances drawn at random from D

But, can only measure:
Training error: errs(h) = izi [(h(x) # c*(x;))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errg(h)



Sample Complexity for Supervised Learning

Consistent Learner
« Input: Si(%1,c*(x1)),..., (X,* (X))
- Output: Find h in H consistent with the sample (if one exits).

Bound only Togarithmic in [H[, Tinear in 1/¢
1

T heorem

m > % [In(|H|) + In

labeled examples are sufficient so that (with prob. 1 —é,)all h € H with

errp(h) 2 € have errg(h) > 0. Probability over different samples of m

training examples

So, if ¢* € Hand can find consistent fns, then only need this many
examples to get generalization error < € with prob. > 1 -6
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Sample Complexity: Uniform Convergence
Agnostic Case

Empirical Risk Minimization (ERM)
Input: Si (xq,c*(x)),..., (X.c* (X))

» Output: Find h in H with smallest errg(h)

T heorem

m z@m(wn +n (2]

labeled examples are sufficienfk.t. with probab. > 1 -4, all h € H

have h) — h)| <e.
lerrp(h) —errg(h)| <e 1/¢# dependence [as opposed

tol/e for realizable]



Hoeffding bounds

Consider coin of bias p flipped m times.
Let N be the observed # heads. Clearly E [%] = p.

[N=X; +X; + ..+ Xy, X;j = Lwith prob. p, O with prob 1-p.]

Hoeffding Inequality
Let y € [0,1].
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p—Y p p+ty

Exponentially decreasing tails

PN
mp

Tail inequality: bound probability mass in tail of distribution (how
concentrated is a random variable around its expectation).



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

Theorem
m> = Inli) +1n (3

labeled examples are sufficient s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

Proof: Hoeffding & union bound.

« Fix h; by Hoeffding, prob. that |errg(h) — errp(h)| = € is at most De—2me”

* By union bound over all h € H, the prob. that 3h s.t. |errg(h) — errp(h)| > € is
at most 2|H|e~2m¢” Set to 5. Solve.

errp(h*) l errs(h*)
Fact: | . I |
W.hp. =1 - S,eer(fz) < errp(h*) + 2e, I | | | A
h is ERM output, h* is hyp. of smallest ems(®) _ eleer(h)

true error rate.



Sample Complexity: Finite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

1/e* dependence as opposed to 1/¢
Theorem for realizable], but 961’ fOI"

> : {In(|H|) Tn (?)] something stronger.
labeled examples are sufficient s.t. with probab. > 1 -9, all h € H
have |errp(h) — errg(h)| < e.

2) Statistical Learning Theory style:

\/% as opposed fo % for
With prob. at least 1 — &, for all h € H: realizable

(. o /1N )\
errp(h) < errg(h) +@1 (Z[H]) + In \EU>




E.g., thresholds on the real line |

E.g., infervals on the real line



POLL TIME



Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.

- H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]]

|S|=m



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S] H[m] < 2™
|S|=m
E.g., H= Thresholds on the real line - } +
w
- - - +
O——O0—O0—1—+0 H[S]| =5
_ _ n +
- + + +
+ + + +

In general, if |S|=m (dll distinct), [H[S]| = m + 1 « 2™



Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max |H|S]| H[m] < 2™

+
E.g., H= Intervals on the real line i i

- _l_ -

/ _/ —/

In general, |S|=m (all distinct), Hlm] = m(rr;+1) +1=0(m?) « 2™

There are m+1 possible options for the first part, m left for the second
part, the order does not matter, so (m choose 2) + 1 (for empty interval).



Effective number of hypotheses

* H[S] - the set of splittings of dataset S using concepts from H.
- H[m] - max number of ways to split m points using concepts in H

H[m] = max |H[S]| H[m] < 2™

Definition: H shatters S if |H[S]| = 2/5.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > § l0g2(2H([2m]) + 1092 @)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

* Not too easy to interpret sometimes hard to calculate
exactly, but can get a good bound using "VC-dimension

If Hlm] = 2™, thenm > =(...) ®

« VC-dimension is roughly the point at which H stops looking
like it contains all functions, so hope for solving for m.



Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

o)
then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

m > é [|092(2H[2m]) T 1092 (l)]

Sauer's Lemma: H[m] = O(mVCdim(H))

Theorem
m = O G [VC’dim(H) log (é) + log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Shattering, VC-dimension

Definition: H shatters S if |H[S]| = 2/5I.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways, all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o



Shattering, VC-dimension

Definition: VC-dimension (Vapnhik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H]).



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Thresholds on the real line - |+
w

E.g.. H= Intervals on the real line

VCdim(H) = 2 O

O
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Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
_ H‘* -t - | |
| | | |

VCdim(H) > 2k A sample of size 2k shatters
o (treat each pair of points as a separate
case of intervals)

VCdim(H) < 2k + 1

|
+
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Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) = 3 >(




Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive

and outside points as hegative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other @
two as negative.

Fact: VCdim of linear separators in R is d+1



Sauer’'s Lemma

Sauer's Lemma:
Let d = VCdim(H)
* m <d, then Him] = 2™

» m>d, then H[m] = O(m%)



Sample Complexity: Infinite Hypothesis Spaces

Realizable Case

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > § [|092(2H[2m]) +logz (%)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = O(mVC¢dim()

T heorem
1 _ 1 1
m= O (— [VC’dzm(H) 09 (—) + log (-)D
£ € )
labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem

=0 (2 [rcununyon () +is(2)

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators inRY  m = 0O Gg G) + log (%)D

Sample complexity linear in d

So, if double the number of features, then I only need
roughly twice the number of samples to do well.



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

T heorem

=02 reamtnios (2) 1 (1))

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

Statistical Learning Theory Style

errp(h) < errg(h) +\/ (VCdlm(H) + ln( ))



What you should know

* Notion of sample complexity.

« Shattering, VC dimension as measure of complexity,
Sauer's lemma, form of the VC bounds.



