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Sample Complexity Results for 
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Generalization and Overfitting



Today’s focus: Sample Complexity for Supervised 
Classification (Function Approximation)

• PAC (Valiant)

• Statistical Learning Theory (Vapnik)

Recommended readings: 
• Mitchell: Ch. 7 
• Shalev-Shwartz& Ben-David: Chapters 2,3,4
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Supervised Classification

Goal: use emails seen so far to produce good prediction 
rule for future data.

Not spam spam

Decide which emails are spam and which are important.

Supervised classification
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example label

Reasonable RULES:

Predict SPAM if unknown AND (money OR pills)

Predict SPAM if 2money + 3pills –5 known > 0

Represent each message by features. (e.g., keywords, spelling, etc.)

Example: Supervised Classification
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Linearly separable



Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

• Very well understood: Occam’s bound, VC theory, etc.

(Labeled) Data

• E.g.: logistic regression, SVM, Adaboost, etc.

• Note: to talk about these we need a precise model.



Labeled Examples  

PAC/SLT models for Supervised Learning

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X ! Y
x1 > 5

x6 > 2
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Labeled Examples  

Learning 
Algorithm Expert/Oracle

Data 
Source

Alg.outputs c* : X ! Y
h : X ! Y

(x1,c*(x1)),…, (xm,c*(xm))

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi independently 
and identically distributed (i.i.d.) from D; labeled by 𝑐∗

Distribution D on X

• Does optimization over S, finds hypothesis h (e.g., a decision tree).

• Goal: h has small error over D.

PAC/SLT models for Supervised Learning

Today: Y={-1,1}



• X – feature or instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

• Algo does optimization over S, find hypothesis ℎ.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - assumed to be drawn i.i.d. from some distr. 
D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

h c*

Instance space X
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Need a bias: no free lunch.

PAC/SLT models for Supervised Learning

• Goal:  h has small error over D.

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))



• Algo does optimization over S, find hypothesis ℎ.

• Goal:  h has small error over D.
h c*

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

– labeled examples - assumed to be drawn i.i.d. from some distr. 
D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

Instance space X
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Realizable: 𝑐∗ ∈ 𝐻. 
Agnostic: 𝑐∗ “close to” H. 

𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

PAC/SLT models for Supervised Learning

• X – feature or instance space; distribution D over X

e.g., X = Rd or X = {0,1}d

Bias: Fix hypotheses space H .
(whose complexity is not too large).



• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: 𝑒𝑟𝑟𝑆 ℎ =
1

𝑚
σ𝑖 𝐼 ℎ 𝑥𝑖 ≠ 𝑐∗ 𝑥𝑖

True error: 𝑒𝑟𝑟𝐷 ℎ = Pr
𝑥~ 𝐷

(ℎ 𝑥 ≠ 𝑐∗(𝑥))

• Does optimization over S, find hypothesis ℎ ∈ 𝐻.

PAC/SLT models for Supervised Learning

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over future 
instances drawn at random from D 

• But, can only measure:

How often ℎ 𝑥 ≠ 𝑐∗(𝑥) over training 
instances

Sample complexity: bound 𝑒𝑟𝑟𝐷 ℎ in terms of 𝑒𝑟𝑟𝑆 ℎ



Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Contrapositive: if the target is in H, and we have an algo that 
can find consistent fns, then we only need this many 
examples to get generalization error ≤ 𝜖 with prob. ≥ 1 − 𝛿



Sample Complexity for Supervised Learning

Consistent Learner

• 𝜖 is called error parameter

• 𝛿 is called confidence parameter
• there is a small chance the examples we get are not representative of 

the distribution

• D might place low weight on certain parts of the space

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Bound inversely linear in 𝜖

Bound only logarithmic in |H|



Sample Complexity for Supervised Learning

Consistent Learner

Example: H is the class of conjunctions over X = 0,1 n.

E.g., h = x1 x3x5 or h = x1 x2x4𝑥9

|H| = 3n

Then 𝑚 ≥
1

𝜖
𝑛 ln 3 + ln

1

𝛿
suffice

𝑛 = 10, 𝜖 = 0.1, 𝛿 = 0.01 then 𝑚 ≥ 156 suffice

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))



Sample Complexity for Supervised Learning

Consistent Learner

Example: H is the class of conjunctions over X = 0,1 n.

• Output: Find h in H consistent with the sample (if one exits). 

• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Side HWK question: show that any conjunctions can be 
represented by a small decision tree; also by a linear 
separator.



Sample Complexity for Supervised Learning

Assume k bad hypotheses h1, h2, … , hk with errD hi ≥ ϵProof

1)  Fix hi. Prob. hi consistent with first training example is

Prob. hi consistent with first m training examples is ≤ 1 − ϵ m. 

2) Prob. that at least one ℎ𝑖 consistent with first m training 
examples is

3) Calculate value of m so that H 1 − ϵ m ≤ δ

3) Use the fact that 1 − x ≤ e−x, sufficient to set

H 1 − ϵ m ≤ H e−ϵm ≤ δ

≤ k 1 − ϵ m ≤ H 1 − ϵ m.

≤ 1 − ϵ. 



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Probability over different samples 
of m training examples



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

1) PAC: How many examples suffice to guarantee small error whp. 

2) Statistical Learning Way:

errD(h) ≤
1

m
ln H + ln

1

𝛿
.

With probability at least 1 − 𝛿, for all h ∈ H s.t. errS h = 0 we have



Supervised Learning: PAC model (Valiant)

• X - instance space, e.g., X = 0,1 n or X = Rn

• Sl={(xi, yi)} - labeled examples drawn i.i.d. from some 
distr. D over X and labeled by some target concept c*

– labels 2 {-1,1} - binary classification

• Algorithm A PAC-learns concept class H if for any 
target c* in H, any distrib. D over X, any ,  > 0:

- A uses at most poly(n,1/,1/,size(c*)) examples and running 
time.
- With probab. 1-, A produces h in H of error at · .



Uniform Convergence

• This basic result only bounds the chance that a bad hypothesis looks 
perfect on the data. What if there is no perfect h∈H (agnostic case)?

• What can we say if c∗ ∉ H?

• Can we say that whp all h∈H satisfy |errD(h) – errS(h)| ≤ ?

– Called “uniform convergence”.

– Motivates optimizing over S, even if we can’t find a 
perfect function.



Sample Complexity: Finite Hypothesis Spaces

Realizable Case

What if there is no perfect h? 

Agnostic Case

To prove bounds like this, need some good tail inequalities.



Hoeffding bounds
Consider coin of bias p flipped m times.  
Let N be the observed # heads.  Let ∈ [0,1].
Hoeffding bounds:
• Pr[N/m > p + ] ≤ e-2m2, and
• Pr[N/m < p - ] ≤ e-2m2.

• Tail inequality: bound probability mass in tail of 
distribution (how concentrated is a random variable 
around its expectation).

Exponentially decreasing tails



• Proof: Just apply Hoeffding.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.
• So, whp, best on sample is -best over D.

– Note: this is worse than previous bound (1/ has become 1/2), 
because we are asking for something stronger.

– Can also get bounds “between” these two.

Sample Complexity: Finite Hypothesis Spaces

Agnostic Case



What you should know

• Notion of sample complexity.

• Understand reasoning behind the simple sample 
complexity bound for finite H.


