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The Perceptron Algorithm, 

Margins



The Perceptron Algorithm

• Online Learning Model

• Its Guarantees under large margins

Originally introduced in the online learning scenario.

• Perceptron Algorithm

Simple learning algorithm for supervised classification 
analyzed via geometric  margins in the 50’s [Rosenblatt’57] .



Mistake bound model

• Example arrive sequentially.

The Online Learning Model

• We need to make a prediction.

Afterwards observe the outcome.

• Analysis wise, make no distributional assumptions, 
consider a worst sequence of examples.

• Goal: Minimize the number of mistakes.

Online Algorithm

Example 𝑥𝑖

Prediction ℎ(𝑥𝑖)Phase i:

Observe true label (𝑥𝑖)

For i=1, 2, …, :



The Online Learning Model. Motivation

- Email classification (distribution of both spam and regular 
mail changes over time, but the target function stays fixed -
last year's spam still looks like spam).

- Add placement in a new market.

- Recommendation systems. Recommending movies, etc.

- Predicting whether a user will be interested in a new news 
article or not.



Linear Separators
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• Feature space X = Rd

• Hypothesis class of linear decision 
surfaces in 𝑅𝑑.

• h x = w ⋅ x + w0, if ℎ 𝑥 ≥ 0, then 
label x as +, otherwise label it as -

Trick: Without loss of generality w0 = 0.

Proof: Can simulate a non-zero threshold with a dummy input 
feature 𝑥0 that is always set up to 1.

• 𝑥 = 𝑥1, … , 𝑥𝑑 → ෤𝑥 = 𝑥1, … , 𝑥𝑑 , 1

• w ⋅ x + w0 ≥ 0 iff 𝑤1, … , 𝑤𝑑 , w0 ⋅ ෤𝑥 ≥ 0

where w = 𝑤1, … , 𝑤𝑑



• Set t=1, start with the all zero vector 𝑤1.

Linear Separators: Perceptron Algorithm

• Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, then update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, then update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Natural greedy procedure:

• If true label of x is +1 and 𝑤𝑡 incorrect on x we have 𝑤𝑡 ⋅ 𝑥 < 0, 

𝑤𝑡+1 ⋅ 𝑥 ← 𝑤𝑡 ⋅ 𝑥 + 𝑥 ⋅ 𝑥 = 𝑤𝑡 ⋅ 𝑥 + 𝑥
2
, so more chance 𝑤𝑡+1

classifies x correctly.

• Similarly for mistakes on negative examples.



• Set t=1, start with the all zero vector 𝑤1.

Linear Separators: Perceptron Algorithm

• Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, then update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, then update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Note: 𝑤𝑡 is weighted sum of incorrectly classified examples

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

Important when we talk about kernels.



Perceptron Algorithm: Example

Example: −1,2 −

-
+
+

𝑤1 = (0,0)

𝑤2 = 𝑤1 − −1,2 = (1,−2)

𝑤3 = 𝑤2 + 1,1 = (2,−1)

𝑤4 = 𝑤3 − −1,−2 = (3,1)

+
-

-
Algorithm:

 Set t=1, start with all-zeroes weight vector 𝑤1.

 Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0.

 On a mistake, update as follows: 

• Mistake on positive, update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥
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Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0

𝑥1
w

Margin of positive example 𝑥1

𝑥2

Margin of negative example 𝑥2



Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a 

linear separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

+

+
+

+
+

+

-

-
-

-

-

𝛾𝑤

𝛾𝑤

+

--

-
-

+

w

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0
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Definition: The margin 𝛾 of a set of examples 𝑆 is the 
maximum 𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a 

linear separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0



Perceptron: Mistake Bound
Guarantee: If data has margin 𝛾 and all points inside a ball 
of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)
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Perceptron Algorithm: Analysis
Guarantee: If data has margin 𝛾 and all 
points inside a ball of radius 𝑅, then 
Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

Update rule: 

• Mistake on positive: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative: 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Proof:

Idea: analyze 𝑤𝑡 ⋅ 𝑤
∗ and ‖𝑤𝑡‖, where 𝑤∗ is the max-margin sep, ‖𝑤∗‖ = 1. 

Claim 1: 𝑤𝑡+1 ⋅ 𝑤
∗ ≥ 𝑤𝑡 ⋅ 𝑤

∗ + 𝛾.

Claim 2: 𝑤𝑡+1
2 ≤ 𝑤𝑡

2 + 𝑅2.

(because 𝑙 𝑥 𝑥 ⋅ 𝑤∗ ≥ 𝛾)

(by Pythagorean Theorem)

𝑤𝑡

𝑤𝑡+1

𝑥

After 𝑀 mistakes:

𝑤𝑀+1 ⋅ 𝑤
∗ ≥ 𝛾𝑀 (by Claim 1)

𝑤𝑀+1 ≤ 𝑅 𝑀 (by Claim 2)

𝑤𝑀+1 ⋅ 𝑤
∗ ≤ ‖𝑤𝑀+1‖ (since 𝑤∗ is unit length)

So, 𝛾𝑀 ≤ 𝑅 𝑀, so 𝑀 ≤
𝑅

𝛾

2
.



