Generalization and Overfitting Sample Complexity Results for Supervised Classification

Maria-Florina (Nina) Balcan September 17th, 2018

Today's focus: Sample Complexity for Supervised Classification (Function Approximation)

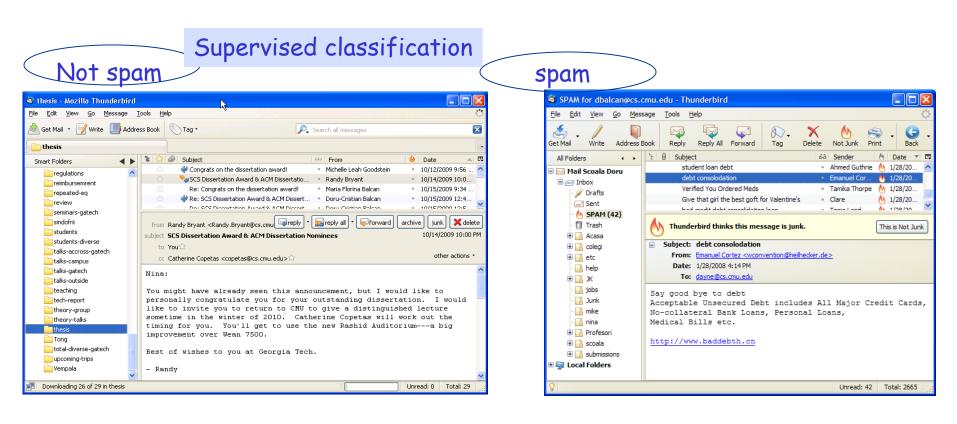
- Statistical Learning Theory (Vapnik)
- PAC (Valiant)

Recommended readings:

- Mitchell: Ch. 7
- Shalev-Shwartz& Ben-David: Chapters 2,3,4

Supervised Classification

Decide which emails are spam and which are important.



Goal: use emails seen so far to produce good prediction rule for future data.

Example: Supervised Classification

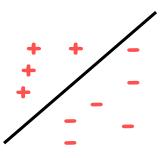
Represent each message by features. (e.g., keywords, spelling, etc.)

						1 -	
('money''	''pills''	"Mr."	bad spelling	known-sender	spam?	
	Υ	Ν	Y	Υ	N	Y	_
	Ν	Ν	Ν	Y	Y	N	
	Ν	Y	N	N	N	Y	
exampl	e Y	Ν	N	Ν	Y	N	label
	N	Ν	Y	Ν	Y	N	
	Y	Ν	N	Y	Ν	Y	
	N	Ν	Y	Ν	Ν	N	
						I	

Reasonable RULES:

Predict SPAM if unknown AND (money OR pills)

Predict SPAM if 2money + 3pills -5 known > 0



Linearly separable

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

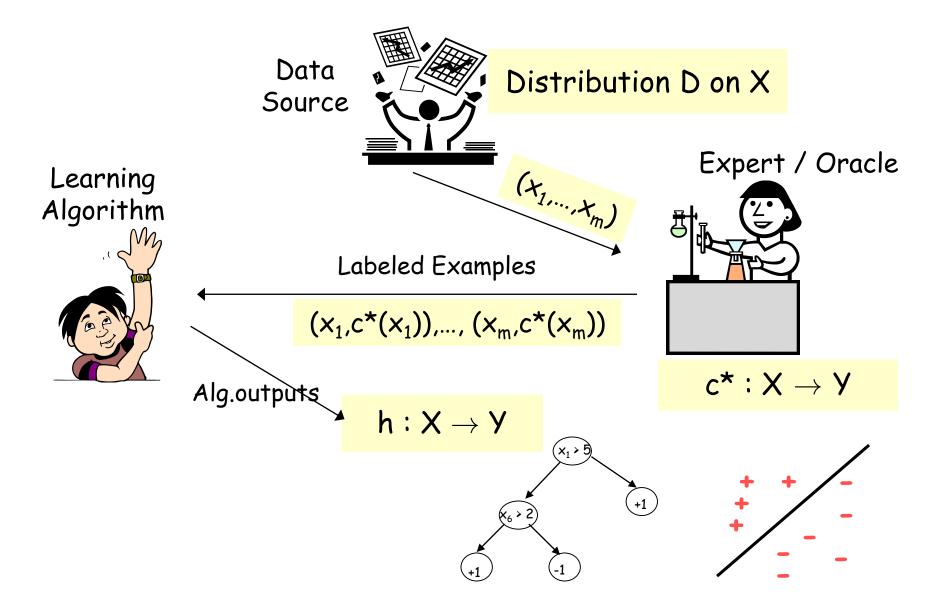
• E.g.: logistic regression, SVM, Adaboost, etc.

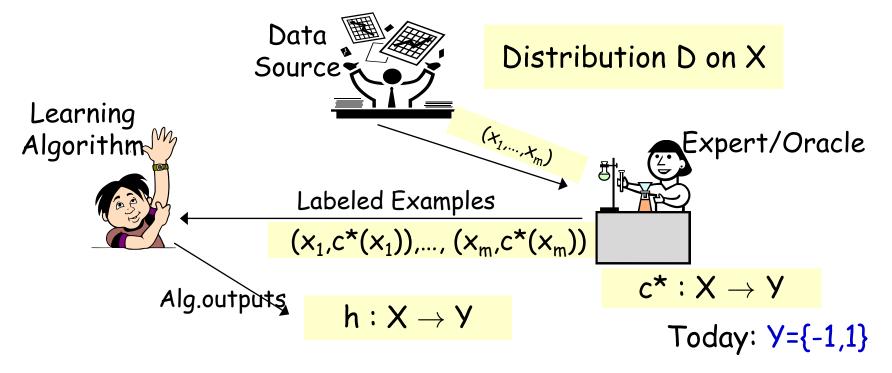
Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

- Very well understood: Occam's bound, VC theory, etc.
- · Note: to talk about these we need a precise model.