Finding a Consistent Separator

Can use Perceptron in a batch setting too, to find a consistent 
linear separator given a set S of labeled examples that is 
linearly separable by margin 𝛾.

• We repeatedly feed the whole set S of labeled examples into 

the Perceptron algorithm up to 
𝑅

𝛾

2
+ 1 rounds, until we get to a 

point where the current hypothesis is consistent/correct with 
the whole set S. Note we are guaranteed to reach such a point. 

• The runnning time is then polynomial in 
𝑅

𝛾2
and |S|.



What if there is no perfect separator?

Perceptron can be adapted to the case where there is no 
perfect separator as long as the so called hinge loss (i.e., the 
total distance needed to move the points to classify them correctly large 

margin) is small. 

Let TDγ = total distance needed to move the points to classify them 
correctly large margin.

After 𝑀 mistakes:

wM+1 ⋅ w
∗ ≥ γM − TDγ (new Claim 1)

𝑤𝑀+1 ≤ 𝑅 𝑀 (by Claim 2)

So, γM − TDγ ≤ R M, so M ≤
R

γ

2
+

2

γ
TDγ.



• Set t=1,  𝑤1 = 𝑙 x x, where x is the first example.

Margin Perceptron for Approx Maximizing the Margins

• Given example 𝑥, predict positive if 𝑤𝑡 ⋅ 𝑥 ≥
𝛾

2

• On a mistake, update: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑙(𝑥)𝑥

predict negative if 𝑤𝑡 ⋅ 𝑥 ≤
𝛾

2

margin mistake if 𝑤𝑡 ⋅ 𝑥 ∈ (−
𝛾

2
,
𝛾

2
)

Guarantee: If data has margin 𝛾 and all points inside a ball of radius 

𝑅, then Margin Perceptron makes ≤ 8
𝑅

𝛾

2
+ 4

𝑅

𝛾
mistakes.



Perceptron Discussion

• Can be kernelized to handle non-linear decision boundaries!

• See future lecture!!!

• Simple, but very useful in applications like branch prediction; 
it also has interesting extensions to structured prediction.



Margin Important Theme in ML

• If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

• If large margin 𝛾 and if alg. produces a large margin 
classifier, then amount of data needed depends only on 
R/𝛾 [Bartlett & Shawe-Taylor ’99].
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• Why not directly search for a large margin classifier?

Support Vector Machines (SVMs). 

• Large margin can help prevent overfitting.



Geometric Margin

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1
w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1,  margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

WLOG  homogeneous linear separators [w0 = 0].
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum
𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear 
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the 
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.



Input: 𝛾, S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: w, a separator of margin 𝛾 over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

First, assume we know a lower bound on the margin 𝛾
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The case where the data is truly linearly separable by margin 𝛾



Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: maximum margin separator over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w and maximum 𝛾 where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

E.g., search for the best possible 𝛾
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Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾
+ +
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Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

This is a 
constrained 
optimization
problem.

objective 
function

constraints

• Famous example of constrained optimization: linear programming, 
where objective fn is linear, constraints are linear (in)equalities



This constraint is non-linear.

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs
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Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

In fact, it’s even non-convex

𝑤1

𝑤2

𝑤1 + 𝑤2

2



Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

𝑤’ = 𝑤/𝛾, then max 𝛾 is equiv. to  minimizing ||𝑤’||2 (since ||𝑤’||2 = 1/𝛾2). 

So, dividing both sides by 𝛾 and writing in terms of w’ we get:
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-
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--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1



Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw 𝑤
2

s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1

This is a 
constrained 
optimization
problem.

• The objective is convex (quadratic)

• All constraints are linear

• Can solve efficiently (in poly time) using standard quadratic 
programing (QP) software



Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

𝑤
2
+ 𝐶(# misclassifications) 

Issue 1: now have two objectives 

• maximize margin

• minimize # of misclassifications.

Ans 1: Let’s optimize their sum: minimize

where 𝐶 is some tradeoff constant. 

Issue 2: This is computationally very hard (NP-hard).

[even if didn’t care about margin and minimized # mistakes]

++
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+
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w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1



Support Vector Machines (SVMs)
Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

+ +
++

-
- -

-
- +

--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1



Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

C controls the relative weighting between the 

twin goals of making the 𝑤
2

small (margin is 
large) and ensuring that most examples have 
functional margin ≥ 1.



• The importance of margins in machine learning.

• The Support Vector Machines (SVM) algorithm.

What you should know

• Perceptron simple online algo for learning linear 
separators with good guarantees when data has large 
geometric margin. 