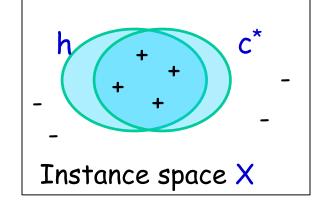




- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ independently and identically distributed (i.i.d.) from D; labeled by c^*
- Does optimization over S, finds hypothesis h (e.g., a decision tree).
- Goal: h has small error over D.

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels $\in \{-1,1\}$ binary classification
 - Algo does optimization over S, find hypothesis h.
 - · Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$

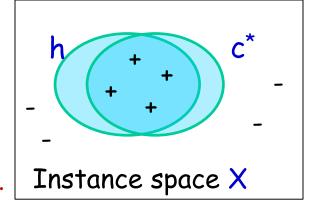


Need a bias: no free lunch.

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels $\in \{-1,1\}$ binary classification
 - Algo does optimization over 5, find hypothesis h.
 - · Goal: h has small error over D.

$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$

Bias: Fix hypotheses space H. (whose complexity is not too large).



Realizable: $c^* \in H$.

Agnostic: c^* "close to" H.

- Algo sees training sample S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
- Does optimization over S, find hypothesis $h \in H$.
- Goal: h has small error over D.

True error:
$$err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$$

How often $h(x) \neq c^*(x)$ over future instances drawn at random from D

• But, can only measure:

Training error:
$$err_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x_i))$$

How often $h(x) \neq c^*(x)$ over training instances

Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- · Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Contrapositive: if the target is in H, and we have an algo that can find consistent fns, then we only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with the sample (if one exits).

Theorem

Bound inversely linear in ϵ

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$, all $h\in H$ with $err_D(h)\geq \varepsilon$ have $err_S(h)>0$. Bound only logarithmic in |H|

- ϵ is called error parameter
 - D might place low weight on certain parts of the space
- δ is called confidence parameter
 - there is a small chance the examples we get are not representative of the distribution

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- · Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$. $|H| = 3^n$ E.g., $h = x_1 \overline{x_3} x_5$ or $h = x_1 \overline{x_2} x_4 x_9$

Then $m \ge \frac{1}{\epsilon} \left[n \ln 3 + \ln \left(\frac{1}{\delta} \right) \right]$ suffice

 $n = 10, \epsilon = 0.1, \delta = 0.01$ then $m \ge 156$ suffice

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- · Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$.

Side HWK question: show that any conjunctions can be represented by a small decision tree; also by a linear separator.

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Proof Assume k bad hypotheses $h_1, h_2, ..., h_k$ with $err_D(h_i) \ge \epsilon$

- 1) Fix h_i . Prob. h_i consistent with first training example is $\leq 1 \epsilon$. Prob. h_i consistent with first m training examples is $\leq (1 - \epsilon)^m$.
- 2) Prob. that at least one h_i consistent with first m training examples is $\leq k (1 \epsilon)^m \leq |H| (1 \epsilon)^m$.
- 3) Calculate value of m so that $|H|(1-\epsilon)^m \le \delta$
- 3) Use the fact that $1-x \le e^{-x}$, sufficient to set $|H|(1-\epsilon)^m \le |H| e^{-\epsilon m} \le \delta$

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$ all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Probability over different samples of m training examples

Sample Complexity: Finite Hypothesis Spaces Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

2) Statistical Learning Way:

With probability at least $1 - \delta$, for all $h \in H$ s.t. $err_S(h) = 0$ we have

$$\operatorname{err}_{D}(h) \leq \frac{1}{m} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right).$$

Supervised Learning: PAC model (Valiant)

- X instance space, e.g., $X = \{0,1\}^n$ or $X = R^n$
- $S_1=\{(x_i, y_i)\}$ labeled examples drawn i.i.d. from some distr. D over X and labeled by some target concept c^*
 - labels $\in \{-1,1\}$ binary classification

- Algorithm A PAC-learns concept class H if for any target c* in H, any distrib. D over X, any ε , δ > 0:
 - A uses at most poly(n,1/ ϵ ,1/ δ ,size(c*)) examples and running time.
 - With probab. 1- δ , A produces h in H of error at $\leq \varepsilon$.

Uniform Convergence

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- This basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect h∈H (agnostic case)?
 - What can we say if $c^* \notin H$?
 - Can we say that whp all $h \in H$ satisfy $|err_D(h) err_S(h)| \le \epsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Agnostic Case

What if there is no perfect h?

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

To prove bounds like this, need some good tail inequalities.

Hoeffding bounds

Consider coin of bias p flipped m times. Let N be the observed # heads. Let $\varepsilon \in [0,1]$. Hoeffding bounds:

- $Pr[N/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and Pr[N/m .

Exponentially decreasing tails

Tail inequality: bound probability mass in tail of distribution (how concentrated is a random variable around its expectation).

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \geq \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

- Proof: Just apply Hoeffding.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ . Solve.
- So, whp, best on sample is ϵ -best over D.
 - Note: this is worse than previous bound ($1/\epsilon$ has become $1/\epsilon^2$), because we are asking for something stronger.
 - Can also get bounds "between" these two.

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H.